ASCE 41 2023
$146.25
ASCE/SEI Standard 41-23 Seismic Evaluation and Retrofit of Existing Buildings
Published By | Publication Date | Number of Pages |
ASCE | 2023 | 615 |
Prepared by the Seismic Evaluation and Retrofit of Existing Buildings Committee of the Codes and Standards Activities Division of the Structural Engineering Institute of ASCE Seismic Evaluation and Retrofit of Existing Buildings, Standard ASCE/SEI 41-23, describes deficiency-based and systematic procedures that use performance-based principles to evaluate and retrofit existing buildings to withstand the effects of earthquakes. The standard presents a three-tiered process for seismic evaluation according to a range of building performance levels by connecting targeted structural performance and the performance of nonstructural components with seismic hazard levels. The deficiency-based procedures allow evaluation and retrofit efforts to focus on specific potential deficiencies deemed to be of concern for a specified set of building types and heights. The systematic procedure, applicable to any building, sets forth a methodology to evaluate the entire building in a rigorous manner. This standard establishes analysis procedures and acceptance criteria, and specifies requirements for foundations and geologic site hazards; components made of steel, concrete, masonry, wood, and cold-formed steel; architectural, mechanical, and electrical components and systems; and seismic isolation and energy dissipation systems. Checklists are provided for a variety of building types and seismicity levels in support of the Tier 1 screening process. ASCE 41-23 is a primary reference for structural engineers addressing the seismic resilience of existing buildings and for building code officials reviewing such work. It also will be of interest to architects, construction managers, academic researchers, and building owners.
PDF Catalog
PDF Pages | PDF Title |
---|---|
2 | Seismic Evaluation andRetrofit of ExistingBuildings Seismic Evaluation andRetrofit of ExistingBuildings |
8 | CONTENTS CONTENTS |
38 | PREFACE PREFACE |
41 | ACKNOWLEDGMENTS ACKNOWLEDGMENTS |
45 | DEDICATION DEDICATION |
46 | UNIT CONVERSIONS UNIT CONVERSIONS |
48 | Chapter 1: GENERAL REQUIREMENTS Chapter 1: GENERAL REQUIREMENTS 1.1 SCOPE 1.2 DEFINITIONS AND NOTATION 1.2.1 Definitions |
54 | 1.2.2 Notation 1.2.2.1 Uppercase Notation |
61 | 1.2.2.2 Lowercase Notation |
63 | 1.2.2.3 Greek Notation |
65 | 1.3 SEISMIC EVALUATION PROCESS 1.3.1 Assignment of Performance Objective |
66 | 1.3.2 Level of Seismicity 1.3.3 As-Built Information 1.3.4 Evaluation Procedures 1.4 SEISMIC RETROFIT PROCESS 1.4.1 Assignment of Performance Objective 1.4.2 Level of Seismicity 1.4.3 As-Built Information 1.4.4 Verification of Retrofit Design 1.4.5 Quality Assurance and Structural Observation 1.4.5.1 Special Inspections and Testing 1.4.5.2 Structural Observation |
68 | Chapter 2: Performance Objectives and Seismic Hazards Chapter 2: Performance Objectives and Seismic Hazards 2.1 SCOPE 2.2 PERFORMANCE LEVELS 2.2.1 Structural Performance Levels and Ranges 2.2.2 Nonstructural Performance Levels 2.3 SEISMIC HAZARD |
69 | 2.3.1.1 BSE-2N Seismic Hazard Level 2.3.1.2 BSE-1N Seismic Hazard Level 2.3.1.3 BSE-2E Seismic Hazard Level 2.3.1.4 BSE-1E Seismic Hazard Level 2.3.1.5 Seismic Hazard Levels for Other Probabilities of Exceedance, Risk Targets, or Deterministic Hazards 2.3.2.1 Multi-Period General Horizontal Response Spectrum 14.2.3.3 Fire Resistance C15.2.3.4 Performance Objectives and System Redundancy |
70 | 2.3.2.2 Two-Period General Horizontal Response Spectrum 2.3.2.3 General Vertical Response Spectrum 2.3.3 Site-Specific Procedure for Hazards Caused by Ground Shaking 2.3.4 Ground Motion Acceleration Histories 2.4 PERFORMANCE OBJECTIVES 2.4.1 Basic Performance Objective for Existing Buildings (BPOE) 2.4.2 Enhanced Performance Objectives C3.5.1 Limitations on the Use of Tier 1 and Tier 2 Evaluation and Retrofit Procedures C5.4.2.2 Soft Story Irregularity C8.4.1 Selection of Evaluation Procedures |
71 | 2.4.3 Limited Performance Objectives 2.4.4 Basic Performance Objective Equivalent to New Building Standards (BPON) 2.4.5 Partial Retrofit |
72 | 2.4.6 System-Specific Performance Procedures 2.5 LEVEL OF SEISMICITY |
74 | Chapter 3: Evaluation and Retrofit Requirements Chapter 3: Evaluation and Retrofit Requirements 3.1 SCOPE 3.2 AS-BUILT INFORMATION 3.2.1 Building Type 3.2.2 Building Configuration 3.2.3 Component Properties 3.2.5.1 Building Pounding |
75 | 3.2.5.3 Hazards from Adjacent Buildings 3.3 COMMON BUILDING TYPES |
77 | 3.4 BENCHMARK BUILDINGS |
79 | 3.4.1 Benchmark Procedure Checklist 3.4.2.1 Level of Seismicity 3.4.2.2 Seismic Force Provisions C15.5.2.2 Velocity-Dependent Devices C16.2.2.3.3 Masonry Tension |
80 | 3.5 EVALUATION AND RETROFIT PROCEDURES 3.5.1 Limitations on the Use of Tier 1 and Tier 2 Evaluation and Retrofit Procedures. |
81 | 3.5.1.1 Buildings Conforming to One of the Common Building Types 3.5.1.2 Buildings Composed of More than One of the Common Building Types 13.4.2 Analytical Procedure C3.5.2 Tier 1 Screening Procedure C13.4.4.4.2 New Components |
83 | 3.5.1.2.1 Combinations of Systems in Different Directions 3.5.1.2.2 Combinations of Systems in the Same Direction 3.5.2 Tier 1 Screening Procedure 8.4.2.1 Prescriptive Expected Soil Bearing Capacities A.3.1.3 Steel Moment Frames C9.5.2.3 Force-Controlled Actions |
84 | 3.5.3.1 Evaluation Requirements 3.5.3.2 Retrofit Requirements 3.5.4 Tier 3 Systematic Evaluation and Retrofit Procedures 3.5.4.1 Evaluation Requirements 3.5.4.2 Retrofit Requirements |
86 | Chapter 4: Tier 1 Screening Chapter 4: Tier 1 Screening 4.1 SCOPE |
87 | 4.1.1 Performance Level 4.1.3 Level of Seismicity 4.2 SCOPE OF INVESTIGATION REQUIRED 4.2.1 On-Site Investigation and Condition Assessment 3.1 Modeling and Design |
88 | 4.2.3 Default Material Values 4.3 SELECTION AND USE OF CHECKLISTS |
89 | 4.4 TIER 1 ANALYSIS 4.4.2 Seismic Forces 4.4.2.1 Pseudo Seismic Force C4.4.3.5 Precast Connections |
91 | 4.4.2.4 Period 4.4.3.2 Shear Stress in Concrete Frame Columns 4.4.3.3 Shear Stress in Shear Walls 16.2.3.1.1 General C15.5.2.2.1 Solid Viscoelastic Devices |
92 | 4.4.3.5 Precast Connections 4.4.3.6 Column Axial Stress Caused by Overturning. 4.4.3.7 Flexible Diaphragm Connection Forces 4.4.3.8 Prestressed Elements 4.4.3.9 Flexural Stress in Columns and Beams of Steel Moment Frames. 11.2.3.9 Minimum Number of Tests A.3.1.3.3 Flexural Stress Check |
94 | Chapter 5: Tier 2 Deficiency-Based Evaluation and Retrofit Chapter 5: Tier 2 Deficiency-Based Evaluation and Retrofit 5.1 SCOPE 5.2 GENERAL REQUIREMENTS 5.2.2 As-Built Information 5.2.3 Condition Assessment 5.2.4 Tier 2 Analysis Methods 12.2.2.1 Material Properties A.2.1.2 Adjacent Buildings C14.2.2.1 Ground Motion Acceleration Histories |
97 | 5.2.5 Tier 2 Acceptance Criteria 5.3 TIER 2 DEFICIENCY-BASED EVALUATION REQUIREMENTS 5.4 PROCEDURES FOR BASIC CONFIGURATION OF BUILDING SYSTEMS 5.4.1 General 5.4.1.1 Load Path 5.4.2 Building Configuration 5.4.2.1 Weak Story Irregularity 5.4.2.2 Soft Story Irregularity 5.4.2.3 Vertical Irregularities 5.4.2.4 Geometric Irregularity 5.4.2.5 Mass Irregularity 5.4.3 Geologic Site Hazards and Foundation Components 5.4.3.1 Geologic Site Hazards C7.2.4.6 Damping C13.4.4.1 Horizontal Seismic Forces C16.2.3.5 New Vertical Elements |
98 | 5.4.3.2 Foundation Performance 5.4.3.3 Overturning 5.4.3.4 Ties between Foundation Elements 5.5 PROCEDURES FOR SEISMIC-FORCE-RESISTING SYSTEMS 5.5.1 General 5.5.1.1 Redundancy 5.5.2 Procedures for Moment Frames 5.5.2.1 General Procedures for Moment Frames 5.5.2.1.1 Interfering Walls 5.5.2.1.2 Drift Check 5.5.2.1.3 Axial Stress Check 5.5.2.1.4 Shear Stress Check 5.5.2.1.5 Strong Column-Weak Beam 5.5.2.2 Procedures for Steel Moment Frames 5.5.2.2.1 Moment-Resisting Connections 5.5.2.2.2 Flexural Stress Check 5.5.2.2.3 Panel Zones 5.5.2.2.4 Column Splices 5.5.2.2.5 Compact Members 5.5.2.2.6 Beam Penetrations 5.5.2.2.7 Girder Flange Continuity Plates 5.5.2.2.8 Out-of-Plane Bracing at Beam-Column Joints 5.5.2.2.9 Bottom Flange Bracing 5.5.2.3 Procedures for Concrete Moment Frames 5.5.2.3.1 Flat Slab Frames 14.2.6.1 General C5.5.2 Procedures for Moment Frames |
99 | 5.5.2.3.2 Prestressed Frame Elements 5.5.2.3.3 Captive Column Conditions 5.5.2.3.4 No Shear Failures 5.5.2.3.5 Continuous Beam Bars 5.5.2.3.6 Column and Beam Bar Splices 5.5.2.3.7 Column-Tie Spacing and Beam Stirrup Spacing 5.5.2.3.8 Joint Reinforcing 5.5.2.3.9 Joint Eccentricity 5.5.2.3.10 Stirrup and Tie Hooks 5.5.2.4 Procedures for Precast Concrete Moment Frames 5.5.2.5 Procedures for Frames Not Part of the Seismic-Force-Resisting System 5.5.2.5.1 Complete Frames 5.5.2.5.2 Deflection Compatibility 5.5.2.5.3 Flat Slabs 5.5.3 Procedures for Shear Walls 5.5.3.1 General Procedures for Shear Walls 5.5.3.1.1 Shear Stress Check 5.5.3.1.2 Wall Thickness and Proportions 5.5.3.1.3 Reinforcement Steel 5.5.3.1.4 Overturning 5.5.3.1.5 Reinforcement at Openings 5.5.3.2 Procedures for Concrete Shear Walls 5.5.3.2.1 Coupling Beams 5.5.3.2.2 Confinement Reinforcement 5.5.3.2.3 Wall Connections 5.5.3.2.4 Column Splices 5.5.3.3 Procedures for Precast Concrete Shear Walls 5.5.3.3.1 Wall Openings |
100 | 5.5.3.3.2 Corner Openings 5.5.3.3.3 Panel-to-Panel Connections 5.5.3.4 Procedures for Unreinforced Masonry Shear Walls 5.5.3.4.1 Masonry Layup 5.5.3.5 Procedures for Infill Walls in Frames 5.5.3.5.1 Wall Connections 5.5.3.5.2 Cavity Walls 5.5.3.5.3 Masonry Infill Walls 5.5.3.6 Procedures for Walls in Wood Frame Buildings 5.5.3.6.1 Stucco, Gypsum Wallboard, Plaster, or Narrow Shear Walls 5.5.3.6.2 Shear Walls Connected through Floors 5.5.3.6.3 Hillside Site Conditions 5.5.3.6.4 Cripple Walls 5.5.3.6.5 Openings 5.5.3.6.6 Hold-Down Anchors 5.5.3.7 Procedures for Cold-Formed Steel Light-Frame Construction, Shear Wall Systems 5.5.3.7.1 Stucco, Gypsum Wallboard, Plaster, or Narrow Shear Walls 5.5.3.7.2 Shear Walls Connected through Floors 5.5.3.7.3 Hillside Site Conditions 5.5.3.7.4 Cripple Walls 5.5.3.7.5 Openings 5.5.3.7.6 Hold-Down Anchors 5.5.4 Procedures for Braced Frames 5.5.4.1 Axial Stress Check 5.5.4.2 Column Splices 5.5.4.3 Slenderness of Diagonals 5.5.4.4 Connection Strength |
101 | 5.5.4.5 Out-of-Plane Restraint for Braced Frames 5.5.4.6 K-Bracing and Chevron-Bracing Configurations 5.5.4.7 Tension-Only Braces 5.5.4.8 Concentrically Braced Frame Joints 5.5.4.9 Procedures for Cold-Formed Steel Light-Frame Construction, Strap-Braced Wall Systems 5.5.4.9.1 Narrow Cold-Formed Steel Strap-Braced Walls 5.5.4.9.2 Cold-Formed Steel Strap-Braced Walls Connected through Floors 5.5.4.9.3 Hillside Site Conditions 5.5.4.9.4 Hold-Down Anchors 5.5.4.9.5 Chord Stud Axial Stress 5.5.4.9.6 Strap Brace Detailing 5.6 PROCEDURES FOR DIAPHRAGMS 5.6.1 General Procedures for Diaphragms 5.6.1.1 Diaphragm and Roof Chord Continuity 5.6.1.2 Diaphragm Cross Ties 5.6.1.3 Openings in Diaphragms at Shear Walls, Braced Frames, and Moment Frames 5.6.1.4 Plan Irregularities in Diaphragms 5.6.1.5 Diaphragm Reinforcement at Openings 5.6.2 Procedures for Wood Diaphragms 5.6.3 Procedures for Steel Deck Diaphragms |
102 | 5.6.4 Procedures for Precast Concrete Diaphragms 5.6.5 Diaphragms Other Than Wood, Steel Deck, Concrete, or Horizontal Bracing 5.7 PROCEDURES FOR CONNECTIONS 5.7.1 Anchorage for Normal Forces 5.7.1.1 Wall Anchorage 5.7.1.2 Stiffness of Wall Anchors 5.7.1.3 Wood Ledgers with Cross-Grain Bending 5.7.1.4 Precast Concrete Panel Connections 5.7.2 Connections for Shear Transfer 5.7.3 Connections for Vertical Elements 5.7.3.1 Steel and Concrete Columns 5.7.3.2 Shear Wall Boundary Columns 5.7.3.3 Wood or Cold-Formed Steel Posts and Wood Sills and Cold-Formed Steel Base Tracks 5.7.3.4 Concrete Walls, Precast Wall Panels, and Other Wall Panels 5.7.3.5 Uplift at Pile Caps 5.7.4 Interconnection of Elements 5.7.4.1 Girder-Column Connection 5.7.4.2 Girders Supported by Walls or Pilasters 5.7.4.3 Corbel Bearing and Connections 5.7.4.4 Beam, Girder, and Truss Supported on Unreinforced Masonry (URM) Walls or URM Pilasters 5.7.5 Roof and Wall Panel Connections 5.8 TIER 2 DEFICIENCY-BASED RETROFIT REQUIREMENTS 5.8.1 Compliance with Deficiency-Based Evaluation |
103 | 5.8.2 Additional Evaluation of the Resulting Building 5.8.2.1 Building Configuration 5.8.2.2 Increased Gravity Demands to Existing Elements 5.8.2.3 Increased Seismic Demands to Existing Elements 5.8.3 Evaluation of New and Modified Structural Elements and Connections 5.8.4 Retrofit-Specific Requirements 5.8.4.1 General 5.8.4.2 Design and Detailing Requirements 5.8.4.3 Scope of Evaluation Requirements for Existing Components |
104 | Chapter 6: Tier 3 Systematic Evaluation and Retrofit Chapter 6: Tier 3 Systematic Evaluation and Retrofit 6.1 SCOPE 6.2 DATA COLLECTION REQUIREMENTS 6.2.1 Construction Documentation 6.2.2 Condition Assessment 6.2.3 Material Properties 14.2.1 General |
105 | 6.2.3.1 Knowledge Factor for Linear Procedures 6.2.3.2 Property Bounding for Nonlinear Procedures C8.2.1.2.1 Structural Foundation Information C12.2.2.2 Component Properties |
106 | 6.3 TIER 3 EVALUATION REQUIREMENTS 6.4 TIER 3 RETROFIT REQUIREMENTS |
108 | 2.3.1 Seismic Hazard Levels CHAPTER 7: ANALYSIS PROCEDURES AND ACCEPTANCE CRITERIA CHAPTER 7: ANALYSIS PROCEDURES AND ACCEPTANCE CRITERIA 7.1 SCOPE 7.2 GENERAL ANALYSIS REQUIREMENTS 7.2.1 Analysis Procedures 7.2.3 Component Gravity Loads and Load Combinations 7.2.3.1 Dead Load 7.2.3.2 Live Load 7.2.3.3 Snow Load 11.2.1 General C9.4.2.1.1 Default Mechanical Properties and Nominal or Specified Properties of Cold-Formed Steel Light-Frame Construction |
109 | 7.2.4 Mathematical Modeling 7.2.4.2 Torsion 7.2.4.2.1 Total Torsional Moment 7.2.4.2.2 Consideration of Torsional Effects for Linear Procedures C5.4.1 General |
110 | 7.2.4.3 Primary and Secondary Components 7.2.4.3.1 Linear Procedures 7.2.4.3.2 Nonlinear Procedures A.3.1 Moment Frames C7.2.4.3.2 Nonlinear Procedures C14.2.4.2 Minimum Separations |
111 | 7.2.4.4 Stiffness and Strength Assumptions 7.2.4.5 Foundation Modeling 7.2.5 Configuration C5.4.2.6 Torsion Irregularity C11.2.3.9 Minimum Number of Tests |
112 | 3.5.3 Tier 2 Deficiency-Based Evaluation and Retrofit Procedures 7.2.6.2 Vertical Seismic Effects 7.2.7 P-delta Effects 7.2.9 Overturning 7.2.9.1 Overturning Effects for Linear Procedures |
113 | 7.2.9.2 Overturning Effects for Nonlinear Procedures 7.2.10 Sliding at the Soil-Structure Interface 7.2.10.1 Foundation Interconnection 7.2.11.1 Classification of Diaphragms 16.2.3.3.1 Shear Wall Actions C5.5.2.1.1 Interfering Walls |
114 | 7.2.11.2 Mathematical Modeling 7.2.11.5 Diaphragm Ties 7.2.12 Continuity 7.2.13 Structural Walls and Their Anchorage 7.2.13.1 Out-of-Plane Wall Anchorage to Diaphragms |
115 | 7.2.13.2 Out-of-Plane Strength of Walls 7.2.14 Structures Sharing Common Elements 7.2.14.2 Separation 7.2.15 Building Separation 7.2.15.1 Minimum Separation C5.5.3.3 Procedures for Precast Concrete Shear Walls |
116 | 7.2.15.2 Separation Exceptions 7.2.16 Verification of Analysis Assumptions 7.3 ANALYSIS PROCEDURE SELECTION 7.3.1 Linear Procedures 7.3.1.1 Method to Determine Limitations on Use of Linear Procedures 7.3.1.1.1 In-Plane Discontinuity Irregularity 12.4.2.1.6 Wood Structural Panel Sheathing or Siding |
117 | 7.3.1.1.2 Out-of-Plane Discontinuity Irregularity 7.3.1.1.3 Weak Story Irregularity 7.3.1.1.4 Torsional Strength Irregularity 7.3.1.2 Limitations on Use of the Linear Static Procedure 7.3.2 Nonlinear Procedures 7.3.2.1 Nonlinear Static Procedure 8.6.2.2 Soil Hysteretic Damping |
118 | 7.3.2.2 Nonlinear Dynamic Procedure 7.3.3 Alternative Rational Analysis 7.4 ANALYSIS PROCEDURES 7.4.1 Linear Static Procedure 7.4.1.1 Basis of the Procedure 7.4.1.2 Period Determination for Linear Static Procedure 7.4.1.2.1 Method 1: Analytical 7.4.1.2.2 Method 2: Empirical 7.4.1.2.3 Method 3: Approximate 7.4.1.3 Determination of Forces and Deformations for Linear Static Procedure 7.4.1.3.1 Pseudo Seismic Force for Linear Static Procedure 9.6.3.4.4 Connections of Steel Sheet Panels |
119 | 7.4.1.3.2 Vertical Distribution of Seismic Forces for Linear Static Procedure 7.4.1.3.3 Horizontal Distribution of Seismic Forces for Linear Static Procedure 12.4.3.2.3 Acceptance Criteria for Diagonal Lumber Sheathing Shear Walls |
120 | 7.4.1.3.4 Diaphragms for Linear Static Procedure 7.4.1.3.5 Distribution of Seismic Forces for Unreinforced Masonry Buildings with Flexible Diaphragms for Linear Static Procedure 7.4.1.4 Damping for Linear Static Procedure 7.4.2 Linear Dynamic Procedure 7.4.2.1 Basis of the Procedure 7.4.2.2 Modeling and Analysis Considerations for Linear Dynamic Procedure 7.4.2.2.1 General 7.4.2.2.2 Ground Motion Characterization for Linear Dynamic Procedure 7.4.2.2.3 Response Spectrum Method for Linear Dynamic Procedure 7.4.2.2.4 Linear Response History Method 11.4.2.6 Strut Model for Infill In-Plane Actions |
121 | 7.4.2.3 Determination of Forces and Deformations for Linear Dynamic Procedure 7.4.2.3.1 Modification of Demands for Linear Dynamic Procedure 7.4.2.3.2 Diaphragms for Linear Dynamic Procedure 7.4.2.4 Damping for Linear Dynamic Procedure 7.4.3 Nonlinear Static Procedure 7.4.3.1 Basis of the Procedure 7.4.3.2.1 General Requirements for Nonlinear Static Procedure 7.4.3.2.2 Component Modeling for Nonlinear Static Procedure 11.4.3.2 Strength: Infill Wall Out-of-Plane Actions 14.6.1 General |
122 | 7.4.3.2.3 Control Node Displacement for Nonlinear Static Procedure 7.4.3.2.4 Lateral Load Distribution for Nonlinear Static Procedure 7.4.3.2.6 Period Determination for Nonlinear Static Procedure 7.4.3.2.7 Analysis of Mathematical Models for Nonlinear Static Procedure 7.4.3.3 Determination of Forces, Displacements, and Deformations for Nonlinear Static Procedure C13.7.8.2 Component Behavior and Retrofit Methods |
123 | 7.4.3.3.2 Target Displacement for Nonlinear Static Procedure |
124 | 7.4.3.3.3 Modification of Demands for Nonlinear Static Procedure 7.4.3.3.4 Diaphragms for Nonlinear Static Procedure 7.4.3.4 Damping for Nonlinear Static Procedure 7.4.4 Nonlinear Dynamic Procedure 7.4.4.1 Basis of the Procedure 7.4.4.2 Modeling and Analysis Considerations for Nonlinear Dynamic Procedure 7.4.4.2.1 General Requirements for Nonlinear Dynamic Procedure 7.4.4.2.2 Ground Motion Characterization for Nonlinear Dynamic Procedure 7.4.4.2.3 Nonlinear Response History Method for Nonlinear Dynamic Procedure 7.4.4.2.4 Cyclic Response in Nonlinear Dynamic Procedure A.3.2.8.8 Openings C12.5.3.1 Single-Layer Straight Lumber Sheathing Diaphragms |
125 | 7.4.4.2.5 Adaptive Models in Nonlinear Dynamic Procedure 7.4.4.3 Determination of Forces and Deformations for Nonlinear Dynamic Procedure 7.4.4.3.1 Modification of Demands for Nonlinear Dynamic Procedure 7.4.4.3.2 Diaphragm Forces for Nonlinear Dynamic Procedure 7.4.4.4 Damping for Nonlinear Dynamic Procedure |
126 | 7.5 ACCEPTANCE CRITERIA 7.5.1 General Requirements 7.5.1.1 Deformation-Controlled and Force-Controlled Actions |
127 | 7.5.1.2 Critical and Noncritical Actions 7.5.1.3 Expected and Lower-Bound Strengths 7.5.1.4 Material Properties 7.5.1.5 Component Capacities 7.5.1.5.1 General 7.5.1.5.2 Linear Procedures 7.5.1.5.3 Nonlinear Procedures 7.5.2 Linear Procedures 7.5.2.1 Forces and Deformations C12.5.3.6 Wood Structural Panel Sheathing Diaphragm |
128 | 7.5.2.1.1 Deformation-Controlled Actions for Linear Static Procedure or Linear Dynamic Procedure 7.5.2.1.2 Force-Controlled Actions for Linear Static Procedure or Linear Dynamic Procedure 7.5.2.2 Acceptance Criteria for Linear Procedures 7.5.2.2.2 Acceptance Criteria for Force-Controlled Actions for LSP or LDP 7.5.2.2.3 Verification of Analysis Assumptions for Linear Static Procedure or Linear Dynamic Procedure 7.5.3 Nonlinear Procedures 7.5.3.1 Forces and Deformations 7.5.3.2 Acceptance Criteria for Nonlinear Procedures 7.5.3.2.1 Unacceptable Response for Nonlinear Dynamic Procedures C12.5.3.7 Wood Structural Panel Overlays on Straight or Diagonal Lumber Sheathing Diaphragms |
129 | 7.5.3.2.2 Acceptance Criteria for Deformation-Controlled Actions for NSP or NDP 7.5.3.2.3 Acceptance Criteria for Force-Controlled Actions for NSP or NDP 7.5.3.2.4 Verification of Analysis Assumption for NSP or NDP |
130 | 7.6 EXPERIMENTALLY DERIVED MODELING PARAMETERS AND ACCEPTANCE CRITERIA 7.6.1 Criteria for General Use Parameters 7.6.1.1 Experimental Test Data 7.6.1.2 Analytical Model Data 7.6.2 Criteria for Individual Project Testing 7.6.2.1 Experimental Setup 7.6.2.2 Data Reduction and Reporting |
131 | 7.6.2.3 Peer Review 7.6.3 Modeling Parameters and Acceptance Criteria for Nonadaptive Force-Deformation Curves |
134 | 7.6.4 Modeling Parameters and Acceptance Criteria for Component Actions Based on Experimental Data for Fiber Models 7.6.5 Modeling Parameters and Acceptance Criteria for Component Actions Based on Experimental Data for Adaptive Force-Deformation Models in the Mathematical Model 12.5.2.3.3 New Double-Diagonal Sheathing |
136 | Chapter 8: Foundations, Subsurface Soil, and Geologic Site Hazards Chapter 8: Foundations, Subsurface Soil, and Geologic Site Hazards 8.1 SCOPE 8.2 SITE CHARACTERIZATION 8.2.1 Subsurface Soil Foundation Information 8.2.1.2 Foundation Conditions 8.2.1.2.1 Structural Foundation Information 8.2.1.2.2 Foundation Loads 8.2.1.3 Load-Deformation Characteristics of Subsurface Soil under Seismic Loading 8.2.1.4 Soil Shear Modulus and Poisson’s Ratio Parameters 12.2.2.1.2 Use of Default Properties 13.2.1 Classification of Components 15.2.3 Damping Device Requirements C5.2.4 Tier 2 Analysis Methods C16.2.2.1.3 Walls with Other Layups |
137 | 8.2.2 Seismic-Geologic Site Hazards 8.2.2.1 Fault Rupture 8.2.2.2 Liquefaction C12.2.2.5 Default Properties |
138 | 8.2.2.2.2 Postliquefaction Structural Evaluation |
139 | 8.2.2.4 Landsliding 8.2.2.5 Flooding or Inundation 8.3 MITIGATION OF SEISMIC-GEOLOGIC SITE HAZARDS 8.4 SHALLOW FOUNDATIONS 8.4.1 Selection of Evaluation Procedures |
140 | 8.4.2 Expected Soil Bearing Capacities 8.4.3 Simplified Procedure 8.4.4.1 Linear Procedures 8.4.4.1.1 Isolated Spread Footings 16.2.3.2.2 Demand-Capacity Ratios |
144 | 8.4.4.1.2 Combined Footings, Mat Foundations, and Isolated Spread Footings 8.4.4.2 Nonlinear Procedures 8.4.5 Flexible-Base Procedure C8.4.5 Flexible-Base Procedure |
145 | 8.4.5.1 Soil Stiffness 8.4.5.2 Linear Procedures 8.4.5.2.1 Isolated Spread Footings C7.2.15 Building Separation |
146 | 8.4.5.3.1 Modeling Parameters for Nonlinear Static Procedure 13.6.1.1.2 Component Behavior and Retrofit Methods |
147 | 8.4.5.3.2 Modeling Parameters for Nonlinear Dynamic Procedure 8.4.5.3.3 Acceptance Criteria 9.6.2.2 Enhanced Cold-Formed Steel Light-Frame Shear Walls |
148 | 8.5 DEEP FOUNDATIONS 8.5.1 Pile Foundations 9.6.3.1 Wood Structural Panels |
149 | 8.5.3 Deep Foundation Acceptance Criteria |
150 | 8.5.3.1 Linear Procedures 8.5.3.1.1 Fixed-Base Assumption 8.5.3.1.2 Flexible-Base Assumption 8.5.3.2 Nonlinear Procedures 8.5.3.2.2 Flexible-Base Assumption 8.6 SOIL-STRUCTURE INTERACTION EFFECTS 8.6.1 Kinematic Interaction 12.4.2.1.1 Single-Layer Horizontal Lumber Sheathing or Siding 13.6.1.3.2 Component Behavior and Retrofit Methods C5.5.4.1 Axial Stress Check C13.6.2.4 Evaluation Requirements |
151 | 8.6.1.2 Embedment 8.6.2 Foundation Damping Soil-Structure Interaction Effects 8.6.2.1 Radiation Damping for Rectangular Foundations 15.10.2 Velocity-Dependent Devices C13.6.6.1 Definition and Scope |
152 | 8.7 SEISMIC EARTH PRESSURE |
153 | 8.8 FOUNDATION RETROFIT |
154 | Chapter 9: Steel and Iron Chapter 9: Steel and Iron 9.1 SCOPE 9.2 REFERENCE STANDARD FOR STRUCTURAL STEEL, COMPOSITE STEEL-CONCRETE, AND CAST AND WROUGHT IRON 9.3 MODIFICATION TO THE REFERENCE STANDARD FOR STRUCTURAL STEEL, COMPOSITE STEEL-CONCRETE, AND CAST AND WROUGHT IRON 9.4 MATERIAL PROPERTIES AND CONDITION ASSESSMENT FOR COLD-FORMED STEEL 9.4.1 General 9.4.2 Properties of In-Place Materials and Components 9.4.2.1 Material Properties 16.2.2.1.1 Headers in Multiwythe Solid Brick C9.4.1 General |
155 | 9.4.2.2 Component Properties 9.4.2.3 Test Methods to Quantify Mechanical Properties 9.4.2.4.1 Usual Testing for Cold-Formed Steel 9.4.2.5 Default Mechanical Properties A.2.2.3 Soft Story C12.2.2.4 Minimum Number of Tests |
156 | 7.2.6.1 Concurrent Seismic Effects 8.4.2.2 Site-Specific Capacities 9.4.3.1 General 9.4.3.2.1 Visual Condition Assessment of Cold-Formed Steel Components and Connections 9.4.3.2.2 Comprehensive Condition Assessment of Cold-Formed Steel Components and Connections 9.4.3.3 Basis for the Mathematical Building Model 9.4.4 Knowledge Factor 9.5 GENERAL ASSUMPTIONS AND REQUIREMENTS FOR COLD-FORMED STEEL 9.5.1 Stiffness 9.5.1.1 Use of Linear Procedures for Cold-Formed Steel Light-Frame Construction 9.5.1.2 Use of Nonlinear Procedures for Cold-Formed Steel Light-Frame Construction A.3.1.3.2 Column Axial Stress Check A.3.1.3.4 Moment-Resisting Connections C13.6.1 Exterior Wall Components |
157 | 9.5.2 Strength and Acceptance Criteria 9.5.2.1 General 9.5.2.2 Deformation-Controlled Actions 9.5.2.3 Force-Controlled Actions 9.5.2.4 Anchorage to Concrete 9.5.3 Connection Requirements in Cold-Formed Steel Light-Frame Construction 9.5.4 Components Supporting Discontinuous Shear Walls in Cold-Formed Steel Light-Frame Construction 11.2.3.10 Default Properties 14.3.3.3 Aging and Environmental Effects on Design Properties C13.6.1.1.4 Evaluation Requirements |
158 | 8.5.2 Drilled Shafts 9.6 COLD-FORMED STEEL LIGHT-FRAME CONSTRUCTION, SHEAR WALL SYSTEMS 9.6.1 General 9.6.2 Types of Cold-Formed Steel Light-Frame Construction, Shear Wall Systems 9.6.2.1 Existing Cold-Formed Steel Light-Frame Shear Walls 9.6.2.3 New Cold-Formed Steel Light-Frame Shear Walls 9.6.3.1.1 Stiffness of Wood Structural Panels 9.6.3.1.2 Strength of Wood Structural Panels 9.6.3.1.3 Acceptance Criteria for Wood Structural Panels 9.6.3.2 Steel Sheet Sheathing 9.6.3.2.1 Stiffness of Steel Sheet Sheathing 9.6.3.2.2 Strength of Steel Sheet Sheathing 7.6.1 Modeling 12.3.3.1 Wood Construction A.3.1.4.14 Joint Eccentricity. C5.5.3.3.1 Wall Openings C7.4.1.2.3 Method 3: Approximate C11.3.4.6.1 Linear Procedures for In-Plane Actions of Reinforced Masonry Walls |
159 | 9.6.3.2.3 Acceptance Criteria for Steel Sheet Sheathing 9.6.3.3 Gypsum Board Panel 9.6.3.3.1 Stiffness of Gypsum Board Panel Shear Walls 9.6.3.3.2 Strength of Gypsum Board Panel Shear Walls 12.1.3 Grade Beams 14.5.2.1 General C7.4.1.3 Determination of Forces and Deformations for Linear Static Procedure |
160 | 9.6.3.3.3 Acceptance Criteria for Gypsum Board Panel Shear Walls 9.6.3.3.4 Connections of Gypsum Board Panel Shear Walls |
161 | 9.6.3.4 Fiberboard Panels 9.6.3.4.2 Strength of Fiberboard Panels 9.6.3.4.3 Acceptance Criteria for Fiberboard Panels 9.6.3.5 Plaster on Metal Lath Shear Walls 9.6.3.5.2 Strength of Plaster on Metal Lath Shear Walls 9.6.3.5.3 Acceptance Criteria for Plaster on Metal Lath Shear Walls 9.6.3.5.4 Connections of Plaster on Metal Lath Shear Wall 9.7 COLD-FORMED STEEL MOMENT-FRAME SYSTEMS 9.7.1 General 9.7.2 Types of Cold-Formed Steel Moment-Frame Systems 9.7.2.1 Existing Cold-Formed Steel Moment-Frame Systems 9.7.2.2 Enhanced Cold-Formed Steel Moment-Frame Systems 9.7.2.3 New Cold-Formed Steel Moment-Frame Systems 9.7.3 Stiffness, Strength, Acceptance Criteria, and Connection Design for Cold-Formed Steel Moment-Frame Systems 9.7.3.1 Generic Cold-Formed Steel Moment Connection 14.5.3.5 Scaling of Results |
162 | 9.7.3.1.2 Stiffness of Generic Cold-Formed Steel Moment Connection |
163 | 9.7.3.1.3 Acceptance Criteria for Cold-Formed Steel Generic Moment Connection 9.7.3.1.4 Connections for Cold-Formed Steel Generic Moment Connection 9.7.3.2 Cold-Formed Steel Special Bolted Moment Frame 9.7.3.2.1 Stiffness of Cold-Formed Steel Special Bolted Moment Frame 9.7.3.2.2 Strength of Cold-Formed Steel Special Bolted Moment Frame 9.7.3.2.3 Acceptance Criteria for Cold-Formed Steel Special Bolted Moment Frame 9.7.3.2.4 Connections for Cold-Formed Steel Special Bolted Moment Frame 9.8 COLD-FORMED STEEL LIGHT-FRAME CONSTRUCTION, STRAP-BRACED WALL SYSTEMS 9.8.1 General 9.8.2 Types of Cold-Formed Steel Light-Frame Construction with Strap-Braced Walls 9.8.2.1 Existing Cold-Formed Steel Light-Frame Construction with Strap-Braced Walls 9.8.2.2 Cold-Formed Steel Light-Frame Construction with Enhanced Strap-Braced Walls 9.8.2.3 Cold-Formed Steel Light-Frame Construction with New Strap-Braced Walls C7.5.2.1 Forces and Deformations |
164 | 9.8.3 Stiffness, Strength, Acceptance Criteria, and Connection Design for Cold-Formed Steel Light-Frame Construction with Strap-Braced Walls 9.8.3.2 Strength 9.8.3.3 Acceptance Criteria 9.8.3.4 Connections 9.9 COLD-FORMED STEEL DIAPHRAGMS A.3.2.7.1 Shear Stress Check |
166 | CHAPTER 10: CONCRETE CHAPTER 10: CONCRETE 10.1 SCOPE 10.2 Reference Standard 10.3 Modifications to the Reference Standard ACI 369.1 Chapter 3 3.1.1 General |
167 | 7.2.4.1 Basic Assumptions 3.1.2 Stiffness 3.1.2.1 Linear Procedures 3.1.2.2 Nonlinear Procedures |
169 |
7.1.2 Reinforced Concrete Columns Supporting Discontinuous Structural Walls |
170 | 7.2.3 Shear-Friction Strength 7.3 Linear Static and Dynamic Procedures for Reinforced Concrete Structural Walls and Wall Segments 7.3.2 Acceptance Criteria |
173 | 7.4 Nonlinear Static and Dynamic Procedures for Reinforced Concrete Structural Walls and Wall Segments 7.4.1 Modeling |
174 | 7.4.1.1.1. Structural Walls and Wall Segments Controlled by Flexure 7.4.1.1.2. Structural Walls and Wall Segments Controlled by Shear |
177 | 7.4.2 Acceptance Criteria 7.5 Linear static and dynamic procedures for reinforced concrete coupling beams 7.5.1 Modeling |
178 | 7.5.2 Acceptance Criteria 7.6 Nonlinear Static and Dynamic Procedures for Reinforced Concrete Coupling Beams 7.6.2 Acceptance Criteria 11.3.2.2.1 Expected In-Plane Rocking Strength of URM Walls and Wall Piers A.3.1.4.6 No Shear Failures. |
179 | 7.7 Retrofit Measures for Reinforced Concrete Structural Walls, Wall Segments, and Coupling Beams 10.3.3 Concrete Foundations. Replace Sections 12.1 through 12.4 of ACI 369.1 with the italicized text as follows. 12.1 Types of Concrete Foundations 12.1.1 Shallow Concrete Foundations |
180 | 12.1.2 Deep Concrete Foundations 12.1.2.1 Driven Concrete Pile Foundations 12.1.2.2 Cast-in-Place Concrete Pile Foundations 12.2 Analysis of Existing Concrete Foundations 12.3 Evaluation of Existing Condition 16.2.4.3.1 Transfer of Anchorage Forces into Diaphragm A.3.1.4.15 Stirrup and Tie Hooks. |
181 | 12.4 Retrofit Measures for Concrete Foundations 13.1. Notation |
183 | |
184 | CHAPTER 11: MASONRY CHAPTER 11: MASONRY 11.1 SCOPE 11.2 CONDITION ASSESSMENT AND MATERIAL PROPERTIES 11.2.2 Condition Assessment 11.2.2.1 Visual Condition Assessment |
185 | 3.4.2 Parameters for Benchmark Procedure 11.2.2.3 Supplemental Tests 11.2.2.4 Condition Enhancement 11.2.3 Properties of In-Place Materials and Components 11.2.3.2 Nominal or Specified Properties 11.2.3.3 Masonry Compressive Strength 11.2.3.4 Masonry Elastic Modulus in Compression C9.4.3 Condition Assessment |
186 | 11.2.3.5 Masonry Flexural Tensile Strength 11.2.3.6 Unreinforced Masonry Shear Strength C5.4.2.1 Weak Story Irregularity |
187 | 11.2.3.6.3 Determination of Lower-Bound URM Shear Strength by Testing for Bed-Joint Shear Strength 11.2.3.6.4 Alternative Procedures for Determining Lower-Bound URM Shear Strength by Testing for Tensile Splitting Strength 11.2.3.7 Masonry Shear Modulus 11.2.3.8 Steel Reinforcement Yield Strength Properties 11.2.3.9.1 Usual Testing of Reinforced Masonry 11.2.3.9.2 Usual Testing of Unreinforced Masonry 14.2.5.1 General 14.2.5.3 Components Crossing the Isolation Interface |
188 | 11.2.4 Knowledge Factor 11.3 MASONRY WALLS 11.3.1 Types of Masonry Walls 11.3.1.1 Existing Masonry Walls |
189 | 11.3.1.2 New Masonry Walls 11.3.1.3 Retrofitted Masonry Walls 11.3.2 Unreinforced Masonry Walls and Wall Piers Subject to In-Plane Actions 11.3.2.1 Stiffness of URM Walls and Wall Piers Subject to In-Plane Actions 11.3.2.2 Strength of URM Walls Subject to In-Plane Actions 11.3.2.2.2 Expected In-Plane Bed-Joint Sliding Strength of URM Walls and Wall Piers A.3.1.4.2 Column Axial Stress Check. |
190 | 11.3.2.2.3 Lower-Bound In-Plane Toe-Crushing Strength of URM Walls and Wall Piers. 11.3.2.2.5 Lower-Bound Vertical Compressive Strength of URM Walls and Wall Piers. |
192 | 11.3.2.3 Acceptance Criteria for URM In-Plane Actions 11.3.2.3.2 Nonlinear Procedures for In-Plane URM Wall Actions. |
193 | 11.3.3.2 Strength of URM Walls Subject to Out-of-Plane Actions 11.3.3.3 Acceptance Criteria for URM Walls Subject to Out-of-Plane Actions |
195 | 11.3.4 Reinforced Masonry Walls and Wall Piers In-Plane Actions 11.3.4.1 Reinforced Masonry Walls and Wall Piers with Flanged Sections |
196 | 11.3.4.3 Flexure-Governed In-Plane Actions of Reinforced Masonry Walls and Wall Piers C11.4.2.4 Strength: Infilled Steel Frames In-Plane Actions |
198 | 11.3.4.3.2 Reinforced Masonry Walls and Wall Piers with One Flange 11.3.4.3.3 Reinforced Masonry Walls and Wall Piers with Two Flanges 11.3.4.4 Shear-Governed In-Plane Actions of Reinforced Masonry Walls and Wall Piers 11.3.4.5 Vertical Compressive Strength of Walls and Wall Piers 11.3.4.6 Acceptance Criteria for In-Plane Actions of Reinforced Masonry Walls and Wall Piers 11.3.4.6.1 Linear Procedures for In-Plane Actions of Reinforced Masonry Walls C13.6.10 Stairs and Ramps |
199 | 11.3.4.6.2 Nonlinear Procedures for In-Plane Actions of Reinforced Masonry Walls 11.3.5 Reinforced Masonry Wall Out-of-Plane Actions 11.3.5.1 Stiffness: Reinforced Masonry Wall Out-of-Plane Actions 11.3.5.2 Strength: Reinforced Masonry Wall Out-of-Plane Actions 11.3.5.3 Acceptance Criteria for Reinforced Masonry Wall Out-of-Plane Actions 11.4 MASONRY INFILLS C12.4.3.6.1 Stiffness of Wood Structural Panel Sheathing or Siding Shear Walls |
200 | 11.4.1 Types of Masonry Infills 11.4.1.1 Existing Masonry Infills 11.4.1.2 New Masonry Infills 11.4.1.3 Retrofitted Masonry Infills 11.4.2 Masonry Infill In-Plane Actions 11.4.2.1 Stiffness: Masonry Infill In-Plane Actions 11.4.2.2 Stiffness: Masonry Infill with Openings In-Plane Actions |
201 | 11.4.2.3 Strength: Infilled Reinforced Concrete Frames In-Plane Actions |
202 | 11.4.2.4 Strength: Infilled Steel Frames In-Plane Actions 11.4.2.5 Drift: Infill Wall In-Plane Actions 14.5.5 Nonlinear Dynamic Procedure |
203 | 11.4.2.7 Acceptance Criteria for Infill Wall In-Plane Actions 11.4.2.7.1 Required Strength of Column Members Adjacent to Infill Panels 11.4.2.7.2 Acceptance Criteria for Linear Procedures for Infill Wall In-Plane Actions 13.6.4.4 Evaluation Requirements |
204 | 11.4.3 Masonry Infill Wall Out-of-Plane Actions 11.4.3.1 Stiffness: Infill Wall Out-of-Plane Actions 13.6.5.1 Definition and Scope |
205 | 11.4.3.3 Strength: Infill Wall In-Plane and Out-of-Plane Interaction 11.4.3.4 Acceptance Criteria: Infill Wall Out-of-Plane Actions 11.5 ANCHORAGE TO MASONRY WALLS 11.5.1 Types of Anchors 11.5.2 Analysis of Anchors 11.5.3 Quality Assurance for Anchors in Masonry Walls |
206 | 11.6 MASONRY FOUNDATION ELEMENTS 11.6.1 Types of Masonry Foundations 11.6.3 Foundation Retrofit Measures 11.7 MASONRY DIAPHRAGMS 11.7.1 General 11.7.2 Seismic Evaluation of Masonry Diaphragms 11.7.3 Retrofit Measures for Masonry Diaphragms |
208 | Chapter 12: Wood Chapter 12: Wood 12.1 SCOPE 12.2 MATERIAL PROPERTIES AND CONDITION ASSESSMENT 12.2.1 General 12.2.2.1.1 Wood Construction 12.2.2.1.3 Nominal or Specified Properties 12.2.2.2 Component Properties 12.2.2.2.1 Elements C9.4.2.4 Minimum Number of Tests |
209 | 12.2.2.3 Test Methods to Quantify Material Properties 12.2.2.4 Minimum Number of Tests 12.2.2.4.1 Usual Testing 12.2.2.4.2 Comprehensive Testing 12.2.2.5 Default Properties 12.2.2.5.1 Wood Construction Default Properties |
211 | 7.2.4.6 Damping 12.2.3.2 Scope and Procedures for Condition Assessment 12.2.3.2.2 Comprehensive Condition Assessment 12.2.3.3 Basis for the Mathematical Building Model 12.2.4 Knowledge Factor 12.2.4.1 Wood Components and Assemblies 12.3 GENERAL ASSUMPTIONS AND REQUIREMENTS 12.3.1 Stiffness 12.3.1.1 Use of Linear Procedures 12.3.1.2 Use of Nonlinear Procedures for Wood Construction 12.3.2 Strength and Acceptance Criteria 12.3.2.1 General 12.3.2.2 Deformation-Controlled Actions 12.3.2.2.1 Wood Construction 14.3.3.1 Specification Tolerance on Design Properties C5.5.2.1 General Procedures for Moment Frames C12.3.2.3 Force-Controlled Actions |
212 | 12.3.3 Connection Requirements 12.3.4 Components Supporting Discontinuous Shear Walls 12.3.5.1 Wood Construction 12.4 WOOD SHEAR WALLS 12.4.1 General 12.4.2 Types of Wood Shear Walls 12.4.2.1 Existing Wood Shear Walls 12.4.2.1.2 Diagonal Lumber Sheathing 12.4.2.1.4 Wood Siding over Horizontal Lumber Sheathing 12.4.2.1.5 Wood Siding over Diagonal Lumber Sheathing 12.4.2.1.7 Stucco on Studs 12.4.2.1.8 Gypsum Plaster on Wood Lath 15.8.1.5.3 Velocity-Dependent Damping Devices C8.5.1.1 Stiffness Parameters |
213 | 12.4.2.1.9 Gypsum Plaster on Gypsum Lath 12.4.2.1.10 Gypsum Wallboard 12.4.2.1.11 Gypsum Sheathing 12.4.2.1.12 Plaster on Metal Lath 12.4.2.1.13 Horizontal Lumber Sheathing with Cut-In Braces or Diagonal Blocking 12.4.2.1.14 Fiberboard or Particleboard Sheathing 12.4.2.2 Enhanced Wood Shear Walls 12.4.2.3 New Wood Shear Walls 12.4.3 Stiffness, Strength, Acceptance Criteria, and Connection Design for Wood Shear Walls 12.4.3.1 Single-Layer Horizontal Lumber Sheathing or Siding Shear Walls 12.4.3.1.1 Stiffness of Single-Layer Horizontal Lumber Sheathing or Siding Shear Walls 12.4.3.1.2 Strength of Single-Layer Horizontal Lumber Sheathing or Siding Shear Walls 12.4.3.1.3 Acceptance Criteria for Single-Layer Horizontal Lumber Sheathing or Siding Shear Walls 12.4.3.1.4 Connections of Single-Layer Horizontal Lumber Sheathing or Siding Shear Walls 12.4.3.2 Diagonal Lumber Sheathing Shear Walls 12.4.3.2.1 Stiffness of Diagonal Lumber Sheathing Shear Walls 12.4.3.2.2 Strength of Diagonal Lumber Sheathing Shear Walls 12.4.3.2.4 Connections for Diagonal Lumber Sheathing Shear Walls 12.4.3.3 Vertical Wood Siding Shear Walls 12.4.3.3.1 Stiffness of Vertical Wood Siding Shear Walls 12.4.3.3.3 Acceptance Criteria for Vertical Wood Siding Shear Walls A.3.2.2.7 Wall Thickness C14.6.6 Test Specimen Adequacy |
217 | 7.4.3.2 Modeling and Analysis Considerations for Nonlinear Static Procedure 12.4.3.3.4 Connections of Vertical Wood Siding Shear Walls 12.4.3.4 Wood Siding over Horizontal Lumber Sheathing Shear Walls 12.4.3.4.1 Stiffness of Wood Siding over Horizontal Lumber Sheathing Shear Walls 12.4.3.4.2 Strength of Wood Siding over Horizontal Lumber Sheathing Shear Walls 12.4.3.4.3 Acceptance Criteria for Wood Siding over Horizontal Lumber Sheathing Shear Walls 12.4.3.4.4 Connections of Wood Siding over Horizontal Lumber Sheathing Shear Walls 12.4.3.5 Wood Siding over Diagonal Lumber Sheathing ShearWalls 12.4.3.5.1 Stiffness of Wood Siding over Diagonal Lumber Sheathing Shear Walls 12.4.3.5.2 Strength of Wood Siding over Diagonal Lumber Sheathing Shear Walls 12.4.3.5.3 Acceptance Criteria for Wood Siding over Diagonal Lumber Sheathing Shear Walls 12.4.3.5.4 Connections of Wood Siding over Diagonal Lumber Sheathing Shear Walls 12.4.3.6 Wood Structural Panel Sheathing or Siding Shear Walls 12.4.3.6.1 Stiffness of Wood Structural Panel Sheathing or Siding Shear Walls 12.4.3.6.2 Strength of Wood Structural Panel Sheathing or Siding Shear Walls 12.4.3.6.3 Acceptance Criteria for Wood Structural Panel Sheathing or Siding Shear Walls 12.4.3.6.4 Connections of Wood Structural Panel Sheathing or Siding Shear Walls 12.4.3.7 Stucco on Studs, Sheathing, or Fiberboard Shear Walls 12.4.3.7.1 Stiffness of Stucco on Studs, Sheathing, or Fiberboard Shear Walls |
218 | 12.4.3.7.2 Strength of Stucco on Studs, Sheathing, or Fiberboard Shear Walls 12.4.3.7.3 Acceptance Criteria for Stucco on Studs, Sheathing, or Fiberboard Shear Walls 12.4.3.7.4 Connections of Stucco on Studs, Sheathing, or Fiberboard Shear Walls 12.4.3.8 Gypsum Plaster on Wood Lath Shear Walls 12.4.3.8.2 Strength of Gypsum Plaster on Wood Lath Shear Walls 12.4.3.8.3 Acceptance Criteria for Gypsum Plaster on Wood Lath Shear Walls 12.4.3.8.4 Connections of Gypsum Plaster on Wood Lath Shear Walls 12.4.3.9 Gypsum Plaster on Gypsum Lath Shear Walls 12.4.3.9.1 Stiffness of Gypsum Plaster on Gypsum Lath Shear Walls 12.4.3.9.2 Strength of Gypsum Plaster on Gypsum Lath Shear Walls 12.4.3.9.3 Acceptance Criteria for Gypsum Plaster on Gypsum Lath Shear Walls 12.4.3.9.4 Connections of Gypsum Plaster on Gypsum Lath Shear Walls 12.4.3.10 Gypsum Wallboard Shear Walls 12.4.3.10.1 Stiffness of Gypsum Wallboard Shear Walls 12.4.3.10.2 Strength of Gypsum Wallboard Shear Walls 12.4.3.10.3 Acceptance Criteria for Gypsum Wallboard Shear Walls 12.4.3.10.4 Connections of Gypsum Wallboard Shear Walls 12.4.3.11.1 Stiffness of Gypsum Sheathing Shear Walls 12.4.3.11.2 Strength of Gypsum Sheathing Shear Walls 12.4.3.11.3 Acceptance Criteria for Gypsum Sheathing Shear Walls 12.4.3.11.4 Connections of Gypsum Sheathing Shear Walls 12.4.3.12 Plaster on Metal Lath Shear Walls 12.4.3.12.1 Stiffness of Plaster on Metal Lath Shear Walls 12.4.3.12.2 Strength of Plaster on Metal Lath Shear Walls 12.4.3.12.3 Acceptance Criteria for Plaster on Metal Lath Shear Walls C12.5.2.3.1 New Wood Structural Panel Sheathing |
219 | 12.4.3.12.4 Connections of Plaster on Metal Lath Shear Walls 12.4.3.13 Horizontal Lumber Sheathing with Cut-In Braces or Diagonal Blocking Shear Walls 12.4.3.13.1 Stiffness of Horizontal Lumber Sheathing with Cut-In Braces or Diagonal Blocking Shear Walls 12.4.3.13.2 Strength of Horizontal Lumber Sheathing Shear Walls with Cut-In Braces or Diagonal Blocking 12.4.3.13.3 Acceptance Criteria for Horizontal Lumber Sheathing with Cut-In Braces or Diagonal Blocking Shear Walls 12.4.3.13.4 Connections of Horizontal Lumber Sheathing with Cut-In Braces or Diagonal Blocking Shear Walls 12.4.3.14 Fiberboard or Particleboard Sheathing Shear Walls 12.4.3.14.1 Stiffness of Fiberboard or Particleboard Sheathing Shear Walls 12.4.3.14.2 Strength of Fiberboard or Particleboard Sheathing Shear Walls 12.4.3.14.3 Acceptance Criteria for Fiberboard or Particleboard Sheathing Shear Walls 12.4.3.14.4 Connections of Fiberboard or Particleboard Sheathing Shear Walls 12.5 WOOD DIAPHRAGMS 12.5.1 General 12.5.2 Types of Wood Diaphragms 12.5.2.1 Existing Wood Diaphragms 12.5.2.1.1 Single-Layer Straight Lumber Sheathing 12.5.2.1.2 Double-Layer Straight Lumber Sheathing 12.5.2.1.3 Single-Layer Diagonal Lumber Sheathing 12.5.2.1.4 Diagonal Lumber Sheathing with Straight Lumber Sheathing or Flooring Above 12.5.2.1.5 Double-Layer Diagonal Lumber Sheathing 12.5.2.1.6 Wood Structural Panel Sheathing 12.5.2.1.7 Braced Horizontal Diaphragms |
220 | 12.5.2.2 Enhanced Wood Diaphragms 12.5.2.3 New Wood Diaphragms 12.5.2.3.1 New Wood Structural Panel Sheathing 12.5.2.3.2 New Single-Diagonal Sheathing 12.5.2.3.4 New Braced Horizontal Diaphragms 12.5.3 Stiffness, Strength, Acceptance Criteria, and Connection Design for Wood Diaphragms 12.5.3.1 Single-Layer Straight Lumber Sheathing Diaphragms 12.5.3.1.1 Stiffness of Single-Layer Straight Lumber Sheathing Diaphragms 12.5.3.1.2 Strength of Single-Layer Straight Lumber Sheathing Diaphragms 12.5.3.1.3 Acceptance Criteria for Single-Layer Straight Lumber Sheathing Diaphragms 12.5.3.1.4 Connections of Single-Layer Straight Lumber Sheathing Diaphragms 12.5.3.2 Double-Layer Straight Lumber Sheathing Diaphragms 12.5.3.2.1 Stiffness of Double-Layer Straight Sheathing Diaphragms 12.5.3.2.2 Strength of Double-Layer Straight Lumber Sheathing Diaphragms 12.5.3.2.3 Acceptance Criteria for Double-Layer Straight Lumber Sheathing Diaphragms 12.5.3.2.4 Connections of Double-Layer Straight Lumber Sheathing Diaphragms 12.5.3.3 Single-Layer Diagonal Lumber Sheathing Diaphragms 12.5.3.3.1 Stiffness of Single-Diagonal Sheathing Diaphragms 12.5.3.3.2 Strength of Single-Layer Diagonal Lumber Sheathing Diaphragms 12.5.3.3.3 Acceptance Criteria for Single-Layer Diagonal Lumber Sheathing Diaphragms |
221 | 12.5.3.3.4 Connections of Single-Layer Diagonal Lumber Sheathing Diaphragms 12.5.3.4 Diagonal Lumber Sheathing with Straight Lumber Sheathing or Flooring above Diaphragms 12.5.3.4.1 Stiffness of Diagonal Lumber Sheathing with Straight Lumber Sheathing or Flooring above Diaphragms 12.5.3.4.2 Strength of Diagonal Lumber Sheathing with Straight Lumber Sheathing or Flooring above Diaphragms 12.5.3.4.3 Acceptance Criteria for Diagonal Lumber Sheathing with Straight Lumber Sheathing or Flooring above Diaphragms 12.5.3.4.4 Connections of Diagonal Lumber Sheathing with Straight Lumber Sheathing or Flooring above Diaphragms 12.5.3.5 Double-Layer Diagonal Lumber Sheathing Diaphragms 12.5.3.5.1 Stiffness of Double-Layer Diagonal Lumber Sheathing Diaphragms 12.5.3.5.2 Strength of Double-Layer Diagonal Lumber Sheathing Diaphragms 12.5.3.5.3 Acceptance Criteria for Double-Layer Diagonal Lumber Sheathing Diaphragms 12.5.3.5.4 Connections of Double-Layer Diagonal Lumber Sheathing Diaphragms 12.5.3.6 Wood Structural Panel Sheathing Diaphragm 12.5.3.6.1 Stiffness of Wood Structural Panel Sheathing Diaphragms 12.5.3.6.2 Strength of Wood Structural Panel Sheathing Diaphragms |
222 | 12.5.3.6.3 Acceptance Criteria for Wood Structural Panel Sheathing Diaphragms 12.5.3.6.4 Connections of Wood Structural Panel Sheathing Diaphragms 12.5.3.7 Wood Structural Panel Overlays on Straight or Diagonal Lumber Sheathing Diaphragms 12.5.3.7.1 Stiffness of Wood Structural Panel Overlays on Straight or Diagonal Lumber Sheathing Diaphragms 12.5.3.7.2 Strength of Wood Structural Panel Overlays on Straight or Diagonal Lumber Sheathing Diaphragms 12.5.3.7.3 Acceptance Criteria for Wood Structural Panel Overlays on Straight or Diagonal Lumber Sheathing Diaphragms 12.5.3.7.4 Connections of Wood Structural Panel Overlays on Straight or Diagonal Lumber Sheathing Diaphragms 12.5.3.8 Wood Structural Panel Overlays on Existing Wood Structural Panel Sheathing Diaphragms 12.5.3.8.1 Stiffness of Wood Structural Panel Overlays on Existing Wood Structural Panel Sheathing Diaphragms 12.5.3.8.2 Strength of Wood Structural Panel Overlays on Existing Wood Structural Panel Sheathing Diaphragms 12.5.3.8.3 Acceptance Criteria for Wood Structural Panel Overlays on Existing Wood Structural Panel Sheathing Diaphragms 12.5.3.8.4 Connections of Wood Structural Panel Overlays on Existing Wood Structural Panel Sheathing Diaphragms 12.5.3.9 Braced Horizontal Diaphragms 12.6 WOOD FOUNDATIONS 12.6.1 Types of Wood Foundations 12.6.2 Analysis, Strength, and Acceptance Criteria for Wood Foundations 12.6.3 Retrofit Measures for Wood Foundations 12.7 OTHER WOOD ELEMENTS AND COMPONENTS 12.7.1 General |
223 | 12.7.1.1 Stiffness of Other Wood Elements and Components 12.7.1.2 Strength of Other Wood Elements and Components 12.7.1.3 Acceptance Criteria for Other Wood Elements and Components |
224 | Chapter 13: Architectural, Mechanical, and Electrical Components Chapter 13: Architectural, Mechanical, and Electrical Components 13.1 SCOPE 13.2 EVALUATION AND RETROFIT PROCEDURE FOR NONSTRUCTURAL COMPONENTS |
226 | 13.3 COMPONENT CONDITION ASSESSMENT AND ANCHORAGE TESTING 13.3.1 Condition Assessment |
227 | 13.3.2.1 Components Evaluated to the Operational Performance Level 13.3.2.1.1 Concrete or Masonry Anchors Used for Distributed Systems 13.3.2.1.2 Concrete or Masonry Anchors Used in the Attachment of Equipment and Other Components 13.3.2.2 Components Evaluated to the Position Retention or Life Safety Performance Level 13.3.2.2.1 Concrete or Masonry Anchors Used in the Seismic Bracing of Distributed Systems C7.2.3.3 Snow Load |
228 | 13.3.2.2.2 Concrete or Masonry Anchors Used in the Attachment of Equipment and Other Nonstructural Components 13.3.2.3 Tension Testing Procedure 13.3.2.4 Torque Testing Procedure 13.3.2.6 Shear Capacity of Existing Anchors 13.4 EVALUATION PROCEDURES 13.4.1 Acceptance Criteria C4.4.3.8 Prestressed Elements |
229 | 13.4.3 Prescriptive Procedure 13.4.4 Force Analysis: General Equations 13.4.4.1 Horizontal Seismic Forces 13.4.4.2 Vertical Seismic Forces 13.4.4.3 Load Combinations 13.4.4.4 Nonstructural Support Capacity 13.4.4.4.1 Existing Components 13.4.4.4.2 New Components C7.2.9.1 Overturning Effects for Linear Procedures |
232 | 8.4.5.2.2 Combined Footings, Mat Foundations, and Foundations Idealized as Isolated Footings 13.4.5 Deformation Analysis 13.4.6 Component Testing 13.4.7 Overturning Evaluation 13.5 RETROFIT APPROACHES 13.6 ARCHITECTURAL COMPONENTS: DEFINITION, BEHAVIOR, AND ACCEPTANCE CRITERIA 13.6.1 Exterior Wall Components 13.6.1.1 Adhered Veneer 13.6.1.1.1 Definition and Scope 13.6.1.1.3 Acceptance Criteria |
233 | 9.6.3 Stiffness, Strength, Acceptance Criteria, and Connection Design for Cold-Formed Steel Light-Frame Construction Shear Wall Systems 13.6.1.1.4 Evaluation Requirements 13.6.1.2 Anchored Veneer 13.6.1.2.1 Definition and Scope 13.6.1.2.2 Component Behavior and Retrofit Methods 13.6.1.2.3 Acceptance Criteria 13.6.1.2.4 Evaluation Requirements 13.6.1.3.1 Definition and Scope 13.6.1.3.3 Acceptance Criteria |
234 | 13.6.1.3.4 Evaluation Requirements 13.6.1.4 Prefabricated Panels 13.6.1.4.1 Definition and Scope 13.6.1.4.2 Component Behavior and Retrofit Methods 13.6.1.5.1 Definition and Scope 13.6.1.5.2 Component Behavior and Retrofit Methods 13.6.1.5.3 Acceptance Criteria |
235 | 13.6.1.5.4 Evaluation Requirements 13.6.2 Partitions 13.6.2.1 Definition and Scope 13.6.2.2 Component Behavior and Retrofit Methods 13.6.2.3 Acceptance Criteria 13.6.2.3.2 Position Retention Nonstructural Performance Level 13.6.2.3.3 Operational Nonstructural Performance Level |
236 | 13.6.2.4 Evaluation Requirements 13.6.3 Interior Veneers 13.6.3.1 Definition and Scope 13.6.3.2 Component Behavior and Retrofit Methods 13.6.3.3.1 Life Safety and Position Retention Nonstructural Performance Level 13.6.3.3.2 Operational Nonstructural Performance Level 13.6.3.4 Evaluation Requirements 13.6.4 Ceilings 13.6.4.1 Definition and Scope 13.6.4.2 Component Behavior and Retrofit Methods 13.6.4.3 Acceptance Criteria 13.6.4.3.1 Life Safety Nonstructural Performance Level 13.6.4.3.2 Position Retention Nonstructural Performance Level 13.6.4.3.3 Operational Nonstructural Performance Level 13.6.5 Parapets and Cornices 14.5.3.2 Response Spectrum Method |
237 | 11.6.2 Seismic Evaluation of Existing Masonry Foundations 13.6.5.3 Acceptance Criteria 13.6.5.3.1 Life Safety and Position Retention Nonstructural Performance Level 13.6.5.3.2 Operational Nonstructural Performance Level 13.6.5.4 Evaluation Requirements 13.6.6 Architectural Appendages and Marquees 13.6.6.1 Definition and Scope 13.6.6.2 Component Behavior and Retrofit Methods 13.6.6.3 Acceptance Criteria 13.6.6.3.1 Life Safety and Position Retention Nonstructural Performance Level 13.6.6.3.2 Operational Nonstructural Performance Level 13.6.6.4 Evaluation Requirements 13.6.7 Penthouses 13.6.7.1 Definition and Scope 13.6.7.2 Component Behavior and Retrofit Methods 13.6.7.3 Acceptance Criteria 13.6.7.3.1 Life Safety and Position Retention Nonstructural Performance Level 13.6.7.3.2 Operational Nonstructural Performance Level 13.6.8 Tile Roofs 13.6.8.1 Definition and Scope A.3.2.7.4 Narrow Wood Shear Walls C12.5.2.1.7 Braced Horizontal Diaphragms |
238 | 13.6.8.2 Component Behavior and Retrofit Methods 13.6.8.3 Acceptance Criteria 13.6.8.3.1 Life Safety and Position Retention Nonstructural Performance Level 13.6.8.3.2 Operational Nonstructural Performance Level 13.6.9 Chimneys and Stacks 13.6.9.1 Definition and Scope 13.6.9.2 Component Behavior and Retrofit Methods 13.6.9.3 Acceptance Criteria 13.6.9.3.1 Life Safety and Position Retention Nonstructural Performance Level 13.6.9.3.2 Operational Nonstructural Performance Level 13.6.9.4 Evaluation Requirements 13.6.10.1 Definition and Scope 13.6.10.2 Component Behavior and Retrofit Methods 13.6.10.3 Acceptance Criteria 13.6.10.3.1 Life Safety and Position Retention Nonstructural Performance Level 13.6.10.3.2 Operational Nonstructural Performance Level A.3.2.8.4 Narrow Cold-Formed Steel Wood Structural Panel or Steel Sheet-Sheathed Shear Walls |
239 | 7.5.2.2.1 Acceptance Criteria for Deformation-Controlled Actions for LSP or LDP 13.6.10.4 Evaluation Requirements 13.6.11 Doors Required for Emergency Services Egress in Essential Facilities 13.6.11.1 Definition and Scope 13.6.11.2 Component Behavior and Retrofit Methods 13.6.11.3 Acceptance Criteria 13.6.11.3.1 Life Safety and Position Retention Nonstructural Performance Levels 13.6.11.3.2 Operational Nonstructural Performance Level 13.6.11.4 Evaluation Requirements 13.6.12 Computer Access Floors 13.6.12.1 Definition and Scope 13.6.12.2 Component Behavior and Retrofit Methods 13.6.12.3 Acceptance Criteria 13.6.12.3.1 Life Safety Nonstructural Performance Level 13.6.12.3.2 Position Retention Nonstructural Performance Level 13.6.12.3.3 Operational Nonstructural Performance Level 13.6.12.4 Evaluation Requirements 13.7 MECHANICAL, ELECTRICAL, AND PLUMBING COMPONENTS: DEFINITION, BEHAVIOR, AND ACCEPTANCE CRITERIA 13.7.1 Mechanical Equipment 13.7.1.1 Definition and Scope |
240 | 13.7.1.2 Component Behavior and Retrofit Methods 13.7.1.3 Acceptance Criteria 13.7.1.3.1 Life Safety Nonstructural Performance Level 13.7.1.3.2 Position Retention Nonstructural Performance Level 13.7.1.3.3 Operational Nonstructural Performance Level 13.7.1.4 Evaluation Requirements 13.7.2 Storage Vessels and Water Heaters 13.7.2.1 Definition and Scope 13.7.2.2 Component Behavior and Retrofit Methods 13.7.2.3 Acceptance Criteria 13.7.2.3.1 Life Safety and Position Retention Nonstructural Performance Level 13.7.2.3.2 Operational Nonstructural Performance Level |
241 | 13.7.2.4 Evaluation Requirements 13.7.3 Pressure Piping 13.7.3.1 Definition and Scope 13.7.3.2 Component Behavior and Retrofit Methods 13.7.3.3 Acceptance Criteria 13.7.3.3.1 Life Safety Nonstructural Performance Level 13.7.3.3.2 Position Retention Nonstructural Performance Level 13.7.3.3.3 Operational Nonstructural Performance Level 13.7.3.4 Evaluation Requirements 13.7.4 Fire Suppression Piping 13.7.4.1 Definition and Scope 13.7.4.2 Component Behavior and Retrofit Methods 13.7.4.3 Acceptance Criteria 13.7.4.3.1 Life Safety Nonstructural Performance Level 13.7.4.3.2 Position Retention Nonstructural Performance Level 13.7.4.3.3 Operational Nonstructural Performance Level 13.7.4.4 Evaluation Requirements 13.7.5 Fluid Piping Other Than Fire Suppression 13.7.5.1 Definition and Scope A.5.2.2 Transfer to Steel Frames |
242 | 13.7.5.2 Component Behavior and Retrofit Methods 13.7.5.3 Acceptance Criteria 13.7.5.3.1 Life Safety Nonstructural Performance Level 13.7.5.3.2 Position Retention Nonstructural Performance Level 13.7.5.3.3 Operational Nonstructural Performance Level 13.7.5.4 Evaluation Requirements 13.7.6 Ductwork 13.7.6.1 Definition and Scope 13.7.6.2 Component Behavior and Retrofit Methods 13.7.6.3 Acceptance Criteria 13.7.6.3.1 Life Safety Nonstructural Performance Level 13.7.6.3.2 Position Retention Nonstructural Performance Level 13.7.6.3.3 Operational Nonstructural Performance Level 13.7.6.4 Evaluation Requirements |
243 | 13.7.7 Electrical and Communications Equipment 13.7.7.1 Definition and Scope 13.7.7.2 Component Behavior and Retrofit Methods 13.7.7.3 Acceptance Criteria 13.7.7.3.1 Life Safety Nonstructural Performance Level 13.7.7.3.2 Position Retention Nonstructural Performance Level 13.7.7.3.3 Operational Nonstructural Performance Level 13.7.7.4 Evaluation Requirements 13.7.8 Electrical and Communications Distribution Components 13.7.8.1 Definition and Scope 13.7.8.2 Component Behavior and Retrofit Methods 13.7.8.3 Acceptance Criteria 13.7.8.3.1 Life Safety Nonstructural Performance Level 13.7.8.3.2 Position Retention Nonstructural Performance Level 13.7.8.3.3 Operational Nonstructural Performance Level |
244 | 13.7.8.4 Evaluation Requirements 13.7.9 Light Fixtures 13.7.9.1 Definition and Scope 13.7.9.2 Component Behavior and Retrofit Methods 13.7.9.3 Acceptance Criteria 13.7.9.3.1 Life Safety Nonstructural Performance Level 13.7.9.3.2 Position Retention Nonstructural Performance Level 13.7.9.3.3 Operational Nonstructural Performance Level 13.7.9.4 Evaluation Requirements 13.7.10 Rooftop Solar Photovoltaic Arrays 13.7.10.1 Definition and Scope 13.7.10.2 Component Behavior and Retrofit Methods 13.7.10.3 Acceptance Criteria 13.7.10.3.1 Life Safety and Position Retention Nonstructural Performance Level 13.7.10.3.2 Operational Nonstructural Performance Level 13.7.10.4 Evaluation Requirements |
245 | 13.7.11 Elevators 13.7.11.1 Definition and Scope 13.7.11.2 Component Behavior and Retrofit Methods 13.7.11.3 Acceptance Criteria 13.7.11.3.1 Life Safety Nonstructural Performance Level 13.7.11.3.2 Position Retention Nonstructural Performance Level 13.7.11.3.3 Operational Nonstructural Performance Level 13.7.11.4 Evaluation Requirements 13.7.12 Conveyors 13.7.12.1 Definition and Scope 13.7.12.2 Component Behavior and Retrofit Methods 13.7.12.3 Acceptance Criteria 13.7.12.3.1 Life Safety Nonstructural Performance Level 13.7.12.3.2 Position Retention Nonstructural Performance Level 13.7.12.3.3 Operational Nonstructural Performance Level 13.7.12.4 Evaluation Requirements 13.8 FURNISHINGS AND CONTENTS: DEFINITION, BEHAVIOR, AND ACCEPTANCE CRITERIA 13.8.1 Steel Storage Racks 13.8.1.1 Definition and Scope 13.8.1.2 Component Behavior and Retrofit Methods 13.8.1.3 Acceptance Criteria 13.8.1.3.1 Life Safety Nonstructural Performance Level 13.8.1.3.2 Position Retention Nonstructural Performance Level |
246 | 13.8.1.3.3 Operational Nonstructural Performance Level 13.8.1.4 Evaluation Requirements 13.8.2 Contents 13.8.2.1 Definition and Scope 13.8.2.2 Component Behavior and Retrofit Methods 13.8.2.3 Acceptance Criteria 13.8.2.3.1 Life Safety Nonstructural Performance Level 13.8.2.3.2 Position Retention Nonstructural Performance Level 13.8.2.3.3 Operational Nonstructural Performance Level 13.8.2.4 Evaluation Requirements 13.8.3 Hazardous Material Storage 13.8.3.1 Definition and Scope 13.8.3.2 Component Behavior and Retrofit Methods 13.8.3.3 Acceptance Criteria 13.8.3.3.1 Life Safety and Position Retention Nonstructural Performance Level 13.8.3.3.2 Operational Nonstructural Performance Level 13.8.3.4 Evaluation Requirements 13.8.4 Computer and Communication Racks 13.8.4.1 Definition and Scope 13.8.4.2 Component Behavior and Retrofit Methods 13.8.4.3 Acceptance Criteria 13.8.4.3.1 Life Safety Nonstructural Performance Level 13.8.4.3.2 Position Retention Nonstructural Performance Level 13.8.4.3.3 Operational Nonstructural Performance Level |
247 | 13.8.4.4 Evaluation Requirements |
248 | 4.4.1 Overview Chapter 14: Seismic Isolation Chapter 14: Seismic Isolation 14.1 SCOPE 14.2 GENERAL REQUIREMENTS 14.2.2 Seismic Hazard 14.2.2.1 Ground Motion Acceleration Histories 14.2.3.1 Environmental Conditions 14.2.3.2 Wind Displacement 14.2.3.5 Displacement Restraint A.2.1.1 Load Path |
249 | 11.2.3.6.2 Alternative Procedures for Determining Expected URM Shear Strength by Testing for Tensile Splitting Strength 14.2.3.6 Vertical Load Stability 14.2.3.7 Overturning 14.2.3.8 Inspection and Replacement 14.2.4.1 Horizontal Distribution of Force 14.2.4.2 Minimum Separations 14.2.5 Elements of Structures and Nonstructural Components 14.2.5.2 Components at or above the Isolation Interface 14.2.5.4 Components below the Isolation Interface 14.2.6 Seismic Load Effects and Load Combinations C12.3.5 Retrofit Measures |
250 | 7.4.1.1 Nonlinear Static and Dynamic Procedures Employing Lumped-Plasticity Load-Deformation Models 14.2.6.2 Isolation System Device Vertical Load Combinations 14.3 SEISMIC ISOLATION SYSTEM DEVICE PROPERTIES 14.3.1 Isolation System Device Types 14.3.3 Bounding Properties of Isolation System Devices 14.3.3.2 Testing Variations on Design Properties C9.6.3 Stiffness, Strength, Acceptance Criteria, and Connection Design for Cold-Formed Steel Light-Frame Construction Shear Wall Systems C7.3.2 Acceptance Criteria. |
251 | 14.4 MODELING 14.4.1.1 Upper-Bound and Lower-Bound Force-Deflection Behavior of Isolation System Devices 14.4.1.2 Isolation System Properties 14.4.1.3 Isolation System Models for Linear Procedures 14.4.2 Isolation System and Superstructure Modeling 14.4.2.1 General 14.4.2.2 Isolation System Model 14.4.2.3 Superstructure Model 14.5 ANALYSIS PROCEDURES A.3.1.4.7 Strong Column-Weak Beam. |
252 | 8.6.1.1 Base Slab Averaging 13.6.1.5 Glazed Exterior Wall Systems 14.5.1.1 Linear Static Procedure 14.5.1.2 Linear Dynamic Procedure 14.5.1.3 Nonlinear Static Procedure 14.5.1.4 Nonlinear Dynamic Procedure 14.5.1.5 Design Forces and Deformations 14.5.2 Linear Static Procedure 14.5.2.2 Minimum Lateral Displacements 14.5.2.2.1 Isolation System Displacement. 15.9.2.3 Design Actions |
253 | 14.5.2.2.3 Total Isolation System Displacement. 14.5.2.3 Minimum Lateral Forces 14.5.2.3.1 Isolation System and Structural Elements at or below the Base Level 14.5.2.3.2 Structural Elements above the Base Level. 14.5.2.3.3 Limits on Vst 14.5.2.4 Vertical Distribution of Force |
254 | 14.5.2.5 Design Forces and Deformations 14.5.3 Linear Dynamic Procedure 14.5.3.1 General 14.5.3.3 Isolation System and Structural Elements at or below the Base Level 14.5.3.4 Structural Elements above the Base Level 14.5.3.6 Design Forces and Deformations 14.5.4 Nonlinear Static Procedure 14.5.4.1 General 14.5.4.2 Target Displacement |
255 | 9.7.3.1.1 Strength of Generic Cold-Formed Steel Moment Connection 14.5.4.3 Seismic Force Pattern 14.5.4.4 Design Forces and Deformations 14.5.5.2 Accidental Mass Eccentricity 14.5.5.3 Isolation System and Structural Elements at or below the Base Level 14.5.5.4 Structural Elements above the Base Level 14.5.5.5 Scaling of Results 14.5.5.6 Design Forces and Deformations 14.6 ISOLATION SYSTEM TESTING AND DESIGN PROPERTIES 14.6.3 Prototype Tests 14.6.3.1 General 14.6.3.2 Record 14.6.3.3 Sequence and Cycles |
256 | 14.6.3.4 Vertical-Load-Carrying Isolation System Devices 14.6.3.5 Dynamic Testing 14.6.3.6 Isolation System Devices Dependent on Bilateral Load 14.6.3.7 Maximum and Minimum Vertical Load 14.6.3.8 Sacrificial Wind-Restraint Systems 14.6.3.9 Testing Similar Isolation System Devices |
257 | 14.6.4 Production Testing 14.6.5 Determination of Force-Deflection Characteristics 14.6.6 Test Specimen Adequacy |
258 | 14.7 DESIGN REVIEW |
260 | 4.1.2 Seismic Hazard Level Chapter 15: Design Requirements for Structures with Supplemental Energy Dissipation Chapter 15: Design Requirements for Structures with Supplemental Energy Dissipation 15.1 SCOPE 15.2 GENERAL DESIGN REQUIREMENTS 15.2.1 General Requirements 15.2.2 Seismic Hazard 15.2.2.1 Ground Motion Acceleration Histories 15.2.3.1 Device Classification 15.2.3.2 Multiaxis Movement 15.2.3.3 Inspection and Periodic Testing |
261 | 8.2.2.3 Settlement of Nonliquefiable Soils 15.2.3.4 Performance Objectives and System Redundancy 15.3 PROPERTIES OF ENERGY DISSIPATION DEVICES 15.3.2 Maximum and Minimum Damper Properties 15.4 ANALYSIS PROCEDURE SELECTION 15.4.1 General Limitations for the Linear Analysis Procedures C8.2.2 Seismic-Geologic Site Hazards C12.2.3 Condition Assessment |
262 | 12.2.3.1 General 15.5 NONLINEAR DYNAMIC PROCEDURES 15.5.1 General Requirements 15.5.2.1 Displacement-Dependent Devices 15.5.2.2 Velocity-Dependent Devices 15.5.2.2.1 Solid Viscoelastic Devices 15.5.2.2.2 Fluid Viscoelastic Devices 16.2.3.2 Diaphragms A.3.1.2 Moment Frames with Infill Walls C2.4.4 Basic Performance Objective Equivalent to New Building Standards (BPON) C5.4.2.4 Geometric Irregularity |
263 | 8.4.4 Fixed-Base Procedure 15.5.3 Accidental Eccentricity 15.6 DETAILED SYSTEM REQUIREMENTS 15.6.1 General 15.6.2 Wind Forces 15.6.3 Inspection and Replacement 15.7 DESIGN REVIEW 15.8 REQUIRED TESTS OF ENERGY DISSIPATION DEVICES 15.8.1 Prototype Tests 15.8.1.1 General 16.2.3.2.6 Diaphragm Shear Transfer A.3.1.3.6 Column Splices C9.6.1 General |
264 | 15.8.1.3 Testing Similar Devices 15.8.1.4 Determination of Force-Velocity-Displacement Characteristics |
265 | 14.5.1 Selection of Analysis Procedure 15.8.1.5 Device Adequacy 15.8.1.5.1 General Requirements 15.8.1.5.2 Displacement-Dependent Devices 15.8.2 Production Tests 15.9 LINEAR ANALYSIS PROCEDURES 15.9.1 Modeling of Energy Dissipation Devices 15.9.1.1 Displacement-Dependent Devices 15.9.1.2 Velocity-Dependent Devices 15.9.1.2.1 Solid Viscoelastic Devices |
266 | 15.9.2 Linear Static Procedure 15.9.2.1 Displacement-Dependent Devices 15.9.2.2 Velocity-Dependent Devices C8.6.2.1 Radiation Damping for Rectangular Foundations |
267 | 11.3.4.2 In-Plane Lateral Stiffness of Reinforced Masonry Walls and Wall Piers 13.6.1.4.3 Acceptance Criteria 15.9.2.4 Linear Dynamic Procedure 15.9.2.5 Displacement-Dependent Devices 15.9.2.6 Velocity-Dependent Devices |
268 | 15.10 NONLINEAR STATIC PROCEDURE 15.10.1 Displacement-Dependent Devices |
270 | 7.2.2 Effective Seismic Weight Chapter 16: System-Specific Performance Procedures Chapter 16: System-Specific Performance Procedures 16.1 SCOPE 16.2 SPECIAL PROCEDURE FOR UNREINFORCED MASONRY 16.2.1 Scope 16.2.2 Condition of Existing Materials 16.2.2.1 Layup of Walls C1.3.1 Assignment of Performance Objective C3.1.2 Stiffness |
271 | 16.2.2.2 Testing 16.2.2.2.1 In-Place Mortar Tests 16.2.2.2.2 Masonry 16.2.2.2.3 Wall Anchors |
272 | 16.2.2.3.2 Masonry Compression 16.2.2.3.3 Masonry Tension 16.2.2.3.4 Foundations 16.2.3 Analysis 16.2.3.1 Cross Walls |
273 | 16.2.3.1.2 Shear Strength 16.2.3.2.1 Shear Strength 16.2.3.2.3 Acceptability Criteria |
274 | 16.2.3.2.4 Chords and Collectors 16.2.3.2.5 Diaphragm Openings |
275 | 7.2.11.4 Diaphragm Collectors 16.2.3.3 Shear Walls 16.2.3.3.2 Shear Wall Strengths 16.2.3.3.3 Shear Wall Acceptance Criteria 16.2.3.4 Buildings with Open Fronts 16.2.3.5 New Vertical Elements 16.2.3.5.1 General 16.2.3.5.2 Combinations of Vertical Elements |
276 | 12.3.4.1 Wood Construction 14.4.1.4 Isolation System Device Models for Nonlinear Procedures 16.2.3.5.3 Wood Structural Panels 16.2.3.5.4 Forces on New Vertical Elements 16.2.3.5.5 Acceptance Criteria for New Vertical Elements 16.2.3.5.6 Drift Limits 16.2.4 Other Components and Systems of Unreinforced Masonry Buildings 16.2.4.1 References to Applicable Sections 16.2.4.2 Out-of-Plane Demands 16.2.4.2.1 Wall Bracing General |
277 | 11.3.3 Unreinforced Masonry Walls Subject to Out-of-Plane Actions 16.2.4.2.2 Vertical Bracing Members 16.2.4.2.3 Intermediate Wall Bracing 16.2.4.3 Wall Anchorage 16.2.4.4 Truss and Beam Supports 16.2.5 Detailing for New Elements |
278 | Chapter 17: Tier 1 Checklists Chapter 17: Tier 1 Checklists 17.1 BASIC CHECKLISTS 17.1.1 Very Low Seismicity Checklist 17.1.2 Basic Configuration Checklist 17.2 STRUCTURAL CHECKLISTS FOR BUILDING TYPES W1: WOOD LIGHT FRAMES, SMALL RESIDENTIAL 17.3 STRUCTURAL CHECKLISTS FOR BUILDING TYPE W2: WOOD FRAMES, LARGE RESIDENTIAL, COMMERCIAL, INDUSTRIAL, AND INSTITUTIONAL C12.2.1 General |
286 | 17.4 STRUCTURAL CHECKLISTS FOR BUILDING TYPES S1: STEEL MOMENT FRAMES WITH STIFF DIAPHRAGMS, AND S1A: STEEL MOMENT FRAMES WITH FLEXIBLE DIAPHRAGMS |
289 | 17.5 STRUCTURAL CHECKLIST FOR BUILDING TYPES S2: STEEL BRACED FRAMES WITH STIFF DIAPHRAGMS, AND S2A: STEEL BRACED FRAMES WITH FLEXIBLE DIAPHRAGMS |
292 | 17.6 STRUCTURAL CHECKLISTS FOR BUILDING TYPE S3: METAL BUILDING FRAMES |
294 | 17.7 STRUCTURAL CHECKLISTS FOR BUILDING TYPE S4: DUAL SYSTEMS WITH BACKUP STEEL MOMENT FRAMES AND STIFF DIAPHRAGMS 17.8 STRUCTURAL CHECKLISTS FOR BUILDING TYPES S5: STEEL FRAMES WITH INFILL MASONRY SHEAR WALLS AND STIFF DIAPHRAGMS, AND S5A: STEEL FRAMES WITH INFILL MASONRY SHEAR WALLS AND FLEXIBLE DIAPHRAGMS |
302 | 17.9 STRUCTURAL CHECKLISTS FOR BUILDING TYPE CFS1: COLD-FORMED STEEL LIGHT-FRAME BEARING WALL CONSTRUCTION, SHEAR WALL LATERAL SYSTEM 17.10 STRUCTURAL CHECKLISTS FOR BUILDING TYPE CFS2: COLD-FORMED STEEL LIGHT-FRAME BEARING WALL CONSTRUCTION, STRAP-BRACED LATERAL WALL SYSTEM |
307 | 17.11 STRUCTURAL CHECKLISTS FOR BUILDING TYPE C1: CONCRETE MOMENT FRAMES 17.12 STRUCTURAL CHECKLIST FOR BUILDING TYPES C2: CONCRETE SHEAR WALLS WITH STIFF DIAPHRAGMS, AND C2A: CONCRETE SHEAR WALLS WITH FLEXIBLE DIAPHRAGMS 17.13 STRUCTURAL CHECKLISTS FOR BUILDING TYPES C3: CONCRETE FRAMES WITH INFILL MASONRY SHEAR WALLS, AND C3A: CONCRETE FRAMES WITH INFILL MASONRY SHEAR WALLS AND FLEXIBLE DIAPHRAGMS |
317 | 17.14 STRUCTURAL CHECKLISTS FOR BUILDING TYPES PC1: PRECAST OR TILT-UP CONCRETE SHEAR WALLS WITH FLEXIBLE DIAPHRAGMS, AND PC1A: PRECAST OR TILT-UP CONCRETE SHEAR WALLS WITH STIFF DIAPHRAGMS |
321 | 17.15 STRUCTURAL CHECKLISTS FOR BUILDING TYPE PC2: PRECAST CONCRETE FRAMES WITH SHEAR WALLS |
324 | 17.16 STRUCTURAL CHECKLISTS FOR BUILDING TYPE PC2A: PRECAST CONCRETE FRAMES WITHOUT SHEAR WALLS 17.17 STRUCTURAL CHECKLISTS FOR BUILDING TYPES RM1: REINFORCED MASONRY BEARING WALLS WITH FLEXIBLE DIAPHRAGMS, AND RM2: REINFORCED MASONRY BEARING WALLS WITH STIFF DIAPHRAGMS |
330 | 17.18 STRUCTURAL CHECKLISTS FOR BUILDING TYPES URM: UNREINFORCED MASONRY BEARING WALLS WITH FLEXIBLE DIAPHRAGMS, AND URMA: UNREINFORCED MASONRY BEARING WALLS WITH STIFF DIAPHRAGMS |
334 | 17.19 NONSTRUCTURAL CHECKLIST |
342 | CHAPTER 18: REFERENCE DOCUMENTS CHAPTER 18: REFERENCE DOCUMENTS 18.1 CONSENSUS STANDARDS AND OTHER REFERENCE DOCUMENTS |
346 | Appendix A: Guidelines for Deficiency-Based Procedures Appendix A: Guidelines for Deficiency-Based Procedures A.1 GENERAL |
347 | A.2 PROCEDURES FOR BUILDING SYSTEMS A.2.1 General |
348 | 4.2.2 Building Type 9.4.2.1.1 Default Mechanical Properties and Nominal or Specified Properties of Cold-Formed Steel Light-Frame Construction 16.2.2.1.2 Concrete Masonry Units and Structural Clay Load-Bearing Wall Tile A.2.1.3 Mezzanines A.2.2 Configuration A.2.2.1 General A.2.2.2 Weak Story C11.2.2.3 Supplemental Tests |
349 | A.2.2.4 Vertical Irregularities C9.4.2.5 Default Mechanical Properties |
350 | 15.3.1 Nominal Design Properties A.2.2.5 Geometry A.2.2.6 Mass A.2.2.7 Torsion C5.4.1.3 Mezzanines C8.2.2.2.1 Liquefaction-Affected Structural Evaluation |
351 | A.3 PROCEDURES FOR SEISMIC-FORCE-RESISTING SYSTEMS |
352 | A.3.1.1 General A.3.1.2.1 Interfering Walls C16.2.3.5.5 Acceptance Criteria for New Vertical Elements |
353 | A.3.1.3.1 Drift Check A.3.1.3.5 Panel Zones |
354 | A.3.1.3.8 Compact Members A.3.1.3.9 Beam Penetrations. A.3.1.3.10 Girder Flange Continuity Plates. There are girder flange continuity plates at all moment-resisting-frame joints. A.3.1.3.11 Out-of-Plane Bracing. Beam-column joints are braced out of plane. A.3.1.3.12 Bottom-Flange Bracing. The bottom flanges of beams are braced out of plane. A.3.1.4 Concrete Moment Frames |
355 | A.3.1.4.1 Column Shear Stress Check. A.3.1.4.4 Prestressed Frame Elements. A.3.1.4.5 Captive Columns. There are no columns at a level with height-to-depth ratios less than 50% of the nominal height-to-depth ratio of the typical columns at that level for Collapse Prevention and 75% for Immediate Occupancy. C12.4.2.1.12 Plaster on Metal Lath |
356 | 8.5.1.1 Stiffness Parameters 11.3.2.2.6 Expected Strengths of Rectangular URM Wall Spandrels Subject to In-Plane Actions. A.3.1.4.8 Beam Bars. A.3.1.4.9 Column-Bar Splices. A.3.1.4.10 Beam-Bar Splices. A.3.1.4.11 Column-Tie Spacing. A.3.1.4.12 Stirrup Spacing. A.3.1.4.13 Joint Transverse Reinforcing. A.3.1.5 Precast Concrete Moment Frames A.3.1.5.2 Precast Frames. C14.5.2.4 Vertical Distribution of Force |
357 | 9.6.3.4.1 Stiffness of Fiberboard Panels 13.6.1.4.4 Evaluation Requirements A.3.1.5.3 Precast Connections. A.3.1.6 Frames Not Part of the Seismic-Force-Resisting System A.3.1.6.1 Concrete Bearing Walls A.3.1.6.2 Deflection Compatibility A.3.1.6.3 Flat Slabs A.3.2 Shear Walls A.3.2.1 General |
358 | A.3.2.1.1 Redundancy |
359 | 9.6.3.5.1 Stiffness of Plaster on Metal Lath Shear Walls A.3.2.2.1 Shear Stress Check. A.3.2.2.2 Reinforcing Steel A.3.2.2.3 Coupling Beams A.3.2.2.4 Overturning A.3.2.2.5 Confinement Reinforcing A.3.2.2.6 Wall Reinforcing at Openings |
360 | 14.5.5.1 General A.3.2.3 Precast Concrete Shear Walls A.3.2.3.2 Reinforcing Steel. A.3.2.3.3 Wall Openings A.3.2.3.4 Panel-to-Panel Connections A.3.2.3.5 Wall Thickness A.3.2.4 Reinforced Masonry Shear Walls A.3.2.4.1 Shear Stress Check A.3.2.4.2 Reinforcing Steel C7.4.4.2.4 Cyclic Response in Nonlinear Dynamic Procedure C13.7.2.1 Definition and Scope |
361 | A.3.2.4.3 Reinforcing at Wall Openings A.3.2.4.4 Proportions A.3.2.5 Unreinforced Masonry Shear Walls A.3.2.5.1 Shear Stress Check A.3.2.5.2 Proportions A.3.2.5.3 Masonry Layup A.3.2.6 Infill Walls in Frames A.3.2.6.1 Infill Wall Connections C7.5.1 General Requirements |
362 | 9.8.3.1 Stiffness A.3.2.6.2 Proportions A.3.2.6.3 Cavity Walls A.3.2.6.4 Infill Walls A.3.2.6.5 Infill Wall Eccentricity A.3.2.7 Walls in Wood-Frame Buildings A.3.2.7.2 Stucco (Exterior Plaster) Shear Walls A.3.2.7.3 Gypsum Wallboard or Plaster Shear Walls |
363 | A.3.2.7.5 Walls Connected through Floors A.3.2.7.6 Hillside Site A.3.2.7.7 Cripple Walls A.3.2.7.8 Openings A.3.2.7.9 Hold-Down Anchors A.3.2.8.1 Shear Stress Check C13.7.10.4 Evaluation Requirements |
364 | A.3.2.8.2 Stucco (Exterior Plaster) Shear Walls A.3.2.8.3 Gypsum Wallboard or Plaster Shear Walls A.3.2.8.5 Walls Connected through Floors A.3.2.8.6 Hillside Site A.3.2.8.7 Cripple Walls |
365 | 12.4.3.11 Gypsum Sheathing Shear Walls A.3.2.8.9 Hold-Down Anchors A.3.3 Braced Frames A.3.3.1 General A.3.3.1.1 Redundancy A.3.3.1.2 Brace Axial Stress Check |
366 | 13.6.10 Stairs and Ramps A.3.3.1.3 Column Splices A.3.3.1.4 Slenderness of Diagonals A.3.3.1.5 Connection Strength A.3.3.1.6 Out-of-Plane Bracing A.3.3.1.7 Compact Members A.3.3.1.8 Net Area A.3.3.2.1 K-Bracing C13.8.3.2 Component Behavior and Retrofit Methods |
367 | A.3.3.2.2 Tension-Only Braces A.3.3.2.3 Chevron Bracing A.3.3.2.4 Concentrically Braced Frame Joints A.3.3.2.5 Narrow Strap-Braced Walls A.3.3.2.6 Walls Connected Through Floors A.3.3.2.7 Hillside Site A.3.3.2.8 Hold-Down Anchors A.3.3.2.9 Strap-Braced Walls-Chord Stud Axial Check A.3.3.2.10 Strap-Brace Detailing |
368 | A.3.3.3 Eccentrically Braced Frames A.4 PROCEDURES FOR DIAPHRAGMS A.4.1 General |
370 | A.4.1.1 Diaphragm Continuity A.4.1.2 Crossties A.4.1.3 Roof Chord Continuity |
371 | A.4.1.4 Openings at Shear Walls A.4.1.5 Openings at Frames A.4.1.6 Openings at Exterior Masonry Shear Walls A.4.1.7 Plan Irregularities A.4.1.8 Diaphragm Reinforcement at Openings |
372 | A.4.2 Wood Diaphragms A.4.2.1 Straight Sheathing A.4.2.2 Diagonally Sheathed and Unblocked Diaphragms A.4.2.3 Blocked Diaphragms |
373 | A.4.2.4 Cantilevered Wood Diaphragms A.4.3 Metal Deck Diaphragms A.4.3.1 Non-Concrete-Filled Diaphragms A.4.4 Concrete Diaphragms A.4.5 Precast Concrete Diaphragms A.4.5.1 Topping Slab |
374 | A.4.6 Horizontal Bracing A.4.7 Other Diaphragms A.4.7.1 Other Diaphragms A.5 PROCEDURES FOR CONNECTIONS A.5.1 Anchorage for Normal Forces A.5.1.1 Wall Anchorage A.5.1.2 Wood Ledgers |
375 | A.5.1.3 Minimum Number of Wall Anchors Per Panel A.5.1.4 Stiffness of Wall Anchors A.5.2 Shear Transfer A.5.2.1 Transfer to Shear Walls or Concrete and Infill Walls A.5.2.3 Topping Slab to Walls or Frames A.5.3 Vertical Components |
376 | A.5.3.1 Steel Columns A.5.3.2 Concrete Columns A.5.3.3 Wood or Cold-Formed Steel Posts A.5.3.4 Wood Sills and Cold-Formed Steel Base Tracks |
377 | A.5.3.5 Foundation Dowels A.5.3.6 Precast Wall Panels A.5.3.7 Wood Sill and Cold-Formed Steel Base Track Bolts A.5.3.8 Uplift at Pile Caps A.5.4 Interconnection of Elements A.5.4.1 Girder-Column Connection A.5.4.2 Girders |
378 | A.5.4.3 Corbel Bearing A.5.4.4 Corbel Connections A.5.4.5 Beam, Girder, and Truss Supports A.5.5 Panel Connections A.5.5.1 Roof Panels A.5.5.2 Wall Panels A.6 PROCEDURES FOR GEOLOGIC SITE HAZARDS AND FOUNDATIONS A.6.1 Geologic Site Hazards A.6.1.1 Liquefaction A.6.1.2 Slope Failure |
379 | A.6.1.3 Surface Fault Rupture A.6.1.4 Tsunami A.6.2 Foundation Configuration A.6.2.1 Overturning A.6.2.2 Ties between Foundation Elements A.6.2.3 Deep Foundations |
380 | A.6.2.4 Sloping Sites |
381 | A.7 PROCEDURES FOR NONSTRUCTURAL COMPONENTS A.7.1 Partitions A.7.1.1 Unreinforced Masonry A.7.1.2 Drift A.7.1.3 Structural Separations A.7.1.4 Tops A.7.2 Ceiling Systems A.7.2.1 Heavy or Light Partitions Supported by Ceilings A.7.2.2 Integrated Ceilings |
382 | A.7.2.3 Suspended Lath and Plaster or Gypsum Board A.7.2.4 Edge Clearance A.7.2.5 Continuity across Structure A.7.2.6 Edge Support A.7.2.7 Seismic Joints A.7.3 Light Fixtures A.7.3.1 Emergency Lighting A.7.3.2 Independent Support A.7.3.3 Pendant Supports A.7.3.4 Lens Covers |
383 | A.7.4 Cladding and Glazing A.7.4.1 Cladding Anchors A.7.4.2 Cladding Isolation A.7.4.3 Multistory Panels A.7.4.4 Panel Connections A.7.4.5 Bearing Connections A.7.4.6 Inserts A.7.4.7 Overhead Glazing A.7.4.8 Threaded Rods A.7.5 Masonry Veneer A.7.5.1 Ties A.7.5.2 Shelf Angles |
384 | A.7.5.3 Weakened Planes A.7.5.4 Weep Holes A.7.6 Metal Stud Backup Systems A.7.6.1 Stud Tracks A.7.6.2 Openings A.7.7 Concrete Block and Masonry Backup Systems A.7.7.1 Anchorage A.7.7.2 Unreinforced Masonry Backup A.7.8 Parapets, Cornices, Ornamentation, and Appendages A.7.8.1 Unreinforced Masonry Parapets or Cornices A.7.8.2 Canopies A.7.8.3 Concrete Parapets A.7.8.4 Appendages A.7.8.5 Penthouses |
385 | A.7.8.6 Tile Roofs A.7.9 Masonry Chimneys A.7.9.1 Unreinforced Masonry Chimneys A.7.9.2 Anchorage A.7.10 Stairs A.7.10.1 Stair Enclosures A.7.10.2 Stair Details A.7.11 Building Contents and Furnishing A.7.11.1 Industrial Storage Racks A.7.11.2 Tall Narrow Contents A.7.11.3 Fall-Prone Contents A.7.11.4 Access Floors |
386 | A.7.11.5 Equipment on Access Floors A.7.11.6 Suspended Contents A.7.12 Mechanical and Electrical Equipment A.7.12.1 Emergency Power A.7.12.2 Hazardous Material Equipment A.7.12.3 Equipment Support Deterioration A.7.12.4 Fall-Prone Equipment A.7.12.5 In-Line Equipment A.7.12.6 Tall Narrow Equipment A.7.12.7 Mechanical Doors A.7.12.8 Suspended Equipment A.7.12.9 Vibration Isolators A.7.12.10 Heavy Equipment |
387 | A.7.12.11 Electrical Equipment A.7.12.12 Conduit Couplings A.7.13 Piping A.7.13.1 Fire Suppression Piping A.7.13.2 Flexible Couplings A.7.13.3 Sprinkler Ceiling Clearance A.7.13.4 Fluid and Gas Piping A.7.13.5 C-Clamps A.7.13.6 Piping Crossing Seismic Joints A.7.14 Ducts A.7.14.1 Stair and Smoke Ducts A.7.14.2 Duct Bracing |
388 | A.7.14.3 Duct Support A.7.14.4 Ducts Crossing Seismic Joints A.7.15 Hazardous Materials A.7.15.1 Hazardous Material Storage A.7.15.2 Shutoff Valves A.7.15.3 Shutoff Valves A.7.15.4 Flexible Couplings A.7.16 Elevators A.7.16.1 Retainer Guards A.7.16.2 Retainer Plate A.7.16.3 Elevator Equipment A.7.16.4 Seismic Switch |
389 | A.7.16.5 Shaft Walls A.7.16.6 Counterweight Rails A.7.16.7 Brackets A.7.16.8 Spreader Bracket A.7.16.9 Go-Slow Elevators |
390 | APPENDIX B: APPLYING ASCE 41 IN BUILDING CODES, REGULATORY POLICIES, AND MITIGATION PROGRAMS APPENDIX B: APPLYING ASCE 41 IN BUILDING CODES, REGULATORY POLICIES, AND MITIGATION PROGRAMS B.1 INTRODUCTION B.2 MANDATORY MITIGATION |
392 | B.2.2 Implementation Issues B.2.3 Historic Buildings |
393 | B.3 VOLUNTARY MITIGATION B.3.1 Performance Objectives B.3.2 Implementation Issues C13.3.2.1.2 Concrete or Masonry Anchors Used in the Attachment of Equipment and Other Components |
394 | B.3.4 Example Programs B.4 TRIGGERED MITIGATION B.4.2 Implementation Issues |
395 | B.4.3 Historic Buildings |
398 | APPENDIX C: SUMMARY DATA SHEET APPENDIX C: SUMMARY DATA SHEET |
400 | Chapter C1: General Requirements Chapter C1: General Requirements C1.1 SCOPE |
402 | C1.3 SEISMIC EVALUATION PROCESS |
403 | C1.3.3 As-Built Information C1.3.4 Evaluation Procedures |
404 | C1.4 SEISMIC RETROFIT PROCESS |
406 | 5.2.6 Knowledge Factor 11.2.2.5 Pointing or Repointing of Unreinforced Masonry Walls 16.2.2.1.3 Walls with Other Layups C1.4 SEISMIC RETROFIT PROCESS C1.4.1 Assignment of Performance Objective C1.4.4 Verification of Retrofit Design C9.4.2.3 Test Methods to Quantify Mechanical Properties C15.3.1 Nominal Design Properties |
407 | C1.4.5 Quality Assurance and Structural Observation C1.4.5.1 Special Inspections and Testing C1.4.5.2 Structural Observation |
408 | Chapter C2: Performance Objectives and Seismic Hazards Chapter C2: Performance Objectives and Seismic Hazards C2.2 PERFORMANCE LEVELS C2.2.1 Structural Performance Levels and Ranges |
419 | 13.3.2 Testing Requirements for Evaluating the Performance of Existing Anchorage for Nonstructural Components C2.3 Seismic Hazard C2.3.1 Seismic Hazard C2.3.1.1 BSE-2N Seismic Hazard Level C2.3.1.3 BSE-2E Seismic Hazard Level C5.2.3 Condition Assessment C11.2.2.5 Pointing or Repointing of Unreinforced Masonry Walls |
420 | 16.2.2.3.1 Shear Strength C2.3.1.4 BSE-1E Seismic Hazard Level C2.3.1.5 Seismic Hazard Levels for Other Probabilities of Exceedance, Risk Targets, or Deterministic Hazards C2.3.2 General Response Spectrum C2.3.2.1 Multiperiod General Horizontal Response Spectrum C2.3.2.2 Two-Period General Horizontal Response Spectrum C2.3.2.3 General Vertical Response Spectrum C2.3.3 Site-Specific Procedure for Hazards Caused by Ground Shaking C7.2.4.2.3 Consideration of Torsional Effects for Nonlinear Procedures |
421 | C2.3.4 Ground Motion Acceleration Histories C2.4 PERFORMANCE OBJECTIVES |
422 | C2.4.1 Basic Performance Objective for Existing Buildings (BPOE) C13.4.4.4 Nonstructural Support Capacity |
424 | C2.4.2 Enhanced Performance Objectives C2.4.3 Limited Performance Objectives C2.4.6 System-Specific Performance Procedures |
425 | C2.5 LEVEL OF SEISMICITY |
426 | 5.2.1 Performance Level and Seismic Hazard Level 8.2.1.1 Subsurface Soil Conditions Chapter C3: Evaluation and Retrofit Requirements Chapter C3: Evaluation and Retrofit Requirements C3.2 AS-BUILT INFORMATION C3.2.1 Building Type C3.2.2 Building Configuration C3.2.3 Component Properties C3.2.4 Site and Foundation Information C3.2.5.1 Building Pounding C3.2.5.2 Shared Element Condition |
427 | C3.2.5.3 Hazards from Adjacent Buildings C3.3 COMMON BUILDING TYPES C3.4 BENCHMARK BUILDINGS |
433 | 8.2.2.2.1 Liquefaction-Affected Structural Evaluation C3.4.2.1 Level of Seismicity |
434 | 9.4.3.2 Scope and Procedures 11.2.3.6.1 Determination of Expected URM Shear Strength by Testing for Bed-Joint Shear Strength C3.5 EVALUATION AND RETROFIT PROCEDURES C3.5.1.2 Buildings Composed of More than One of the Common Building Types C3.5.1.2.1 Combinations of Systems in Different Directions C3.5.1.2.2 Combinations of Systems in the Same Direction |
435 | 7.3.1 Modeling C3.5.3.1 Evaluation Requirements C3.5.3.2 Retrofit Requirements C3.5.4 Tier 3 Systematic Evaluation and Retrofit Procedures C3.5.4.1 Evaluation Requirements C3.5.4.2 Retrofit Requirements C11.3.2 Unreinforced Masonry Walls and Wall Piers Subject to In-Plane Actions |
436 | Chapter C4: Tier 1 Screening Chapter C4: Tier 1 Screening C4.1 SCOPE C4.1.1 Performance Level C4.2 SCOPE OF INVESTIGATION REQUIRED C4.2.1 On-Site Investigation and Condition Assessment C4.2.3 Default Material Values C4.3 SELECTION AND USE OF CHECKLISTS C4.4 TIER 1 ANALYSIS C5.2.2 As-Built Information |
440 | 12.2.2.2.2 Connections C4.4.3.1 Story Drift for Moment Frames C4.4.3.2 Shear Stress in Concrete Frame Columns C4.4.3.7 Flexible Diaphragm Connection Forces |
442 | Chapter C5: Tier 2 Deficiency-Based Evaluation and Retrofit Chapter C5: Tier 2 Deficiency-Based Evaluation and Retrofit C5.1 SCOPE C5.2 GENERAL REQUIREMENTS C5.2.1 Performance Level and Seismic Hazard Level |
443 | B.4.1 Performance Objectives C5.2.5 Tier 2 Acceptance Criteria C5.2.6 Knowledge Factor C5.3 TIER 2 DEFICIENCY-BASED EVALUATION REQUIREMENTS C5.4 PROCEDURES FOR BASIC CONFIGURATION OF BUILDING SYSTEMS C5.4.1.1 Load Path C5.4.1.2 Adjacent Buildings C16.2.2.2.1 In-Place Mortar Tests |
444 | 4.4.3.1 Story Drift for Moment Frames 7.2.6 Multidirectional Seismic Effects 8.4.6 Shallow Foundation Lateral Load 12.2.3 Condition Assessment 14.3.5 Upper- and Lower-Bound Properties C5.4.2.3 Vertical Irregularities C5.4.2.5 Mass Irregularity C5.4.3 Geologic Site Hazards and Foundation Components C5.4.3.1 Geologic Site Hazards C5.4.3.3 Overturning C5.5 PROCEDURES FOR SEISMIC-FORCE-RESISTING SYSTEMS C5.5.1 General C5.5.2.1.5 Strong Column-Weak Beam C5.5.2.2 Procedures for Steel Moment Frames C5.5.2.2.3 Panel Zones C5.5.2.2.5 Compact Members C5.5.2.2.7 Girder Flange Continuity Plates C5.5.2.3 Procedures for Concrete Moment Frames C5.5.2.3.4 No Shear Failures C5.5.2.3.5 Continuous Beam Bars C5.5.2.3.6 Column and Beam Bar Splices C5.5.2.3.7 Column-Tie Spacing and Beam Stirrup Spacing C5.5.2.3.9 Joint Eccentricity C5.5.2.3.10 Stirrup and Tie Hooks C5.5.3 Procedures for Shear Walls C5.5.3.1.1 Shear Stress Check C9.5.1.2 Use of Nonlinear Procedures for Cold-Formed Steel Light-Frame Construction |
445 | A.3.1.5.1 Precast Connection Check. C5.5.4 Procedures for Braced Frames C5.7 PROCEDURES FOR CONNECTIONS C5.7.4 Interconnection of Elements C5.7.4.4 Beam, Girder, and Truss Supported on Unreinforced Masonry (URM) Walls or URM Pilasters C5.8 TIER 2 DEFICIENCY-BASED RETROFIT REQUIREMENTS C5.8.1 Compliance with Deficiency-Based Evaluation C5.8.2 Additional Evaluation of the Resulting Building C5.8.2.1 Building Configuration C5.8.2.2 Increased Gravity Demands to Existing Elements C5.8.2.3 Increased Seismic Demands to Existing Elements C5.8.3 Evaluation of New and Modified Structural Elements and Connections C5.8.4.2 Design and Detailing Requirements |
446 | C5.8.4.3 Scope of Evaluation Requirements for Existing Components |
448 | Chapter C6: Tier 3 Systematic Evaluation and Retrofit Chapter C6: Tier 3 Systematic Evaluation and Retrofit C6.2 DATA COLLECTION REQUIREMENTS C6.2.2 Condition Assessment C6.2.3.1 Knowledge Factor for Linear Procedures |
449 | C6.2.3.2 Property Bounding for Nonlinear Procedures C13.3.1 Condition Assessment |
450 | C6.3 TIER 3 EVALUATION REQUIREMENTS C6.4 TIER 3 RETROFIT REQUIREMENTS |
452 | B.2.1 Performance Objectives B.2.4 Example Programs Chapter C7: Analysis Procedures and Acceptance Criteria Chapter C7: Analysis Procedures and Acceptance Criteria C7.1 SCOPE C7.2 GENERAL ANALYSIS REQUIREMENTS C7.2.2 Effective Seismic Weight C7.2.3 Component Gravity Loads and Load Combinations C7.2.3.1 Dead Load C7.2.3.2 Live Load C7.2.4 Mathematical Modeling C12.2.2.2.2 Connections |
453 | C7.2.4.2.1 Total Torsional Moment C7.2.4.2.2 Consideration of Torsional Effects for Linear Procedures |
454 | C7.2.4.3 Primary and Secondary Components C7.2.4.3.1 Linear Procedures |
455 | 4.4.3.4 Diagonal Bracing C7.2.4.5 Foundation Modeling C7.2.5 Configuration C7.2.6.1 Concurrent Seismic Effects |
456 | C7.2.7 P-delta Effects C7.2.8 Soil-Structure Interaction C7.2.9 Overturning |
457 | C7.2.10 Sliding at the Soil-Structure Interface C7.2.10.1 Foundation Interconnection C7.2.11 Diaphragms, Chords, Collectors, and Ties C12.4.2.1.1 Single-Layer Horizontal Lumber Sheathing or Siding |
458 | C7.2.13 Structural Walls and Their Anchorage C7.2.13.2 Out-of-Plane Strength of Walls C7.2.15.2 Separation Exceptions C7.2.16 Verification of Analysis Assumptions C7.3 ANALYSIS PROCEDURE SELECTION |
459 | C7.3.1 Linear Procedures C7.3.1.1 Method to Determine Limitations on Use of Linear Procedures |
460 | C7.3.1.2 Limitations on Use of the Linear Static Procedure C7.3.2 Nonlinear Procedures C7.3.2.1 Nonlinear Static Procedure C7.3.2.2 Nonlinear Dynamic Procedure C7.4 ANALYSIS PROCEDURES C7.4.1 Linear Static Procedure C7.4.1.1 Basis of the Procedure C7.4.1.2 Period Determination for Linear Static Procedure C7.4.1.2.1 Method 1: Analytical C7.4.1.2.2 Method 2: Empirical |
461 | C7.4.1.3.1 Pseudo Seismic Force for Linear Static Procedure |
462 | 11.3.4.3.1 Reinforced Masonry Walls and Wall Piers with Rectangular Sections C7.4.1.3.4 Diaphragms for Linear Static Procedure C7.4.1.3.5 Distribution of Seismic Forces for Unreinforced Masonry Buildings with Flexible Diaphragms for Linear Static Procedure C7.4.2 Linear Dynamic Procedure C7.4.2.1 Basis of the Procedure C7.4.2.2 Modeling and Analysis Considerations for Linear Dynamic Procedure |
463 | 14.5.2.2.2 Effective Period at the Displacement DX. C7.4.2.2.3 Response Spectrum Method for Linear Dynamic Procedure C7.4.2.3 Determination of Forces and Deformations for Linear Dynamic Procedure C7.4.2.3.2 Diaphragms for LDP C7.4.3 Nonlinear Static Procedure C7.4.3.1 Basis of the Procedure C7.4.3.2 Modeling and Analysis Considerations for Nonlinear Static Procedure |
464 | 13.6.2.3.1 Life Safety Nonstructural Performance Level C7.4.3.2.1 General Requirements for Nonlinear Static Procedure C7.4.3.2.2 Component Modeling for Nonlinear Static Procedure C7.4.3.2.4 Lateral Load Distribution for Nonlinear Static Procedure C7.4.3.2.5 Idealized Force-Displacement Curve for Nonlinear Static Procedure C7.4.3.3 Determination of Forces, Displacements, and Deformations for Nonlinear Static Procedure C7.4.3.3.2 Target Displacement for Nonlinear Static Procedure |
465 | C7.4.3.3.4 Diaphragms for Nonlinear Static Procedure |
466 | 12.4.3.3.2 Strength of Vertical Wood Siding Shear Walls C7.4.4 Nonlinear Dynamic Procedure C7.4.4.1 Basis of the Procedure C7.4.4.2.1 General Requirements for Nonlinear Dynamic Procedure C7.4.4.2.3 Nonlinear Response History Method for Nonlinear Dynamic Procedure C7.4.4.2.5 Adaptive Models in NDP C7.4.4.3 Determination of Forces and Deformations for Nonlinear Dynamic Procedure |
467 | C7.4.4.3.2 Diaphragms for Nonlinear Dynamic Procedure |
468 | C7.4.4.4 Damping for Nonlinear Dynamic Procedure C7.5 ACCEPTANCE CRITERIA |
469 | C7.5.1.1 Deformation-Controlled and Force-Controlled Actions |
470 | 11.4.2.7.3 Acceptance Criteria for Nonlinear Procedures for Infill Wall In-Plane Actions 13.6.5.2 Component Behavior and Retrofit Methods C7.5.1.2 Critical and Noncritical Actions C7.5.1.3 Expected and Lower-Bound Strengths C7.5.1.4 Material Properties C7.5.2 Linear Procedures C7.5.2.1.1 Deformation-Controlled Actions for Linear Static Procedure or Linear Dynamic Procedure C7.5.2.1.2 Force-Controlled Actions for Linear Static Procedure or Linear Dynamic Procedure |
471 | C7.5.2.2 Acceptance Criteria for Linear Procedures C7.5.3 Nonlinear Procedures C7.5.3.2 Acceptance Criteria for Nonlinear Procedures C7.5.3.2.1 Unacceptable Response for Nonlinear Dynamic Procedure |
472 | C7.5.3.2.2 Acceptance Criteria for Deformation-Controlled Actions for NSP or NDP |
473 | C7.5.3.2.3 Acceptance Criteria for Force-Controlled Actions for Nonlinear Static Procedure or Nonlinear Dynamic Procedure C7.6 EXPERIMENTALLY DERIVED MODELING PARAMETERS AND ACCEPTANCE CRITERIA C7.6.1 Criteria for General Use Parameters |
476 | 7.4.3.3.1 General Requirements for Nonlinear Static Procedure C7.6.2 Criteria for Individual Project Testing C7.6.2.1 Experimental Setup |
477 | C7.6.2.2 Data Reduction and Reporting C7.6.3 Modeling Parameters and Acceptance Criteria for Nonadaptive Force-Deformation Curves C12.5.2.1.4 Diagonal Lumber Sheathing with Straight Lumber Sheathing or Flooring Above |
479 | C7.6.4 Modeling Parameters and Acceptance Criteria for Component Actions Based on Experimental Data for Fiber Models C7.6.5 Modeling Parameters and Acceptance Criteria for Component Actions Based on Experimental Data for Adaptive Force-Deformation Models in the Mathematical Model |
480 | Chapter C8: Foundations, Subsurface Soil, and Geologic Site Hazards Chapter C8: Foundations, Subsurface Soil, and Geologic Site Hazards C8.1 SCOPE C8.2 SITE CHARACTERIZATION C8.2.1 Subsurface Soil and Foundation Information C8.2.1.1 Subsurface Soil Conditions C8.2.1.2 Foundation Conditions C8.2.1.2.2 Foundation Loads C8.2.1.4 Soil Shear Modulus and Poisson’s Ratio Parameters C13.2.1 Classification of Components |
481 | C8.2.2.1 Fault Rupture C8.2.2.2 Liquefaction |
483 | C8.2.2.2.2 Postliquefaction Structural Evaluation C8.2.2.3 Settlement of Nonliquefiable Soils C8.2.2.4 Landsliding C8.3 MITIGATION OF SEISMIC-GEOLOGIC SITE HAZARDS |
484 | C8.4 SHALLOW FOUNDATIONS |
487 | 5.4.2.6 Torsion Irregularity C8.4.2 Expected Soil Bearing Capacities C8.4.2.1 Prescriptive Expected Soil Bearing Capacities |
488 | C8.4.2.2 Site-Specific Capacities |
489 | C8.4.4 Fixed-Base Procedure |
490 | 11.2.3.9.3 Comprehensive Testing of Reinforced and Unreinforced Masonry C8.4.4.1 Linear Procedures C8.4.4.1.1 Isolated Spread Footings |
497 | C8.4.4.1.2 Combined Footings, Mat Foundations, and Isolated Spread Footings |
499 | 7.4.1.1.3 Structural Walls and Wall Segments Controlled by Shear-Friction C8.4.4.2 Nonlinear Procedures C8.4.5.1 Soil Stiffness C8.4.5.2 Linear Procedures C8.4.5.2.1 Isolated Spread Footings |
500 | C8.4.5.2.2 Combined Footings, Mat Foundations, and Foundations Idealized as Isolated Footings |
501 | C8.4.5.3 Nonlinear Procedures |
502 | C8.4.5.3.1 Modeling Parameters for Nonlinear Static Procedure |
503 | C8.4.5.3.2 Modeling Parameters for Nonlinear Dynamic Procedure C8.4.5.3.3 Acceptance Criteria C8.4.6 Shallow Foundation Lateral Load C8.5 DEEP FOUNDATIONS C8.5.1 Pile Foundations C8.5.2 Drilled Shafts C8.6 SOIL-STRUCTURE INTERACTION EFFECTS |
504 | 9.6.3.1.4 Connections of Wood Structural Panels 11.3.2.3.1 Linear Procedures for In-Plane URM Wall Actions. 12.4.2.1.3 Vertical Wood Siding Only C8.6.1 Kinematic Interaction C8.6.1.1 Base Slab Averaging C8.6.1.2 Embedment C8.6.2 Foundation Damping Soil-Structure Interaction Effects |
505 | C8.7 SEISMIC EARTH PRESSURE |
506 | C8.8 FOUNDATION RETROFIT |
508 | Chapter C9: Steel and Iron Chapter C9: Steel and Iron C9.1 SCOPE C9.2 REFERENCE STANDARD FOR STRUCTURAL STEEL, COMPOSITE STEEL-CONCRETE, AND CAST AND WROUGHT IRON C9.3 MODIFICATION TO THE REFERENCE STANDARD FOR STRUCTURAL STEEL, COMPOSITE STEEL-CONCRETE, AND CAST AND WROUGHT IRON C9.4 MATERIAL PROPERTIES AND CONDITION ASSESSMENT FOR COLD-FORMED STEEL |
509 | 3.2.4 Site and Foundation Information 5.4.1.2 Adjacent Buildings 14.2.3 Isolation System C9.4.2.1 Material Properties C9.4.2.2 Component Properties C9.4.3.1 General |
510 | 4.4.3 Quick Checks for Strength and Stiffness C9.4.3.3 Basis for the Mathematical Building Model C9.5 GENERAL ASSUMPTIONS AND REQUIREMENTS FOR COLD-FORMED STEEL C9.5.1 Stiffness C9.5.2 Strength and Acceptance Criteria C9.5.2.2 Deformation-Controlled Actions |
511 | C9.5.3 Connection Requirements in Cold-Formed Steel Light-Frame Construction C9.5.5 Retrofit Measures C9.6 COLD-FORMED STEEL LIGHT-FRAME CONSTRUCTION, SHEAR WALL SYSTEMS C9.6.2 Types of Cold-Formed Steel Light-Frame Construction, Shear Wall Systems C9.6.2.1 Existing Cold-Formed Steel Light-Frame Shear Walls C9.6.2.2 Enhanced Cold-Formed Steel Light-Frame Shear Walls |
512 | 11.3.2.2.7 Expected Strengths of URM Wall Spandrels with Shallow Arches Subject to In-Plane Actions.
C9.6.3.1.1 Stiffness of Wood Structural Panels C9.7.3.1 Generic Cold-Formed Steel Moment Connection |
514 | C3.2.5 Adjacent Buildings Chapter C10: Concrete Chapter C10: Concrete C10.3 Modifications to the Reference Standard C10.3.1 General Assumptions and Requirements. Replace Section C3.1 of ACI 369.1 with the italicized text as follows. C3.1.1 General |
515 | B.3.3 Historic Buildings C3.1.2.2.3 C3.1.2.2.3. C3.1.2.2 Nonlinear procedures, C12.2.2.2.1 Elements |
518 | 4.4.2.3 Spectral Acceleration C10.3.2 Concrete Structural Walls. Replace Sections C7.1 through C7.7 of ACI 369.1 with the italicized text as follows. C7.1 Types of Concrete Structural Walls and Associated Components C7.1.2 Reinforced concrete columns supporting discontinuous structural walls. |
520 | C7.1.3 Reinforced concrete coupling beams. C7.2.1 Flexural Strength. C7.2.2 Shear Strength. C7.2.3 Shear-Friction Strength. |
521 | 12.2.3.2.1 Visual Condition Assessment 15.5.2.2.3 Fluid Viscous Devices C7.3 Linear Static and Dynamic Procedures for Structural Walls and Wall Segments C7.3.1 |
523 | C7.4.1 Modeling. C7.4.1.1 Nonlinear Static and Nonlinear Dynamic Procedures Employing Lumped-Plasticity Load-Deformation Models C7.4.1.1.2. Structural Walls and Wall Segments Controlled by Shear. |
524 | C7.4.1.1.3 Structural Walls and Wall Segments Controlled by Shear-Friction. |
525 | C7.4.1.2 Solid Element and Layered Shell Element Models Employ Multi-Dimensional Concrete Material Models. |
526 | C7.4.1.1.3. Structural Walls and Wall Segments Controlled by Shear-Friction. C7.4.2 Acceptance Criteria C7.7 Retrofit Measures for Reinforced Concrete Structural Walls, Wall Segments, and Coupling Beams |
527 | C12.1 Types of Concrete Foundations C12.1.2 Deep Concrete Foundations C12.1.2.1. Driven Concrete Pile Foundations. C12.1.2.2. Cast-in-Place Concrete Pile Foundations. C12.2 Analysis of Existing Concrete Foundations |
530 | C2.2.2 Nonstructural Performance Levels Chapter C11: Masonry Chapter C11: Masonry C11.1 SCOPE C11.2 CONDITION ASSESSMENT AND MATERIAL PROPERTIES C11.2.1 General C11.2.2 Condition Assessment |
532 | C11.2.2.4 Condition Enhancement C11.2.3 Properties of In-Place Materials and Components C11.2.3.3 Masonry Compressive Strength |
533 | 4.4.2.2 Story Shear Forces 9.4.2.4 Minimum Number of Tests 9.4.2.4.2 Comprehensive Testing for Cold-Formed Steel 16.2.2.3 Masonry Strength C4.4.3.6 Column Axial Stress Caused by Overturning C7.1.1 Monolithic reinforced concrete structural walls and wall segments. C11.2.3.4 Masonry Elastic Modulus in Compression C11.2.3.5 Masonry Flexural Tensile Strength C11.2.3.6 Unreinforced Masonry Shear Strength C11.2.3.6.1 Determination of Expected URM Shear Strength by Testing for Bed-Joint Shear Strength C11.2.3.6.2 Alternative Procedures for Determining Expected URM Shear Strength by Testing for Tensile Splitting Strength C11.2.3.7 Masonry Shear Modulus C14.2.5.2 Components at or above the Isolation Interface |
534 | 15.5.2.3 Other Types of Devices C7.2.6 Multidirectional Seismic Effects C11.2.3.10 Default Properties C11.3 MASONRY WALLS C11.3.1 Types of Masonry Walls C11.3.1.2 New Masonry Walls C11.3.1.3 Retrofitted Masonry Walls C14.3.2 Nominal Design Properties of Isolation System Devices |
535 | C11.3.2.1 Stiffness of URM Walls and Wall Piers Subject to In-Plane Actions C13.6.1.1.1 Definition and Scope |
537 | C5.5.1.1 Redundancy C11.3.2.2 Strength of URM Walls Subject to In-Plane Actions C13.6.1.1.2 Component Behavior and Retrofit Methods |
538 | 14.3.2 Nominal Design Properties of Isolation System Devices C11.3.2.2.1 Expected In-Plane Rocking Strength of URM Walls and Wall Piers |
539 | C7.2.12 Continuity C11.3.2.2.2 Expected In-Plane Bed-Joint Sliding Strength of URM Walls and Wall Piers |
540 | C11.3.2.2.3 Lower-Bound In-Plane Toe-Crushing Strength of URM Walls and Wall Piers C11.3.2.2.4 Lower-Bound In-Plane Diagonal Tension Strength of URM Walls and Wall Piers C11.3.2.2.6 Expected Strengths of Rectangular URM Wall Spandrels Subject to In-Plane Actions |
541 | 9.5.5 Retrofit Measures C11.3.2.2.7 Expected Strengths of URM Wall Spandrels with Shallow Arches Subject to In-Plane Actions |
542 | 14.4.1 Isolation System Device Modeling 15.8.1.2 Sequence and Cycles of Testing C11.3.2.3 Acceptance Criteria for URM In-Plane Actions C11.3.2.3.1 Linear Procedures for In-Plane URM Wall Actions C11.3.2.3.2 Nonlinear Procedures for In-Plane URM Wall Actions |
544 | C11.3.3.2 Strength of URM Walls Subject to Out-of-Plane Actions C11.3.3.3 Acceptance Criteria for URM Walls Subject to Out-of-Plane Actions C14.5.2.2 Minimum Lateral Displacements |
545 | C11.3.4 Reinforced Masonry Walls and Wall Piers In-Plane Actions |
546 | 11.3.2.2.4 Lower-Bound In-Plane Diagonal Tension Strength of URM Walls and Wall Piers C11.3.4.3 Flexure-Governed In-Plane Actions of Reinforced Masonry Walls and Wall Piers C11.3.4.4 Shear-Governed In-Plane Actions of Reinforced Masonry Walls and Wall Piers |
547 | 11.3.3.1 Stiffness of URM Walls Subject to Out-of-Plane Actions C8.5.1.2 Capacity Parameters C11.3.4.6 Acceptance Criteria for In-Plane Actions of Reinforced Masonry Walls and Wall Piers C11.3.5 Reinforced Masonry Wall Out-of-Plane Actions C11.3.5.3 Acceptance Criteria for Reinforced Masonry Wall Out-of-Plane Actions C11.4 MASONRY INFILLS C11.4.1 Types of Masonry Infills C11.4.1.1 Existing Masonry Infills C11.4.1.3 Retrofitted Masonry Infills C11.4.2.1 Stiffness: Masonry Infill In-Plane Actions C11.4.2.2 Stiffness: Masonry Infill with Openings In-Plane Actions C13.6.2.1 Definition and Scope |
548 | C11.4.2.3 Strength: Infilled Reinforced Concrete Frames In-Plane Actions |
549 | A.3.2.2 Concrete Shear Walls C11.4.2.5 Drift: Infill Wall In-Plane Actions C11.4.2.6 Strut Model for Infill In-Plane Actions C11.4.2.7 Acceptance Criteria for Infill Wall In-Plane Actions C11.4.3 Masonry Infill Wall Out-of-Plane Actions C11.4.3.1 Stiffness: Infill Wall Out-of-Plane Actions C11.4.3.2 Strength: Infill Wall Out-of-Plane Actions C11.4.3.3 Strength: Infill Wall In-Plane and Out-of-Plane Interaction |
550 | A.3.2.3.1 Shear Stress Check C11.5 ANCHORAGE TO MASONRY WALLS C11.5.2 Analysis of Anchors C11.5.3 Quality Assurance for Anchors in Masonry Walls C11.6 MASONRY FOUNDATION ELEMENTS C11.6.1 Types of Masonry Foundations C11.6.3 Foundation Retrofit Measures C11.7 MASONRY DIAPHRAGMS C11.7.1 General C11.7.2 Seismic Evaluation of Masonry Diaphragms |
551 | C11.7.3 Retrofit Measures for Masonry Diaphragms |
552 | Chapter C12: Wood Chapter C12: Wood C12.1 SCOPE C12.2 MATERIAL PROPERTIES AND CONDITION ASSESSMENT |
553 | 10.3.1 General Assumptions and Requirements. 12.2.2 Properties of In-Place Materials and Components C4.4.2.1 Pseudo Seismic Force C3.1.2.2.4. C12.2.2.1.3 Nominal or Specified Properties |
554 | 13.3.2.5 Alternate Test Criteria 14.2.4 Structural System C9.4.3.2 Scope and Procedures C12.2.2.5.1 Wood Construction Default Properties C12.2.3.1 General C12.2.3.2 Scope and Procedures for Condition Assessment C12.2.3.3 Basis for the Mathematical Building Model C16.2.3 Analysis |
555 | C11.2.3.8 Steel Reinforcement Yield Strength Properties C12.3 GENERAL ASSUMPTIONS AND REQUIREMENTS C12.3.3 Connection Requirements |
556 | 14.3.4 Property Modification Factors C7.5.1 Modeling C12.4.2 Types of Wood Shear Walls C12.4.2.1 Existing Wood Shear Walls C12.4.2.1.2 Diagonal Lumber Sheathing C12.4.2.1.3 Vertical Wood Siding Only C12.4.2.1.4 Wood Siding over Horizontal Lumber Sheathing C12.4.2.1.5 Wood Siding over Diagonal Lumber Sheathing C12.4.2.1.6 Wood Structural Panel Sheathing or Siding C12.4.2.1.7 Stucco on Studs C12.4.2.1.8 Gypsum Plaster on Wood Lath C12.4.2.1.9 Gypsum Plaster on Gypsum Lath C12.4.2.1.10 Gypsum Wallboard C12.4.2.1.11 Gypsum Sheathing C12.4.2.1.13 Horizontal Lumber Sheathing with Cut-In Braces or Diagonal Blocking C12.4.2.1.14 Fiberboard or Particleboard Sheathing C12.4.2.2 Enhanced Wood Shear Walls |
557 | 13.2 Definitions C5.5.3.1 General Procedures for Shear Walls C12.4.2.3 New Wood Shear Walls C12.4.3 Stiffness, Strength, Acceptance Criteria, and Connection Design for Wood Shear Walls C12.4.3.1 Single-Layer Horizontal Lumber Sheathing or Siding Shear Walls C12.4.3.1.1 Stiffness of Single-Layer Horizontal Lumber Sheathing or Siding Shear Walls C12.4.3.1.2 Strength of Single-Layer Horizontal Lumber Sheathing or Siding Shear Walls C12.4.3.1.3 Acceptance Criteria for Single-Layer Horizontal Lumber Sheathing or Siding Shear Walls C12.4.3.1.4 Connections of Single-Layer Horizontal Lumber Sheathing or Siding Shear Walls C12.4.3.2 Diagonal Lumber Sheathing Shear Walls C12.4.3.2.1 Stiffness of Diagonal Lumber Sheathing Shear Walls C12.4.3.2.2 Strength of Diagonal Lumber Sheathing Shear Walls C12.4.3.3 Vertical Wood Siding Shear Walls C12.4.3.3.1 Stiffness of Vertical Wood Siding Shear Walls C12.4.3.3.2 Strength of Vertical Wood Siding Shear Walls C12.4.3.3.4 Connections of Vertical Wood Siding Shear Walls C12.4.3.4 Wood Siding over Horizontal Lumber Sheathing Shear Walls C12.4.3.4.1 Stiffness of Wood Siding over Horizontal Lumber Sheathing Shear Walls |
558 | C12.4.3.4.2 Strength of Wood Siding over Horizontal Lumber Sheathing Shear Walls C12.4.3.5 Wood Siding over Diagonal Lumber Sheathing Shear Walls C12.4.3.5.1 Stiffness of Wood Siding over Diagonal Lumber Sheathing Shear Walls C12.4.3.5.2 Strength of Wood Siding over Diagonal Lumber Sheathing Shear Walls C12.4.3.6 Wood Structural Panel Sheathing or Siding Shear Walls C12.4.3.6.2 Strength of Wood Structural Panel Sheathing or Siding Shear Walls C12.4.3.7 Stucco on Studs, Sheathing, or Fiberboard Shear Walls C12.4.3.7.1 Stiffness of Stucco on Studs, Sheathing, or Fiberboard Shear Walls C12.4.3.7.2 Strength of Stucco on Studs, Sheathing, or Fiberboard Shear Walls C12.4.3.7.4 Connections of Stucco on Studs, Sheathing, or Fiberboard Shear Walls C12.4.3.8 Gypsum Plaster on Wood Lath Shear Walls C12.4.3.8.1 Stiffness of Gypsum Plaster on Wood Lath Shear Walls C12.4.3.8.4 Connections of Gypsum Plaster on Wood Lath Shear Walls C12.4.3.9 Gypsum Plaster on Gypsum Lath Shear Walls C12.4.3.9.1 Stiffness of Gypsum Plaster on Gypsum Lath Shear Walls C12.4.3.9.4 Connections of Gypsum Plaster on Gypsum Lath Shear Walls C12.4.3.10 Gypsum Wallboard Shear Walls C12.4.3.10.1 Stiffness of Gypsum Wallboard Shear Walls C12.4.3.10.2 Strength of Gypsum Wallboard Shear Walls C12.4.3.11 Gypsum Sheathing Shear Walls C12.4.3.11.1 Stiffness of Gypsum Sheathing Shear Walls |
559 | 7.4.3.2.5 Idealized Force-Displacement Curve for Nonlinear Static Procedure C12.4.3.11.2 Strength of Gypsum Sheathing Shear Walls C12.4.3.12 Plaster on Metal Lath Shear Walls C12.4.3.12.1 Stiffness of Plaster on Metal Lath Shear Walls C12.4.3.12.4 Connections of Plaster on Metal Lath Shear Walls C12.4.3.13 Horizontal Lumber Sheathing with Cut-In Braces or Diagonal Blocking Shear Walls C12.4.3.13.1 Stiffness of Horizontal Lumber Sheathing with Cut-In Braces or Diagonal Blocking Shear Walls C12.4.3.13.4 Connections of Horizontal Lumber Sheathing with Cut-In Braces or Diagonal Blocking Shear Walls C12.4.3.14 Fiberboard or Particleboard Sheathing Shear Walls C12.4.3.14.1 Stiffness of Fiberboard or Particleboard Sheathing Shear Walls C12.4.3.14.2 Strength of Fiberboard or Particleboard Sheathing Shear Walls C12.4.3.14.4 Connections of Fiberboard or Particleboard Sheathing Shear Walls C12.5 WOOD DIAPHRAGMS C12.5.1 General C12.5.2 Types of Wood Diaphragms C12.5.2.1 Existing Wood Diaphragms C12.5.2.1.1 Single-Layer Straight Lumber Sheathing C12.5.2.1.2 Double-Layer Straight Lumber Sheathing C12.5.2.1.3 Single-Layer Diagonal Lumber Sheathing C13.7.4.2 Component Behavior and Retrofit Methods C13.7.5.1 Definition and Scope |
560 | 12.4.3.8.1 Stiffness of Gypsum Plaster on Wood Lath Shear Walls A.3.2.8 Cold-Formed Steel Light-Frame Construction, Shear Wall Systems C12.5.2.1.5 Double-Layer Diagonal Lumber Sheathing C12.5.2.1.6 Wood Structural Panel Sheathing C12.5.2.2 Enhanced Wood Diaphragms C12.5.2.3 New Wood Diaphragms |
561 | A.3.3.2 Concentrically Braced Frames C12.5.3 Stiffness, Strength, Acceptance Criteria, and Connection Design for Wood Diaphragms C12.5.3.1.1 Stiffness of Single-Layer Straight Lumber Sheathing Diaphragms C12.5.3.1.2 Strength of Single-Layer Straight Lumber Sheathing Diaphragms C12.5.3.1.3 Acceptance Criteria for Single-Layer Straight Lumber Sheathing Diaphragms C12.5.3.1.4 Connections of Single-Layer Straight Lumber Sheathing Diaphragms C12.5.3.2 Double-Layer Straight Lumber Sheathing Diaphragms C12.5.3.2.1 Stiffness of Double-Layer Straight Lumber Sheathing Diaphragms C12.5.3.2.2 Strength of Double-Layer Straight Lumber Sheathing Diaphragms C12.5.3.3 Single-Layer Diagonal Lumber Sheathing Diaphragms C12.5.3.3.1 Stiffness of Single-Layer Diagonal Lumber Sheathing Diaphragms C12.5.3.3.2 Strength of Single-Layer Diagonal Lumber Sheathing Diaphragms C12.5.3.4 Diagonal Lumber Sheathing with Straight Lumber Sheathing or Flooring above Diaphragms C12.5.3.4.1 Stiffness of Diagonal Lumber Sheathing with Straight Lumber Sheathing or Flooring above Diaphragms C12.5.3.4.2 Strength of Diagonal Lumber Sheathing with Straight Lumber Sheathing or Flooring above Diaphragms C12.5.3.5 Double-Layer Diagonal Lumber Sheathing Diaphragms C12.5.3.5.1 Stiffness of Double-Layer Diagonal Lumber Sheathing Diaphragms C12.5.3.5.2 Strength of Double-Layer Diagonal Lumber Sheathing Diaphragms |
562 | C12.5.3.6.1 Stiffness of Wood Structural Panel Sheathing Diaphragms C12.5.3.6.2 Strength of Wood Structural Panel Sheathing Diaphragms C12.5.3.7.1 Stiffness of Wood Structural Panel Overlays on Straight or Diagonal Lumber Sheathing Diaphragms C12.5.3.8 Wood Structural Panel Overlays on Existing Wood Structural Panel Sheathing Diaphragms C12.5.3.8.1 Stiffness of Wood Structural Panel Overlays on Existing Wood Structural Panel Sheathing Diaphragms C12.6 WOOD FOUNDATIONS C12.6.1 Types of Wood Foundations |
563 | C12.6.2 Analysis, Strength, and Acceptance Criteria for Wood Foundations C12.6.3 Retrofit Measures for Wood Foundations C12.7 OTHER WOOD ELEMENTS AND COMPONENTS C12.7.1 General C12.7.1.2 Strength of Other Wood Elements and Components C12.7.1.3 Acceptance Criteria for Other Wood Elements and Components |
564 | Chapter C13: Architectural, Mechanical, and Electrical Components Chapter C13: Architectural, Mechanical, and Electrical Components C13.1 SCOPE C13.2 EVALUATION AND RETROFIT PROCEDURE FOR NONSTRUCTURAL COMPONENTS C13.3 COMPONENT ASSESSMENT AND ANCHORAGE TESTING |
565 | 3.2.5 Adjacent Buildings 3.2.5.2 Shared Element Condition 9.4.3 Condition Assessment C3.4.1 Benchmark Procedure Checklist C4.4.2.4 Period C5.4.2 Building Configuration C13.3.2 Testing Requirements for Evaluating the Performance of Existing Attachments for Nonstructural Components C13.3.2.1 Components Evaluated to the Operational Performance Level C13.3.2.2 Components Evaluated to the Position Retention or Life Safety Performance Level C13.3.2.2.1 Concrete or Masonry Anchors Used in the Seismic Bracing of Distributed Systems C13.3.2.3 Tension Testing Procedure C13.3.2.5 Alternate Test Criteria C13.4 EVALUATION PROCEDURES C13.4.2 Analytical Procedure C13.4.3 Prescriptive Procedure C16.2.2.3.2 Masonry Compression |
566 | C4.4.3.9 Flexural Stress in Columns and Beams of Steel Moment Frames C13.4.4.3 Load Combination C13.4.4.4.1 Existing Components C13.4.5 Deformation Analysis C13.5 RETROFIT APPROACHES |
567 | C13.6 ARCHITECTURAL COMPONENTS: DEFINITION, BEHAVIOR, AND ACCEPTANCE CRITERIA C13.6.1.1 Adhered Veneer C13.6.1.2 Anchored Veneer C13.6.1.2.1 Definition and Scope C13.6.1.2.2 Component Behavior and Retrofit Methods |
568 | 7.2.11 Diaphragms, Chords, Collectors, and Ties 7.2.11.3 Diaphragm Chords 8.4.5.3 Nonlinear Procedures 7.4.1.2 Nonlinear Static and Nonlinear Dynamic Procedures Employing Models Other Than Lumped-Plasticity Load-Deformation Models. 12.3.2.3 Force-Controlled Actions 12.3.2.3.1 Wood Construction 12.3.5 Retrofit Measures A.3.1.4.3 Flat Slab Frames. C13.6.1.2.3 Acceptance Criteria C13.6.1.3 Glass Block Units and Other Nonstructural Masonry C13.6.1.3.2 Component Behavior and Retrofit Methods C13.6.1.4 Prefabricated Panels C13.6.1.4.1 Definition and Scope C13.6.1.4.2 Component Behavior and Retrofit Methods C13.6.1.5 Glazed Exterior Wall Systems C13.6.1.5.1 Definition and Scope C13.6.1.5.2 Component Behavior and Retrofit Methods C13.6.1.5.3 Acceptance Criteria C14.5.2 Linear Static Procedure |
569 | C13.6.1.5.4 Evaluation Requirements C13.6.2 Partitions C13.6.2.2 Component Behavior and Retrofit Methods C13.6.3 Interior Veneers C13.6.3.2 Component Behavior and Retrofit Methods C13.6.4 Ceilings C13.6.4.1 Definition and Scope C13.6.4.2 Component Behavior and Retrofit Methods C13.6.5 Parapets and Cornices C13.6.5.1 Definition and Scope C13.6.5.2 Component Behavior and Retrofit Methods C13.6.6 Architectural Appendages and Marquees C13.6.6.2 Component Behavior and Retrofit Methods |
570 | 13.6.3.3 Acceptance Criteria C13.6.9 Chimneys and Stacks C13.6.9.2 Component Behavior and Retrofit Methods C13.6.10.1 Definition and Scope C13.6.10.2 Component Behavior and Retrofit Methods C13.6.11 Doors Required for Emergency Services Egress in Essential Facilities C13.6.11.1 Definition and Scope C13.6.12 Computer Access Floors C13.6.12.1 Definition and Scope C13.6.12.2 Component Behavior and Retrofit Methods C13.6.12.4 Evaluation Requirements C13.7 MECHANICAL, ELECTRICAL, AND PLUMBING COMPONENTS: DEFINITION, BEHAVIOR, AND ACCEPTANCE CRITERIA C13.7.1 Mechanical Equipment C13.7.1.1 Definition and Scope C13.7.1.2 Component Behavior and Retrofit Methods |
571 | 14.6.2 Qualification Tests C13.7.1.4 Evaluation Requirements C13.7.2 Storage Vessels and Water Heaters C13.7.2.2 Component Behavior and Retrofit Methods C13.7.2.4 Evaluation Requirements C13.7.3 Pressure Piping C13.7.3.2 Component Behavior and Retrofit Methods C13.7.3.4 Evaluation Requirements C13.7.4 Fire Suppression Piping C13.7.4.3 Acceptance Criteria C13.7.4.4 Evaluation Requirements C13.7.5 Fluid Piping Other Than Fire Suppression C13.7.5.2 Component Behavior and Retrofit Methods C13.7.5.4 Evaluation Requirements |
572 | C12.5.2.3.4 New Braced Horizontal Diaphragms C13.7.6 Ductwork C13.7.6.2 Component Behavior and Retrofit Methods C13.7.7 Electrical and Communications Equipment C13.7.7.2 Component Behavior and Retrofit Methods C13.7.7.4 Evaluation Requirements C13.7.8 Electrical and Communications Distribution Components C13.7.9 Light Fixtures C13.7.9.2 Component Behavior and Retrofit Methods C13.7.10 Rooftop Solar Photovoltaic Arrays C13.7.10.1 Definition and Scope C13.7.10.2 Component Behavior and Retrofit Methods C13.7.11 Elevators C13.7.11.2 Component Behavior and Retrofit Methods C13.7.11.4 Evaluation Requirements C13.7.12 Conveyors C13.7.12.2 Component Behavior and Retrofit Methods C13.8 FURNISHINGS AND CONTENTS: DEFINITION, BEHAVIOR, AND ACCEPTANCE CRITERIA C13.8.1 Steel Storage Racks C13.8.1.1 Definition and Scope |
573 | C13.8.1.2 Component Behavior and Retrofit Methods C13.8.2 Contents C13.8.2.1 Definition and Scope C13.8.2.2 Component Behavior and Retrofit Methods C13.8.3 Hazardous Material Storage C13.8.4 Computer and Communication Racks C13.8.4.1 Definition and Scope C13.8.4.2 Component Behavior and Retrofit Methods |
574 | 2.3.2 General Response Spectrum 11.2.3.1 General 14.2.3.4 Lateral Restoring Force C2.3.1.2 BSE-1N Seismic Hazard Level C7.2.4.2 Torsion C8.2.1.3 Load-Deformation Characteristics of Subsurface Soil under Seismic Loading Chapter C14: Seismic Isolation Chapter C14: Seismic Isolation C14.1 SCOPE C14.2 GENERAL REQUIREMENTS C14.2.3 Isolation System C14.2.3.1 Environmental Conditions C14.2.3.2 Wind Displacement C14.2.3.3 Fire Resistance C14.2.3.4 Lateral Restoring Force C14.2.3.5 Displacement Restraint C14.2.3.6 Vertical Load Stability C14.2.3.7 Overturning |
575 | 5.4.1.3 Mezzanines C3.4.2.2 Seismic Force Provisions Specimen Shear Strength versus Shear Demand Associated with Flexural Yielding. C11.2.3.6.3 Determination of Lower-Bound URM Shear Strength by Testing for Bed-Joint Shear Strength C14.2.3.8 Inspection and Replacement C14.2.4 Structural System C14.2.5 Elements of Structures and Nonstructural Components C14.2.5.3 Components Crossing the Isolation Interface C14.2.6 Seismic Load Effects and Load Combinations |
576 | C14.3 SEISMIC ISOLATION SYSTEM DEVICE PROPERTIES C14.3.1 Isolation System Device Types C14.3.3 Bounding Properties of Isolation System Devices C14.3.3.1 Specification Tolerance on Design Properties C14.3.3.2 Testing Variations on Design Properties |
577 | 7.2.8 Soil-Structure Interaction 15.6.4 Maintenance A.3.1.3.7 Strong Column-Weak Beam C14.3.3.3 Aging and Environmental Effects on Design Properties C14.3.4 Property Modification Factors C14.3.5 Upper- and Lower-Bound Properties C14.4 MODELING C14.4.1 Isolation System Device Modeling |
578 | C10.3.3 Concrete Foundations. Replace Sections C12.1 through C12.4 of ACI 369.1 with the italicized text as follows. C14.4.2 Isolation System and Superstructure Modeling C14.4.2.3 Superstructure Model C14.5 ANALYSIS PROCEDURES C14.5.1 Selection of Analysis Procedure C14.5.1.1 Linear Static Procedure C14.5.2.2.1 Isolation System Displacement C14.5.2.2.2 Effective Period at the Displacement DX. C14.5.2.2.3 Total Isolation System Displacement |
579 | 7.2.14.1 Interconnection 8.5.1.2 Capacity Parameters C14.5.2.3 Minimum Lateral Forces C14.5.2.3.1 Isolation System and Structural Elements at or below the Base Level C14.5.2.3.2 Structural Elements above the Base Level C14.5.2.3.3 Limits on Vst |
580 | 8.5.3.2.1 Fixed-Base Assumption 9.6.3.2.4 Connections of Steel Sheet Sheathing C11.4.2 Masonry Infill In-Plane Actions C14.5.5 Nonlinear Dynamic Procedure C14.5.5.2 Accidental Mass Eccentricity C14.6 ISOLATION SYSTEM TESTING AND DESIGN PROPERTIES C14.6.3 Prototype Tests C14.6.3.5 Dynamic Testing C14.6.3.9 Testing Similar Isolation System Devices C14.6.4 Production Testing |
581 | C14.6.5 Determination of Force-Deflection Characteristics C14.7 DESIGN REVIEW |
582 | C11.2.2.2 Comprehensive Condition Assessment Chapter C15: Design Requirements for Structures with Supplemental Energy Dissipation Chapter C15: Design Requirements for Structures with Supplemental Energy Dissipation C15.1 SCOPE C15.2 GENERAL DESIGN REQUIREMENTS C15.2.2.1 Ground Motion Acceleration Histories |
584 | 7.2.4.2.3 Consideration of Torsional Effects for Nonlinear Procedures 3.1.3 Flanged Construction 7.1.1 Monolithic Reinforced Concrete Structural Walls and Wall Segments C12.3.2.2 Deformation-Controlled Actions C15.3 PROPERTIES OF ENERGY DISSIPATION DEVICES C15.3.2 Maximum and Minimum Damper Properties C15.4 ANALYSIS PROCEDURE SELECTION C15.4.1 General Limitations for the Linear Analysis Procedures C15.5 NONLINEAR DYNAMIC PROCEDURES C15.5.1 General Requirements C15.5.2.2.2 Fluid Viscoelastic Devices C15.5.2.3 Other Types of Devices C15.5.3 Accidental Eccentricity C16.2.3.5.2 Combinations of Vertical Elements |
585 | C15.7 DESIGN REVIEW C15.8 REQUIRED TESTS OF ENERGY DISSIPATION DEVICES C15.8.2 Production Tests C15.10 NONLINEAR STATIC PROCEDURE C15.10.2 Velocity-Dependent Devices |
586 | Chapter C16: System-Specific Performance Procedures Chapter C16: System-Specific Performance Procedures C16.1 SCOPE C16.2 SPECIAL PROCEDURE FOR UNREINFORCED MASONRY |
587 | 11.2.2.2 Comprehensive Condition Assessment C7.2.4.1 Basic Assumptions C16.2.2 Condition of Existing Materials C16.2.2.2 Testing C16.2.2.2.2 Masonry C16.2.2.2.3 Wall Anchors C16.2.2.3 Masonry Strength C16.2.2.3.1 Shear Strength |
588 | B.4.4 Example Programs C16.2.3.2 Diaphragms C16.2.3.2.3 Acceptability Criteria C16.2.3.5.4 Forces on New Vertical Elements |
589 | C8.4.3 Simplified Procedure C16.2.3.5.6 Drift Limits C16.2.4 Other Components and Systems of URM Buildings C16.2.4.2 Out-of-Plane Demands C16.2.4.3 Wall Anchorage C16.2.5 Detailing for New Elements |
592 | C6.2.3 Material Properties C14.2.2 Seismic Hazard Chapter C17: Tier 1 Checklists Chapter C17: Tier 1 Checklists C17.1 BASIC CHECKLISTS C17.1.1 Very Low Seismicity Checklist C17.1.2 Basic Configuration Checklist C17.2 STRUCTURAL CHECKLISTS FOR BUILDING TYPES W1: WOOD LIGHT FRAMES, SMALL RESIDENTIAL C17.3 STRUCTURAL CHECKLISTS FOR BUILDING TYPE W2: WOOD FRAMES, LARGE RESIDENTIAL, COMMERCIAL, INDUSTRIAL, AND INSTITUTIONAL C17.4 STRUCTURAL CHECKLISTS FOR BUILDING TYPES S1: STEEL MOMENT FRAMES WITH STIFF DIAPHRAGMS, AND S1A: STEEL MOMENT FRAMES WITH FLEXIBLE DIAPHRAGMS C17.5 STRUCTURAL CHECKLISTS FOR BUILDING TYPES S2: STEEL BRACED FRAMES WITH STIFF DIAPHRAGMS, AND S2A: STEEL BRACED FRAMES WITH FLEXIBLE DIAPHRAGMS C17.6 STRUCTURAL CHECKLISTS FOR BUILDING TYPE S3: METAL BUILDING FRAMES C17.7 STRUCTURAL CHECKLISTS FOR BUILDING TYPE S4: DUAL SYSTEMS WITH BACKUP STEEL MOMENT FRAMES AND STIFF DIAPHRAGMS C17.8 STRUCTURAL CHECKLISTS FOR BUILDING TYPES S5: STEEL FRAMES WITH INFILL MASONRY SHEAR WALLS AND STIFF DIAPHRAGMS, AND S5A: STEEL FRAMES WITH INFILL MASONRY SHEAR WALLS AND FLEXIBLE DIAPHRAGMS C17.9 STRUCTURAL CHECKLISTS FOR BUILDING TYPE CFS1: COLD-FORMED STEEL LIGHT-FRAME BEARING WALL CONSTRUCTION, SHEAR WALL LATERAL SYSTEM |
593 | C17.10 STRUCTURAL CHECKLISTS FOR BUILDING TYPE CFS2: COLD-FORMED STEEL LIGHT-FRAME BEARING WALL CONSTRUCTION, STRAP-BRACED LATERAL WALL SYSTEM C17.11 STRUCTURAL CHECKLISTS FOR BUILDING TYPE C1: CONCRETE MOMENT FRAMES C17.12 STRUCTURAL CHECKLISTS FOR BUILDING TYPES C2: CONCRETE SHEAR WALLS WITH STIFF DIAPHRAGMS, AND C2A: CONCRETE SHEAR WALLS WITH FLEXIBLE DIAPHRAGMS C17.13 STRUCTURAL CHECKLISTS FOR BUILDING TYPES C3: CONCRETE FRAMES WITH INFILL MASONRY SHEAR WALLS, AND C3A: CONCRETE FRAMES WITH INFILL MASONRY SHEAR WALLS AND FLEXIBLE DIAPHRAGMS C17.14 STRUCTURAL CHECKLISTS FOR BUILDING TYPES PC1: PRECAST OR TILT-UP CONCRETE SHEAR WALLS WITH FLEXIBLE DIAPHRAGMS, AND PC1A: PRECAST OR TILT-UP CONCRETE SHEAR WALLS WITH STIFF DIAPHRAGMS C17.15 STRUCTURAL CHECKLISTS FOR BUILDING TYPE PC2: PRECAST CONCRETE FRAMES WITH SHEAR WALLS C17.16 STRUCTURAL CHECKLISTS FOR BUILDING TYPE PC2A: PRECAST CONCRETE FRAMES WITHOUT SHEAR WALLS C17.17 STRUCTURAL CHECKLISTS FOR BUILDING TYPES RM1: REINFORCED MASONRY BEARING WALLS WITH FLEXIBLE DIAPHRAGMS, AND RM2: REINFORCED MASONRY BEARING WALLS WITH STIFF DIAPHRAGMS C17.18 STRUCTURAL CHECKLISTS FOR BUILDING TYPES URM: UNREINFORCED MASONRY BEARING WALLS WITH FLEXIBLE DIAPHRAGMS, AND URMA: UNREINFORCED MASONRY BEARING WALLS WITH STIFF DIAPHRAGMS C17.19 NONSTRUCTURAL CHECKLIST |
594 | CHAPTER C18: REFERENCES CHAPTER C18: REFERENCES |
608 | INDEX INDEX |