Shopping Cart

No products in the cart.

ASCE 41 2023

$146.25

ASCE/SEI Standard 41-23 Seismic Evaluation and Retrofit of Existing Buildings

Published By Publication Date Number of Pages
ASCE 2023 615
Guaranteed Safe Checkout
Category:

If you have any questions, feel free to reach out to our online customer service team by clicking on the bottom right corner. We’re here to assist you 24/7.
Email:[email protected]

Prepared by the Seismic Evaluation and Retrofit of Existing Buildings Committee of the Codes and Standards Activities Division of the Structural Engineering Institute of ASCE Seismic Evaluation and Retrofit of Existing Buildings, Standard ASCE/SEI 41-23, describes deficiency-based and systematic procedures that use performance-based principles to evaluate and retrofit existing buildings to withstand the effects of earthquakes. The standard presents a three-tiered process for seismic evaluation according to a range of building performance levels by connecting targeted structural performance and the performance of nonstructural components with seismic hazard levels. The deficiency-based procedures allow evaluation and retrofit efforts to focus on specific potential deficiencies deemed to be of concern for a specified set of building types and heights. The systematic procedure, applicable to any building, sets forth a methodology to evaluate the entire building in a rigorous manner. This standard establishes analysis procedures and acceptance criteria, and specifies requirements for foundations and geologic site hazards; components made of steel, concrete, masonry, wood, and cold-formed steel; architectural, mechanical, and electrical components and systems; and seismic isolation and energy dissipation systems. Checklists are provided for a variety of building types and seismicity levels in support of the Tier 1 screening process. ASCE 41-23 is a primary reference for structural engineers addressing the seismic resilience of existing buildings and for building code officials reviewing such work. It also will be of interest to architects, construction managers, academic researchers, and building owners.

PDF Catalog

PDF Pages PDF Title
2 Seismic Evaluation andRetrofit of ExistingBuildings
Seismic Evaluation andRetrofit of ExistingBuildings
8 CONTENTS
CONTENTS
38 PREFACE
PREFACE
41 ACKNOWLEDGMENTS
ACKNOWLEDGMENTS
45 DEDICATION
DEDICATION
46 UNIT CONVERSIONS
UNIT CONVERSIONS
48 Chapter 1: GENERAL REQUIREMENTS
Chapter 1: GENERAL REQUIREMENTS
1.1 SCOPE
1.2 DEFINITIONS AND NOTATION
1.2.1 Definitions
54 1.2.2 Notation
1.2.2.1 Uppercase Notation
61 1.2.2.2 Lowercase Notation
63 1.2.2.3 Greek Notation
65 1.3 SEISMIC EVALUATION PROCESS
1.3.1 Assignment of Performance Objective
66 1.3.2 Level of Seismicity
1.3.3 As-Built Information
1.3.4 Evaluation Procedures
1.4 SEISMIC RETROFIT PROCESS
1.4.1 Assignment of Performance Objective
1.4.2 Level of Seismicity
1.4.3 As-Built Information
1.4.4 Verification of Retrofit Design
1.4.5 Quality Assurance and Structural Observation
1.4.5.1 Special Inspections and Testing
1.4.5.2 Structural Observation
68 Chapter 2: Performance Objectives and Seismic Hazards
Chapter 2: Performance Objectives and Seismic Hazards
2.1 SCOPE
2.2 PERFORMANCE LEVELS
2.2.1 Structural Performance Levels and Ranges
2.2.2 Nonstructural Performance Levels
2.3 SEISMIC HAZARD
69 2.3.1.1 BSE-2N Seismic Hazard Level
2.3.1.2 BSE-1N Seismic Hazard Level
2.3.1.3 BSE-2E Seismic Hazard Level
2.3.1.4 BSE-1E Seismic Hazard Level
2.3.1.5 Seismic Hazard Levels for Other Probabilities of Exceedance, Risk Targets, or Deterministic Hazards
2.3.2.1 Multi-Period General Horizontal Response Spectrum
14.2.3.3 Fire Resistance
C15.2.3.4 Performance Objectives and System Redundancy
70 2.3.2.2 Two-Period General Horizontal Response Spectrum
2.3.2.3 General Vertical Response Spectrum
2.3.3 Site-Specific Procedure for Hazards Caused by Ground Shaking
2.3.4 Ground Motion Acceleration Histories
2.4 PERFORMANCE OBJECTIVES
2.4.1 Basic Performance Objective for Existing Buildings (BPOE)
2.4.2 Enhanced Performance Objectives
C3.5.1 Limitations on the Use of Tier 1 and Tier 2 Evaluation and Retrofit Procedures
C5.4.2.2 Soft Story Irregularity
C8.4.1 Selection of Evaluation Procedures
71 2.4.3 Limited Performance Objectives
2.4.4 Basic Performance Objective Equivalent to New Building Standards (BPON)
2.4.5 Partial Retrofit
72 2.4.6 System-Specific Performance Procedures
2.5 LEVEL OF SEISMICITY
74 Chapter 3: Evaluation and Retrofit Requirements
Chapter 3: Evaluation and Retrofit Requirements
3.1 SCOPE
3.2 AS-BUILT INFORMATION
3.2.1 Building Type
3.2.2 Building Configuration
3.2.3 Component Properties
3.2.5.1 Building Pounding
75 3.2.5.3 Hazards from Adjacent Buildings
3.3 COMMON BUILDING TYPES
77 3.4 BENCHMARK BUILDINGS
79 3.4.1 Benchmark Procedure Checklist
3.4.2.1 Level of Seismicity
3.4.2.2 Seismic Force Provisions
C15.5.2.2 Velocity-Dependent Devices
C16.2.2.3.3 Masonry Tension
80 3.5 EVALUATION AND RETROFIT PROCEDURES
3.5.1 Limitations on the Use of Tier 1 and Tier 2 Evaluation and Retrofit Procedures.
81 3.5.1.1 Buildings Conforming to One of the Common Building Types
3.5.1.2 Buildings Composed of More than One of the Common Building Types
13.4.2 Analytical Procedure
C3.5.2 Tier 1 Screening Procedure
C13.4.4.4.2 New Components
83 3.5.1.2.1 Combinations of Systems in Different Directions
3.5.1.2.2 Combinations of Systems in the Same Direction
3.5.2 Tier 1 Screening Procedure
8.4.2.1 Prescriptive Expected Soil Bearing Capacities
A.3.1.3 Steel Moment Frames
C9.5.2.3 Force-Controlled Actions
84 3.5.3.1 Evaluation Requirements
3.5.3.2 Retrofit Requirements
3.5.4 Tier 3 Systematic Evaluation and Retrofit Procedures
3.5.4.1 Evaluation Requirements
3.5.4.2 Retrofit Requirements
86 Chapter 4: Tier 1 Screening
Chapter 4: Tier 1 Screening
4.1 SCOPE
87 4.1.1 Performance Level
4.1.3 Level of Seismicity
4.2 SCOPE OF INVESTIGATION REQUIRED
4.2.1 On-Site Investigation and Condition Assessment
3.1 Modeling and Design
88 4.2.3 Default Material Values
4.3 SELECTION AND USE OF CHECKLISTS
89 4.4 TIER 1 ANALYSIS
4.4.2 Seismic Forces
4.4.2.1 Pseudo Seismic Force
C4.4.3.5 Precast Connections
91 4.4.2.4 Period
4.4.3.2 Shear Stress in Concrete Frame Columns
4.4.3.3 Shear Stress in Shear Walls
16.2.3.1.1 General
C15.5.2.2.1 Solid Viscoelastic Devices
92 4.4.3.5 Precast Connections
4.4.3.6 Column Axial Stress Caused by Overturning.
4.4.3.7 Flexible Diaphragm Connection Forces
4.4.3.8 Prestressed Elements
4.4.3.9 Flexural Stress in Columns and Beams of Steel Moment Frames.
11.2.3.9 Minimum Number of Tests
A.3.1.3.3 Flexural Stress Check
94 Chapter 5: Tier 2 Deficiency-Based Evaluation and Retrofit
Chapter 5: Tier 2 Deficiency-Based Evaluation and Retrofit
5.1 SCOPE
5.2 GENERAL REQUIREMENTS
5.2.2 As-Built Information
5.2.3 Condition Assessment
5.2.4 Tier 2 Analysis Methods
12.2.2.1 Material Properties
A.2.1.2 Adjacent Buildings
C14.2.2.1 Ground Motion Acceleration Histories
97 5.2.5 Tier 2 Acceptance Criteria
5.3 TIER 2 DEFICIENCY-BASED EVALUATION REQUIREMENTS
5.4 PROCEDURES FOR BASIC CONFIGURATION OF BUILDING SYSTEMS
5.4.1 General
5.4.1.1 Load Path
5.4.2 Building Configuration
5.4.2.1 Weak Story Irregularity
5.4.2.2 Soft Story Irregularity
5.4.2.3 Vertical Irregularities
5.4.2.4 Geometric Irregularity
5.4.2.5 Mass Irregularity
5.4.3 Geologic Site Hazards and Foundation Components
5.4.3.1 Geologic Site Hazards
C7.2.4.6 Damping
C13.4.4.1 Horizontal Seismic Forces
C16.2.3.5 New Vertical Elements
98 5.4.3.2 Foundation Performance
5.4.3.3 Overturning
5.4.3.4 Ties between Foundation Elements
5.5 PROCEDURES FOR SEISMIC-FORCE-RESISTING SYSTEMS
5.5.1 General
5.5.1.1 Redundancy
5.5.2 Procedures for Moment Frames
5.5.2.1 General Procedures for Moment Frames
5.5.2.1.1 Interfering Walls
5.5.2.1.2 Drift Check
5.5.2.1.3 Axial Stress Check
5.5.2.1.4 Shear Stress Check
5.5.2.1.5 Strong Column-Weak Beam
5.5.2.2 Procedures for Steel Moment Frames
5.5.2.2.1 Moment-Resisting Connections
5.5.2.2.2 Flexural Stress Check
5.5.2.2.3 Panel Zones
5.5.2.2.4 Column Splices
5.5.2.2.5 Compact Members
5.5.2.2.6 Beam Penetrations
5.5.2.2.7 Girder Flange Continuity Plates
5.5.2.2.8 Out-of-Plane Bracing at Beam-Column Joints
5.5.2.2.9 Bottom Flange Bracing
5.5.2.3 Procedures for Concrete Moment Frames
5.5.2.3.1 Flat Slab Frames
14.2.6.1 General
C5.5.2 Procedures for Moment Frames
99 5.5.2.3.2 Prestressed Frame Elements
5.5.2.3.3 Captive Column Conditions
5.5.2.3.4 No Shear Failures
5.5.2.3.5 Continuous Beam Bars
5.5.2.3.6 Column and Beam Bar Splices
5.5.2.3.7 Column-Tie Spacing and Beam Stirrup Spacing
5.5.2.3.8 Joint Reinforcing
5.5.2.3.9 Joint Eccentricity
5.5.2.3.10 Stirrup and Tie Hooks
5.5.2.4 Procedures for Precast Concrete Moment Frames
5.5.2.5 Procedures for Frames Not Part of the Seismic-Force-Resisting System
5.5.2.5.1 Complete Frames
5.5.2.5.2 Deflection Compatibility
5.5.2.5.3 Flat Slabs
5.5.3 Procedures for Shear Walls
5.5.3.1 General Procedures for Shear Walls
5.5.3.1.1 Shear Stress Check
5.5.3.1.2 Wall Thickness and Proportions
5.5.3.1.3 Reinforcement Steel
5.5.3.1.4 Overturning
5.5.3.1.5 Reinforcement at Openings
5.5.3.2 Procedures for Concrete Shear Walls
5.5.3.2.1 Coupling Beams
5.5.3.2.2 Confinement Reinforcement
5.5.3.2.3 Wall Connections
5.5.3.2.4 Column Splices
5.5.3.3 Procedures for Precast Concrete Shear Walls
5.5.3.3.1 Wall Openings
100 5.5.3.3.2 Corner Openings
5.5.3.3.3 Panel-to-Panel Connections
5.5.3.4 Procedures for Unreinforced Masonry Shear Walls
5.5.3.4.1 Masonry Layup
5.5.3.5 Procedures for Infill Walls in Frames
5.5.3.5.1 Wall Connections
5.5.3.5.2 Cavity Walls
5.5.3.5.3 Masonry Infill Walls
5.5.3.6 Procedures for Walls in Wood Frame Buildings
5.5.3.6.1 Stucco, Gypsum Wallboard, Plaster, or Narrow Shear Walls
5.5.3.6.2 Shear Walls Connected through Floors
5.5.3.6.3 Hillside Site Conditions
5.5.3.6.4 Cripple Walls
5.5.3.6.5 Openings
5.5.3.6.6 Hold-Down Anchors
5.5.3.7 Procedures for Cold-Formed Steel Light-Frame Construction, Shear Wall Systems
5.5.3.7.1 Stucco, Gypsum Wallboard, Plaster, or Narrow Shear Walls
5.5.3.7.2 Shear Walls Connected through Floors
5.5.3.7.3 Hillside Site Conditions
5.5.3.7.4 Cripple Walls
5.5.3.7.5 Openings
5.5.3.7.6 Hold-Down Anchors
5.5.4 Procedures for Braced Frames
5.5.4.1 Axial Stress Check
5.5.4.2 Column Splices
5.5.4.3 Slenderness of Diagonals
5.5.4.4 Connection Strength
101 5.5.4.5 Out-of-Plane Restraint for Braced Frames
5.5.4.6 K-Bracing and Chevron-Bracing Configurations
5.5.4.7 Tension-Only Braces
5.5.4.8 Concentrically Braced Frame Joints
5.5.4.9 Procedures for Cold-Formed Steel Light-Frame Construction, Strap-Braced Wall Systems
5.5.4.9.1 Narrow Cold-Formed Steel Strap-Braced Walls
5.5.4.9.2 Cold-Formed Steel Strap-Braced Walls Connected through Floors
5.5.4.9.3 Hillside Site Conditions
5.5.4.9.4 Hold-Down Anchors
5.5.4.9.5 Chord Stud Axial Stress
5.5.4.9.6 Strap Brace Detailing
5.6 PROCEDURES FOR DIAPHRAGMS
5.6.1 General Procedures for Diaphragms
5.6.1.1 Diaphragm and Roof Chord Continuity
5.6.1.2 Diaphragm Cross Ties
5.6.1.3 Openings in Diaphragms at Shear Walls, Braced Frames, and Moment Frames
5.6.1.4 Plan Irregularities in Diaphragms
5.6.1.5 Diaphragm Reinforcement at Openings
5.6.2 Procedures for Wood Diaphragms
5.6.3 Procedures for Steel Deck Diaphragms
102 5.6.4 Procedures for Precast Concrete Diaphragms
5.6.5 Diaphragms Other Than Wood, Steel Deck, Concrete, or Horizontal Bracing
5.7 PROCEDURES FOR CONNECTIONS
5.7.1 Anchorage for Normal Forces
5.7.1.1 Wall Anchorage
5.7.1.2 Stiffness of Wall Anchors
5.7.1.3 Wood Ledgers with Cross-Grain Bending
5.7.1.4 Precast Concrete Panel Connections
5.7.2 Connections for Shear Transfer
5.7.3 Connections for Vertical Elements
5.7.3.1 Steel and Concrete Columns
5.7.3.2 Shear Wall Boundary Columns
5.7.3.3 Wood or Cold-Formed Steel Posts and Wood Sills and Cold-Formed Steel Base Tracks
5.7.3.4 Concrete Walls, Precast Wall Panels, and Other Wall Panels
5.7.3.5 Uplift at Pile Caps
5.7.4 Interconnection of Elements
5.7.4.1 Girder-Column Connection
5.7.4.2 Girders Supported by Walls or Pilasters
5.7.4.3 Corbel Bearing and Connections
5.7.4.4 Beam, Girder, and Truss Supported on Unreinforced Masonry (URM) Walls or URM Pilasters
5.7.5 Roof and Wall Panel Connections
5.8 TIER 2 DEFICIENCY-BASED RETROFIT REQUIREMENTS
5.8.1 Compliance with Deficiency-Based Evaluation
103 5.8.2 Additional Evaluation of the Resulting Building
5.8.2.1 Building Configuration
5.8.2.2 Increased Gravity Demands to Existing Elements
5.8.2.3 Increased Seismic Demands to Existing Elements
5.8.3 Evaluation of New and Modified Structural Elements and Connections
5.8.4 Retrofit-Specific Requirements
5.8.4.1 General
5.8.4.2 Design and Detailing Requirements
5.8.4.3 Scope of Evaluation Requirements for Existing Components
104 Chapter 6: Tier 3 Systematic Evaluation and Retrofit
Chapter 6: Tier 3 Systematic Evaluation and Retrofit
6.1 SCOPE
6.2 DATA COLLECTION REQUIREMENTS
6.2.1 Construction Documentation
6.2.2 Condition Assessment
6.2.3 Material Properties
14.2.1 General
105 6.2.3.1 Knowledge Factor for Linear Procedures
6.2.3.2 Property Bounding for Nonlinear Procedures
C8.2.1.2.1 Structural Foundation Information
C12.2.2.2 Component Properties
106 6.3 TIER 3 EVALUATION REQUIREMENTS
6.4 TIER 3 RETROFIT REQUIREMENTS
108 2.3.1 Seismic Hazard Levels
CHAPTER 7: ANALYSIS PROCEDURES AND ACCEPTANCE CRITERIA
CHAPTER 7: ANALYSIS PROCEDURES AND ACCEPTANCE CRITERIA
7.1 SCOPE
7.2 GENERAL ANALYSIS REQUIREMENTS
7.2.1 Analysis Procedures
7.2.3 Component Gravity Loads and Load Combinations
7.2.3.1 Dead Load
7.2.3.2 Live Load
7.2.3.3 Snow Load
11.2.1 General
C9.4.2.1.1 Default Mechanical Properties and Nominal or Specified Properties of Cold-Formed Steel Light-Frame Construction
109 7.2.4 Mathematical Modeling
7.2.4.2 Torsion
7.2.4.2.1 Total Torsional Moment
7.2.4.2.2 Consideration of Torsional Effects for Linear Procedures
C5.4.1 General
110 7.2.4.3 Primary and Secondary Components
7.2.4.3.1 Linear Procedures
7.2.4.3.2 Nonlinear Procedures
A.3.1 Moment Frames
C7.2.4.3.2 Nonlinear Procedures
C14.2.4.2 Minimum Separations
111 7.2.4.4 Stiffness and Strength Assumptions
7.2.4.5 Foundation Modeling
7.2.5 Configuration
C5.4.2.6 Torsion Irregularity
C11.2.3.9 Minimum Number of Tests
112 3.5.3 Tier 2 Deficiency-Based Evaluation and Retrofit Procedures
7.2.6.2 Vertical Seismic Effects
7.2.7 P-delta Effects
7.2.9 Overturning
7.2.9.1 Overturning Effects for Linear Procedures
113 7.2.9.2 Overturning Effects for Nonlinear Procedures
7.2.10 Sliding at the Soil-Structure Interface
7.2.10.1 Foundation Interconnection
7.2.11.1 Classification of Diaphragms
16.2.3.3.1 Shear Wall Actions
C5.5.2.1.1 Interfering Walls
114 7.2.11.2 Mathematical Modeling
7.2.11.5 Diaphragm Ties
7.2.12 Continuity
7.2.13 Structural Walls and Their Anchorage
7.2.13.1 Out-of-Plane Wall Anchorage to Diaphragms
115 7.2.13.2 Out-of-Plane Strength of Walls
7.2.14 Structures Sharing Common Elements
7.2.14.2 Separation
7.2.15 Building Separation
7.2.15.1 Minimum Separation
C5.5.3.3 Procedures for Precast Concrete Shear Walls
116 7.2.15.2 Separation Exceptions
7.2.16 Verification of Analysis Assumptions
7.3 ANALYSIS PROCEDURE SELECTION
7.3.1 Linear Procedures
7.3.1.1 Method to Determine Limitations on Use of Linear Procedures
7.3.1.1.1 In-Plane Discontinuity Irregularity
12.4.2.1.6 Wood Structural Panel Sheathing or Siding
117 7.3.1.1.2 Out-of-Plane Discontinuity Irregularity
7.3.1.1.3 Weak Story Irregularity
7.3.1.1.4 Torsional Strength Irregularity
7.3.1.2 Limitations on Use of the Linear Static Procedure
7.3.2 Nonlinear Procedures
7.3.2.1 Nonlinear Static Procedure
8.6.2.2 Soil Hysteretic Damping
118 7.3.2.2 Nonlinear Dynamic Procedure
7.3.3 Alternative Rational Analysis
7.4 ANALYSIS PROCEDURES
7.4.1 Linear Static Procedure
7.4.1.1 Basis of the Procedure
7.4.1.2 Period Determination for Linear Static Procedure
7.4.1.2.1 Method 1: Analytical
7.4.1.2.2 Method 2: Empirical
7.4.1.2.3 Method 3: Approximate
7.4.1.3 Determination of Forces and Deformations for Linear Static Procedure
7.4.1.3.1 Pseudo Seismic Force for Linear Static Procedure
9.6.3.4.4 Connections of Steel Sheet Panels
119 7.4.1.3.2 Vertical Distribution of Seismic Forces for Linear Static Procedure
7.4.1.3.3 Horizontal Distribution of Seismic Forces for Linear Static Procedure
12.4.3.2.3 Acceptance Criteria for Diagonal Lumber Sheathing Shear Walls
120 7.4.1.3.4 Diaphragms for Linear Static Procedure
7.4.1.3.5 Distribution of Seismic Forces for Unreinforced Masonry Buildings with Flexible Diaphragms for Linear Static Procedure
7.4.1.4 Damping for Linear Static Procedure
7.4.2 Linear Dynamic Procedure
7.4.2.1 Basis of the Procedure
7.4.2.2 Modeling and Analysis Considerations for Linear Dynamic Procedure
7.4.2.2.1 General
7.4.2.2.2 Ground Motion Characterization for Linear Dynamic Procedure
7.4.2.2.3 Response Spectrum Method for Linear Dynamic Procedure
7.4.2.2.4 Linear Response History Method
11.4.2.6 Strut Model for Infill In-Plane Actions
121 7.4.2.3 Determination of Forces and Deformations for Linear Dynamic Procedure
7.4.2.3.1 Modification of Demands for Linear Dynamic Procedure
7.4.2.3.2 Diaphragms for Linear Dynamic Procedure
7.4.2.4 Damping for Linear Dynamic Procedure
7.4.3 Nonlinear Static Procedure
7.4.3.1 Basis of the Procedure
7.4.3.2.1 General Requirements for Nonlinear Static Procedure
7.4.3.2.2 Component Modeling for Nonlinear Static Procedure
11.4.3.2 Strength: Infill Wall Out-of-Plane Actions
14.6.1 General
122 7.4.3.2.3 Control Node Displacement for Nonlinear Static Procedure
7.4.3.2.4 Lateral Load Distribution for Nonlinear Static Procedure
7.4.3.2.6 Period Determination for Nonlinear Static Procedure
7.4.3.2.7 Analysis of Mathematical Models for Nonlinear Static Procedure
7.4.3.3 Determination of Forces, Displacements, and Deformations for Nonlinear Static Procedure
C13.7.8.2 Component Behavior and Retrofit Methods
123 7.4.3.3.2 Target Displacement for Nonlinear Static Procedure
124 7.4.3.3.3 Modification of Demands for Nonlinear Static Procedure
7.4.3.3.4 Diaphragms for Nonlinear Static Procedure
7.4.3.4 Damping for Nonlinear Static Procedure
7.4.4 Nonlinear Dynamic Procedure
7.4.4.1 Basis of the Procedure
7.4.4.2 Modeling and Analysis Considerations for Nonlinear Dynamic Procedure
7.4.4.2.1 General Requirements for Nonlinear Dynamic Procedure
7.4.4.2.2 Ground Motion Characterization for Nonlinear Dynamic Procedure
7.4.4.2.3 Nonlinear Response History Method for Nonlinear Dynamic Procedure
7.4.4.2.4 Cyclic Response in Nonlinear Dynamic Procedure
A.3.2.8.8 Openings
C12.5.3.1 Single-Layer Straight Lumber Sheathing Diaphragms
125 7.4.4.2.5 Adaptive Models in Nonlinear Dynamic Procedure
7.4.4.3 Determination of Forces and Deformations for Nonlinear Dynamic Procedure
7.4.4.3.1 Modification of Demands for Nonlinear Dynamic Procedure
7.4.4.3.2 Diaphragm Forces for Nonlinear Dynamic Procedure
7.4.4.4 Damping for Nonlinear Dynamic Procedure
126 7.5 ACCEPTANCE CRITERIA
7.5.1 General Requirements
7.5.1.1 Deformation-Controlled and Force-Controlled Actions
127 7.5.1.2 Critical and Noncritical Actions
7.5.1.3 Expected and Lower-Bound Strengths
7.5.1.4 Material Properties
7.5.1.5 Component Capacities
7.5.1.5.1 General
7.5.1.5.2 Linear Procedures
7.5.1.5.3 Nonlinear Procedures
7.5.2 Linear Procedures
7.5.2.1 Forces and Deformations
C12.5.3.6 Wood Structural Panel Sheathing Diaphragm
128 7.5.2.1.1 Deformation-Controlled Actions for Linear Static Procedure or Linear Dynamic Procedure
7.5.2.1.2 Force-Controlled Actions for Linear Static Procedure or Linear Dynamic Procedure
7.5.2.2 Acceptance Criteria for Linear Procedures
7.5.2.2.2 Acceptance Criteria for Force-Controlled Actions for LSP or LDP
7.5.2.2.3 Verification of Analysis Assumptions for Linear Static Procedure or Linear Dynamic Procedure
7.5.3 Nonlinear Procedures
7.5.3.1 Forces and Deformations
7.5.3.2 Acceptance Criteria for Nonlinear Procedures
7.5.3.2.1 Unacceptable Response for Nonlinear Dynamic Procedures
C12.5.3.7 Wood Structural Panel Overlays on Straight or Diagonal Lumber Sheathing Diaphragms
129 7.5.3.2.2 Acceptance Criteria for Deformation-Controlled Actions for NSP or NDP
7.5.3.2.3 Acceptance Criteria for Force-Controlled Actions for NSP or NDP
7.5.3.2.4 Verification of Analysis Assumption for NSP or NDP
130 7.6 EXPERIMENTALLY DERIVED MODELING PARAMETERS AND ACCEPTANCE CRITERIA
7.6.1 Criteria for General Use Parameters
7.6.1.1 Experimental Test Data
7.6.1.2 Analytical Model Data
7.6.2 Criteria for Individual Project Testing
7.6.2.1 Experimental Setup
7.6.2.2 Data Reduction and Reporting
131 7.6.2.3 Peer Review
7.6.3 Modeling Parameters and Acceptance Criteria for Nonadaptive Force-Deformation Curves
134 7.6.4 Modeling Parameters and Acceptance Criteria for Component Actions Based on Experimental Data for Fiber Models
7.6.5 Modeling Parameters and Acceptance Criteria for Component Actions Based on Experimental Data for Adaptive Force-Deformation Models in the Mathematical Model
12.5.2.3.3 New Double-Diagonal Sheathing
136 Chapter 8: Foundations, Subsurface Soil, and Geologic Site Hazards
Chapter 8: Foundations, Subsurface Soil, and Geologic Site Hazards
8.1 SCOPE
8.2 SITE CHARACTERIZATION
8.2.1 Subsurface Soil Foundation Information
8.2.1.2 Foundation Conditions
8.2.1.2.1 Structural Foundation Information
8.2.1.2.2 Foundation Loads
8.2.1.3 Load-Deformation Characteristics of Subsurface Soil under Seismic Loading
8.2.1.4 Soil Shear Modulus and Poisson’s Ratio Parameters
12.2.2.1.2 Use of Default Properties
13.2.1 Classification of Components
15.2.3 Damping Device Requirements
C5.2.4 Tier 2 Analysis Methods
C16.2.2.1.3 Walls with Other Layups
137 8.2.2 Seismic-Geologic Site Hazards
8.2.2.1 Fault Rupture
8.2.2.2 Liquefaction
C12.2.2.5 Default Properties
138 8.2.2.2.2 Postliquefaction Structural Evaluation
139 8.2.2.4 Landsliding
8.2.2.5 Flooding or Inundation
8.3 MITIGATION OF SEISMIC-GEOLOGIC SITE HAZARDS
8.4 SHALLOW FOUNDATIONS
8.4.1 Selection of Evaluation Procedures
140 8.4.2 Expected Soil Bearing Capacities
8.4.3 Simplified Procedure
8.4.4.1 Linear Procedures
8.4.4.1.1 Isolated Spread Footings
16.2.3.2.2 Demand-Capacity Ratios
144 8.4.4.1.2 Combined Footings, Mat Foundations, and Isolated Spread Footings
8.4.4.2 Nonlinear Procedures
8.4.5 Flexible-Base Procedure
C8.4.5 Flexible-Base Procedure
145 8.4.5.1 Soil Stiffness
8.4.5.2 Linear Procedures
8.4.5.2.1 Isolated Spread Footings
C7.2.15 Building Separation
146 8.4.5.3.1 Modeling Parameters for Nonlinear Static Procedure
13.6.1.1.2 Component Behavior and Retrofit Methods
147 8.4.5.3.2 Modeling Parameters for Nonlinear Dynamic Procedure
8.4.5.3.3 Acceptance Criteria
9.6.2.2 Enhanced Cold-Formed Steel Light-Frame Shear Walls
148 8.5 DEEP FOUNDATIONS
8.5.1 Pile Foundations
9.6.3.1 Wood Structural Panels
149 8.5.3 Deep Foundation Acceptance Criteria
150 8.5.3.1 Linear Procedures
8.5.3.1.1 Fixed-Base Assumption
8.5.3.1.2 Flexible-Base Assumption
8.5.3.2 Nonlinear Procedures
8.5.3.2.2 Flexible-Base Assumption
8.6 SOIL-STRUCTURE INTERACTION EFFECTS
8.6.1 Kinematic Interaction
12.4.2.1.1 Single-Layer Horizontal Lumber Sheathing or Siding
13.6.1.3.2 Component Behavior and Retrofit Methods
C5.5.4.1 Axial Stress Check
C13.6.2.4 Evaluation Requirements
151 8.6.1.2 Embedment
8.6.2 Foundation Damping Soil-Structure Interaction Effects
8.6.2.1 Radiation Damping for Rectangular Foundations
15.10.2 Velocity-Dependent Devices
C13.6.6.1 Definition and Scope
152 8.7 SEISMIC EARTH PRESSURE
153 8.8 FOUNDATION RETROFIT
154 Chapter 9: Steel and Iron
Chapter 9: Steel and Iron
9.1 SCOPE
9.2 REFERENCE STANDARD FOR STRUCTURAL STEEL, COMPOSITE STEEL-CONCRETE, AND CAST AND WROUGHT IRON
9.3 MODIFICATION TO THE REFERENCE STANDARD FOR STRUCTURAL STEEL, COMPOSITE STEEL-CONCRETE, AND CAST AND WROUGHT IRON
9.4 MATERIAL PROPERTIES AND CONDITION ASSESSMENT FOR COLD-FORMED STEEL
9.4.1 General
9.4.2 Properties of In-Place Materials and Components
9.4.2.1 Material Properties
16.2.2.1.1 Headers in Multiwythe Solid Brick
C9.4.1 General
155 9.4.2.2 Component Properties
9.4.2.3 Test Methods to Quantify Mechanical Properties
9.4.2.4.1 Usual Testing for Cold-Formed Steel
9.4.2.5 Default Mechanical Properties
A.2.2.3 Soft Story
C12.2.2.4 Minimum Number of Tests
156 7.2.6.1 Concurrent Seismic Effects
8.4.2.2 Site-Specific Capacities
9.4.3.1 General
9.4.3.2.1 Visual Condition Assessment of Cold-Formed Steel Components and Connections
9.4.3.2.2 Comprehensive Condition Assessment of Cold-Formed Steel Components and Connections
9.4.3.3 Basis for the Mathematical Building Model
9.4.4 Knowledge Factor
9.5 GENERAL ASSUMPTIONS AND REQUIREMENTS FOR COLD-FORMED STEEL
9.5.1 Stiffness
9.5.1.1 Use of Linear Procedures for Cold-Formed Steel Light-Frame Construction
9.5.1.2 Use of Nonlinear Procedures for Cold-Formed Steel Light-Frame Construction
A.3.1.3.2 Column Axial Stress Check
A.3.1.3.4 Moment-Resisting Connections
C13.6.1 Exterior Wall Components
157 9.5.2 Strength and Acceptance Criteria
9.5.2.1 General
9.5.2.2 Deformation-Controlled Actions
9.5.2.3 Force-Controlled Actions
9.5.2.4 Anchorage to Concrete
9.5.3 Connection Requirements in Cold-Formed Steel Light-Frame Construction
9.5.4 Components Supporting Discontinuous Shear Walls in Cold-Formed Steel Light-Frame Construction
11.2.3.10 Default Properties
14.3.3.3 Aging and Environmental Effects on Design Properties
C13.6.1.1.4 Evaluation Requirements
158 8.5.2 Drilled Shafts
9.6 COLD-FORMED STEEL LIGHT-FRAME CONSTRUCTION, SHEAR WALL SYSTEMS
9.6.1 General
9.6.2 Types of Cold-Formed Steel Light-Frame Construction, Shear Wall Systems
9.6.2.1 Existing Cold-Formed Steel Light-Frame Shear Walls
9.6.2.3 New Cold-Formed Steel Light-Frame Shear Walls
9.6.3.1.1 Stiffness of Wood Structural Panels
9.6.3.1.2 Strength of Wood Structural Panels
9.6.3.1.3 Acceptance Criteria for Wood Structural Panels
9.6.3.2 Steel Sheet Sheathing
9.6.3.2.1 Stiffness of Steel Sheet Sheathing
9.6.3.2.2 Strength of Steel Sheet Sheathing
7.6.1 Modeling
12.3.3.1 Wood Construction
A.3.1.4.14 Joint Eccentricity.
C5.5.3.3.1 Wall Openings
C7.4.1.2.3 Method 3: Approximate
C11.3.4.6.1 Linear Procedures for In-Plane Actions of Reinforced Masonry Walls
159 9.6.3.2.3 Acceptance Criteria for Steel Sheet Sheathing
9.6.3.3 Gypsum Board Panel
9.6.3.3.1 Stiffness of Gypsum Board Panel Shear Walls
9.6.3.3.2 Strength of Gypsum Board Panel Shear Walls
12.1.3 Grade Beams
14.5.2.1 General
C7.4.1.3 Determination of Forces and Deformations for Linear Static Procedure
160 9.6.3.3.3 Acceptance Criteria for Gypsum Board Panel Shear Walls
9.6.3.3.4 Connections of Gypsum Board Panel Shear Walls
161 9.6.3.4 Fiberboard Panels
9.6.3.4.2 Strength of Fiberboard Panels
9.6.3.4.3 Acceptance Criteria for Fiberboard Panels
9.6.3.5 Plaster on Metal Lath Shear Walls
9.6.3.5.2 Strength of Plaster on Metal Lath Shear Walls
9.6.3.5.3 Acceptance Criteria for Plaster on Metal Lath Shear Walls
9.6.3.5.4 Connections of Plaster on Metal Lath Shear Wall
9.7 COLD-FORMED STEEL MOMENT-FRAME SYSTEMS
9.7.1 General
9.7.2 Types of Cold-Formed Steel Moment-Frame Systems
9.7.2.1 Existing Cold-Formed Steel Moment-Frame Systems
9.7.2.2 Enhanced Cold-Formed Steel Moment-Frame Systems
9.7.2.3 New Cold-Formed Steel Moment-Frame Systems
9.7.3 Stiffness, Strength, Acceptance Criteria, and Connection Design for Cold-Formed Steel Moment-Frame Systems
9.7.3.1 Generic Cold-Formed Steel Moment Connection
14.5.3.5 Scaling of Results
162 9.7.3.1.2 Stiffness of Generic Cold-Formed Steel Moment Connection
163 9.7.3.1.3 Acceptance Criteria for Cold-Formed Steel Generic Moment Connection
9.7.3.1.4 Connections for Cold-Formed Steel Generic Moment Connection
9.7.3.2 Cold-Formed Steel Special Bolted Moment Frame
9.7.3.2.1 Stiffness of Cold-Formed Steel Special Bolted Moment Frame
9.7.3.2.2 Strength of Cold-Formed Steel Special Bolted Moment Frame
9.7.3.2.3 Acceptance Criteria for Cold-Formed Steel Special Bolted Moment Frame
9.7.3.2.4 Connections for Cold-Formed Steel Special Bolted Moment Frame
9.8 COLD-FORMED STEEL LIGHT-FRAME CONSTRUCTION, STRAP-BRACED WALL SYSTEMS
9.8.1 General
9.8.2 Types of Cold-Formed Steel Light-Frame Construction with Strap-Braced Walls
9.8.2.1 Existing Cold-Formed Steel Light-Frame Construction with Strap-Braced Walls
9.8.2.2 Cold-Formed Steel Light-Frame Construction with Enhanced Strap-Braced Walls
9.8.2.3 Cold-Formed Steel Light-Frame Construction with New Strap-Braced Walls
C7.5.2.1 Forces and Deformations
164 9.8.3 Stiffness, Strength, Acceptance Criteria, and Connection Design for Cold-Formed Steel Light-Frame Construction with Strap-Braced Walls
9.8.3.2 Strength
9.8.3.3 Acceptance Criteria
9.8.3.4 Connections
9.9 COLD-FORMED STEEL DIAPHRAGMS
A.3.2.7.1 Shear Stress Check
166 CHAPTER 10: CONCRETE
CHAPTER 10: CONCRETE
10.1 SCOPE
10.2 Reference Standard
10.3 Modifications to the Reference Standard
ACI 369.1 Chapter 3

3.1.1 General

167 7.2.4.1 Basic Assumptions
3.1.2 Stiffness
3.1.2.1 Linear Procedures
3.1.2.2 Nonlinear Procedures

169

7.1.2 Reinforced Concrete Columns Supporting Discontinuous Structural Walls
7.1.3 Reinforced Concrete Coupling Beams
7.2 Strength of Reinforced Concrete Structural Walls, Wall Segments, andCoupling Beams
7.2.1 Flexural Strength
7.2.2 Shear Strength
15.5.2 Modeling of Energy Dissipation Devices
A.3.1.1.1 Redundancy
C2.4.5 Partial Retrofit
C3.5.3 Tier 2 Deficiency-Based Evaluation and Retrofit Procedures

170 7.2.3 Shear-Friction Strength
7.3 Linear Static and Dynamic Procedures for Reinforced Concrete Structural Walls and Wall Segments
7.3.2 Acceptance Criteria
173 7.4 Nonlinear Static and Dynamic Procedures for Reinforced Concrete Structural Walls and Wall Segments
7.4.1 Modeling
174 7.4.1.1.1. Structural Walls and Wall Segments Controlled by Flexure
7.4.1.1.2. Structural Walls and Wall Segments Controlled by Shear
177 7.4.2 Acceptance Criteria
7.5 Linear static and dynamic procedures for reinforced concrete coupling beams
7.5.1 Modeling
178 7.5.2 Acceptance Criteria
7.6 Nonlinear Static and Dynamic Procedures for Reinforced Concrete Coupling Beams
7.6.2 Acceptance Criteria
11.3.2.2.1 Expected In-Plane Rocking Strength of URM Walls and Wall Piers
A.3.1.4.6 No Shear Failures.
179 7.7 Retrofit Measures for Reinforced Concrete Structural Walls, Wall Segments, and Coupling Beams
10.3.3 Concrete Foundations. Replace Sections 12.1 through 12.4 of ACI 369.1 with the italicized text as follows.

12.1 Types of Concrete Foundations

12.1.1 Shallow Concrete Foundations
13.6.1.3 Glass Block Units and Other Nonstructural Masonry

180 12.1.2 Deep Concrete Foundations
12.1.2.1 Driven Concrete Pile Foundations
12.1.2.2 Cast-in-Place Concrete Pile Foundations
12.2 Analysis of Existing Concrete Foundations
12.3 Evaluation of Existing Condition
16.2.4.3.1 Transfer of Anchorage Forces into Diaphragm
A.3.1.4.15 Stirrup and Tie Hooks.
181 12.4 Retrofit Measures for Concrete Foundations
13.1. Notation
183
184 CHAPTER 11: MASONRY
CHAPTER 11: MASONRY
11.1 SCOPE
11.2 CONDITION ASSESSMENT AND MATERIAL PROPERTIES
11.2.2 Condition Assessment
11.2.2.1 Visual Condition Assessment
185 3.4.2 Parameters for Benchmark Procedure
11.2.2.3 Supplemental Tests
11.2.2.4 Condition Enhancement
11.2.3 Properties of In-Place Materials and Components
11.2.3.2 Nominal or Specified Properties
11.2.3.3 Masonry Compressive Strength
11.2.3.4 Masonry Elastic Modulus in Compression
C9.4.3 Condition Assessment
186 11.2.3.5 Masonry Flexural Tensile Strength
11.2.3.6 Unreinforced Masonry Shear Strength
C5.4.2.1 Weak Story Irregularity
187 11.2.3.6.3 Determination of Lower-Bound URM Shear Strength by Testing for Bed-Joint Shear Strength
11.2.3.6.4 Alternative Procedures for Determining Lower-Bound URM Shear Strength by Testing for Tensile Splitting Strength
11.2.3.7 Masonry Shear Modulus
11.2.3.8 Steel Reinforcement Yield Strength Properties
11.2.3.9.1 Usual Testing of Reinforced Masonry
11.2.3.9.2 Usual Testing of Unreinforced Masonry
14.2.5.1 General
14.2.5.3 Components Crossing the Isolation Interface
188 11.2.4 Knowledge Factor
11.3 MASONRY WALLS
11.3.1 Types of Masonry Walls
11.3.1.1 Existing Masonry Walls
189 11.3.1.2 New Masonry Walls
11.3.1.3 Retrofitted Masonry Walls
11.3.2 Unreinforced Masonry Walls and Wall Piers Subject to In-Plane Actions
11.3.2.1 Stiffness of URM Walls and Wall Piers Subject to In-Plane Actions
11.3.2.2 Strength of URM Walls Subject to In-Plane Actions
11.3.2.2.2 Expected In-Plane Bed-Joint Sliding Strength of URM Walls and Wall Piers
A.3.1.4.2 Column Axial Stress Check.
190 11.3.2.2.3 Lower-Bound In-Plane Toe-Crushing Strength of URM Walls and Wall Piers.
11.3.2.2.5 Lower-Bound Vertical Compressive Strength of URM Walls and Wall Piers.
192 11.3.2.3 Acceptance Criteria for URM In-Plane Actions
11.3.2.3.2 Nonlinear Procedures for In-Plane URM Wall Actions.
193 11.3.3.2 Strength of URM Walls Subject to Out-of-Plane Actions
11.3.3.3 Acceptance Criteria for URM Walls Subject to Out-of-Plane Actions
195 11.3.4 Reinforced Masonry Walls and Wall Piers In-Plane Actions
11.3.4.1 Reinforced Masonry Walls and Wall Piers with Flanged Sections
196 11.3.4.3 Flexure-Governed In-Plane Actions of Reinforced Masonry Walls and Wall Piers
C11.4.2.4 Strength: Infilled Steel Frames In-Plane Actions
198 11.3.4.3.2 Reinforced Masonry Walls and Wall Piers with One Flange
11.3.4.3.3 Reinforced Masonry Walls and Wall Piers with Two Flanges
11.3.4.4 Shear-Governed In-Plane Actions of Reinforced Masonry Walls and Wall Piers
11.3.4.5 Vertical Compressive Strength of Walls and Wall Piers
11.3.4.6 Acceptance Criteria for In-Plane Actions of Reinforced Masonry Walls and Wall Piers
11.3.4.6.1 Linear Procedures for In-Plane Actions of Reinforced Masonry Walls
C13.6.10 Stairs and Ramps
199 11.3.4.6.2 Nonlinear Procedures for In-Plane Actions of Reinforced Masonry Walls
11.3.5 Reinforced Masonry Wall Out-of-Plane Actions
11.3.5.1 Stiffness: Reinforced Masonry Wall Out-of-Plane Actions
11.3.5.2 Strength: Reinforced Masonry Wall Out-of-Plane Actions
11.3.5.3 Acceptance Criteria for Reinforced Masonry Wall Out-of-Plane Actions
11.4 MASONRY INFILLS
C12.4.3.6.1 Stiffness of Wood Structural Panel Sheathing or Siding Shear Walls
200 11.4.1 Types of Masonry Infills
11.4.1.1 Existing Masonry Infills
11.4.1.2 New Masonry Infills
11.4.1.3 Retrofitted Masonry Infills
11.4.2 Masonry Infill In-Plane Actions
11.4.2.1 Stiffness: Masonry Infill In-Plane Actions
11.4.2.2 Stiffness: Masonry Infill with Openings In-Plane Actions
201 11.4.2.3 Strength: Infilled Reinforced Concrete Frames In-Plane Actions
202 11.4.2.4 Strength: Infilled Steel Frames In-Plane Actions
11.4.2.5 Drift: Infill Wall In-Plane Actions
14.5.5 Nonlinear Dynamic Procedure
203 11.4.2.7 Acceptance Criteria for Infill Wall In-Plane Actions
11.4.2.7.1 Required Strength of Column Members Adjacent to Infill Panels
11.4.2.7.2 Acceptance Criteria for Linear Procedures for Infill Wall In-Plane Actions
13.6.4.4 Evaluation Requirements
204 11.4.3 Masonry Infill Wall Out-of-Plane Actions
11.4.3.1 Stiffness: Infill Wall Out-of-Plane Actions
13.6.5.1 Definition and Scope
205 11.4.3.3 Strength: Infill Wall In-Plane and Out-of-Plane Interaction
11.4.3.4 Acceptance Criteria: Infill Wall Out-of-Plane Actions
11.5 ANCHORAGE TO MASONRY WALLS
11.5.1 Types of Anchors
11.5.2 Analysis of Anchors
11.5.3 Quality Assurance for Anchors in Masonry Walls
206 11.6 MASONRY FOUNDATION ELEMENTS
11.6.1 Types of Masonry Foundations
11.6.3 Foundation Retrofit Measures
11.7 MASONRY DIAPHRAGMS
11.7.1 General
11.7.2 Seismic Evaluation of Masonry Diaphragms
11.7.3 Retrofit Measures for Masonry Diaphragms
208 Chapter 12: Wood
Chapter 12: Wood
12.1 SCOPE
12.2 MATERIAL PROPERTIES AND CONDITION ASSESSMENT
12.2.1 General
12.2.2.1.1 Wood Construction
12.2.2.1.3 Nominal or Specified Properties
12.2.2.2 Component Properties
12.2.2.2.1 Elements
C9.4.2.4 Minimum Number of Tests
209 12.2.2.3 Test Methods to Quantify Material Properties
12.2.2.4 Minimum Number of Tests
12.2.2.4.1 Usual Testing
12.2.2.4.2 Comprehensive Testing
12.2.2.5 Default Properties
12.2.2.5.1 Wood Construction Default Properties
211 7.2.4.6 Damping
12.2.3.2 Scope and Procedures for Condition Assessment
12.2.3.2.2 Comprehensive Condition Assessment
12.2.3.3 Basis for the Mathematical Building Model
12.2.4 Knowledge Factor
12.2.4.1 Wood Components and Assemblies
12.3 GENERAL ASSUMPTIONS AND REQUIREMENTS
12.3.1 Stiffness
12.3.1.1 Use of Linear Procedures
12.3.1.2 Use of Nonlinear Procedures for Wood Construction
12.3.2 Strength and Acceptance Criteria
12.3.2.1 General
12.3.2.2 Deformation-Controlled Actions
12.3.2.2.1 Wood Construction
14.3.3.1 Specification Tolerance on Design Properties
C5.5.2.1 General Procedures for Moment Frames
C12.3.2.3 Force-Controlled Actions
212 12.3.3 Connection Requirements
12.3.4 Components Supporting Discontinuous Shear Walls
12.3.5.1 Wood Construction
12.4 WOOD SHEAR WALLS
12.4.1 General
12.4.2 Types of Wood Shear Walls
12.4.2.1 Existing Wood Shear Walls
12.4.2.1.2 Diagonal Lumber Sheathing
12.4.2.1.4 Wood Siding over Horizontal Lumber Sheathing
12.4.2.1.5 Wood Siding over Diagonal Lumber Sheathing
12.4.2.1.7 Stucco on Studs
12.4.2.1.8 Gypsum Plaster on Wood Lath
15.8.1.5.3 Velocity-Dependent Damping Devices
C8.5.1.1 Stiffness Parameters
213 12.4.2.1.9 Gypsum Plaster on Gypsum Lath
12.4.2.1.10 Gypsum Wallboard
12.4.2.1.11 Gypsum Sheathing
12.4.2.1.12 Plaster on Metal Lath
12.4.2.1.13 Horizontal Lumber Sheathing with Cut-In Braces or Diagonal Blocking
12.4.2.1.14 Fiberboard or Particleboard Sheathing
12.4.2.2 Enhanced Wood Shear Walls
12.4.2.3 New Wood Shear Walls
12.4.3 Stiffness, Strength, Acceptance Criteria, and Connection Design for Wood Shear Walls
12.4.3.1 Single-Layer Horizontal Lumber Sheathing or Siding Shear Walls
12.4.3.1.1 Stiffness of Single-Layer Horizontal Lumber Sheathing or Siding Shear Walls
12.4.3.1.2 Strength of Single-Layer Horizontal Lumber Sheathing or Siding Shear Walls
12.4.3.1.3 Acceptance Criteria for Single-Layer Horizontal Lumber Sheathing or Siding Shear Walls
12.4.3.1.4 Connections of Single-Layer Horizontal Lumber Sheathing or Siding Shear Walls
12.4.3.2 Diagonal Lumber Sheathing Shear Walls
12.4.3.2.1 Stiffness of Diagonal Lumber Sheathing Shear Walls
12.4.3.2.2 Strength of Diagonal Lumber Sheathing Shear Walls
12.4.3.2.4 Connections for Diagonal Lumber Sheathing Shear Walls
12.4.3.3 Vertical Wood Siding Shear Walls
12.4.3.3.1 Stiffness of Vertical Wood Siding Shear Walls
12.4.3.3.3 Acceptance Criteria for Vertical Wood Siding Shear Walls
A.3.2.2.7 Wall Thickness
C14.6.6 Test Specimen Adequacy
217 7.4.3.2 Modeling and Analysis Considerations for Nonlinear Static Procedure
12.4.3.3.4 Connections of Vertical Wood Siding Shear Walls
12.4.3.4 Wood Siding over Horizontal Lumber Sheathing Shear Walls
12.4.3.4.1 Stiffness of Wood Siding over Horizontal Lumber Sheathing Shear Walls
12.4.3.4.2 Strength of Wood Siding over Horizontal Lumber Sheathing Shear Walls
12.4.3.4.3 Acceptance Criteria for Wood Siding over Horizontal Lumber Sheathing Shear Walls
12.4.3.4.4 Connections of Wood Siding over Horizontal Lumber Sheathing Shear Walls
12.4.3.5 Wood Siding over Diagonal Lumber Sheathing ShearWalls
12.4.3.5.1 Stiffness of Wood Siding over Diagonal Lumber Sheathing Shear Walls
12.4.3.5.2 Strength of Wood Siding over Diagonal Lumber Sheathing Shear Walls
12.4.3.5.3 Acceptance Criteria for Wood Siding over Diagonal Lumber Sheathing Shear Walls
12.4.3.5.4 Connections of Wood Siding over Diagonal Lumber Sheathing Shear Walls
12.4.3.6 Wood Structural Panel Sheathing or Siding Shear Walls
12.4.3.6.1 Stiffness of Wood Structural Panel Sheathing or Siding Shear Walls
12.4.3.6.2 Strength of Wood Structural Panel Sheathing or Siding Shear Walls
12.4.3.6.3 Acceptance Criteria for Wood Structural Panel Sheathing or Siding Shear Walls
12.4.3.6.4 Connections of Wood Structural Panel Sheathing or Siding Shear Walls
12.4.3.7 Stucco on Studs, Sheathing, or Fiberboard Shear Walls
12.4.3.7.1 Stiffness of Stucco on Studs, Sheathing, or Fiberboard Shear Walls
218 12.4.3.7.2 Strength of Stucco on Studs, Sheathing, or Fiberboard Shear Walls
12.4.3.7.3 Acceptance Criteria for Stucco on Studs, Sheathing, or Fiberboard Shear Walls
12.4.3.7.4 Connections of Stucco on Studs, Sheathing, or Fiberboard Shear Walls
12.4.3.8 Gypsum Plaster on Wood Lath Shear Walls
12.4.3.8.2 Strength of Gypsum Plaster on Wood Lath Shear Walls
12.4.3.8.3 Acceptance Criteria for Gypsum Plaster on Wood Lath Shear Walls
12.4.3.8.4 Connections of Gypsum Plaster on Wood Lath Shear Walls
12.4.3.9 Gypsum Plaster on Gypsum Lath Shear Walls
12.4.3.9.1 Stiffness of Gypsum Plaster on Gypsum Lath Shear Walls
12.4.3.9.2 Strength of Gypsum Plaster on Gypsum Lath Shear Walls
12.4.3.9.3 Acceptance Criteria for Gypsum Plaster on Gypsum Lath Shear Walls
12.4.3.9.4 Connections of Gypsum Plaster on Gypsum Lath Shear Walls
12.4.3.10 Gypsum Wallboard Shear Walls
12.4.3.10.1 Stiffness of Gypsum Wallboard Shear Walls
12.4.3.10.2 Strength of Gypsum Wallboard Shear Walls
12.4.3.10.3 Acceptance Criteria for Gypsum Wallboard Shear Walls
12.4.3.10.4 Connections of Gypsum Wallboard Shear Walls
12.4.3.11.1 Stiffness of Gypsum Sheathing Shear Walls
12.4.3.11.2 Strength of Gypsum Sheathing Shear Walls
12.4.3.11.3 Acceptance Criteria for Gypsum Sheathing Shear Walls
12.4.3.11.4 Connections of Gypsum Sheathing Shear Walls
12.4.3.12 Plaster on Metal Lath Shear Walls
12.4.3.12.1 Stiffness of Plaster on Metal Lath Shear Walls
12.4.3.12.2 Strength of Plaster on Metal Lath Shear Walls
12.4.3.12.3 Acceptance Criteria for Plaster on Metal Lath Shear Walls
C12.5.2.3.1 New Wood Structural Panel Sheathing
219 12.4.3.12.4 Connections of Plaster on Metal Lath Shear Walls
12.4.3.13 Horizontal Lumber Sheathing with Cut-In Braces or Diagonal Blocking Shear Walls
12.4.3.13.1 Stiffness of Horizontal Lumber Sheathing with Cut-In Braces or Diagonal Blocking Shear Walls
12.4.3.13.2 Strength of Horizontal Lumber Sheathing Shear Walls with Cut-In Braces or Diagonal Blocking
12.4.3.13.3 Acceptance Criteria for Horizontal Lumber Sheathing with Cut-In Braces or Diagonal Blocking Shear Walls
12.4.3.13.4 Connections of Horizontal Lumber Sheathing with Cut-In Braces or Diagonal Blocking Shear Walls
12.4.3.14 Fiberboard or Particleboard Sheathing Shear Walls
12.4.3.14.1 Stiffness of Fiberboard or Particleboard Sheathing Shear Walls
12.4.3.14.2 Strength of Fiberboard or Particleboard Sheathing Shear Walls
12.4.3.14.3 Acceptance Criteria for Fiberboard or Particleboard Sheathing Shear Walls
12.4.3.14.4 Connections of Fiberboard or Particleboard Sheathing Shear Walls
12.5 WOOD DIAPHRAGMS
12.5.1 General
12.5.2 Types of Wood Diaphragms
12.5.2.1 Existing Wood Diaphragms
12.5.2.1.1 Single-Layer Straight Lumber Sheathing
12.5.2.1.2 Double-Layer Straight Lumber Sheathing
12.5.2.1.3 Single-Layer Diagonal Lumber Sheathing
12.5.2.1.4 Diagonal Lumber Sheathing with Straight Lumber Sheathing or Flooring Above
12.5.2.1.5 Double-Layer Diagonal Lumber Sheathing
12.5.2.1.6 Wood Structural Panel Sheathing
12.5.2.1.7 Braced Horizontal Diaphragms
220 12.5.2.2 Enhanced Wood Diaphragms
12.5.2.3 New Wood Diaphragms
12.5.2.3.1 New Wood Structural Panel Sheathing
12.5.2.3.2 New Single-Diagonal Sheathing
12.5.2.3.4 New Braced Horizontal Diaphragms
12.5.3 Stiffness, Strength, Acceptance Criteria, and Connection Design for Wood Diaphragms
12.5.3.1 Single-Layer Straight Lumber Sheathing Diaphragms
12.5.3.1.1 Stiffness of Single-Layer Straight Lumber Sheathing Diaphragms
12.5.3.1.2 Strength of Single-Layer Straight Lumber Sheathing Diaphragms
12.5.3.1.3 Acceptance Criteria for Single-Layer Straight Lumber Sheathing Diaphragms
12.5.3.1.4 Connections of Single-Layer Straight Lumber Sheathing Diaphragms
12.5.3.2 Double-Layer Straight Lumber Sheathing Diaphragms
12.5.3.2.1 Stiffness of Double-Layer Straight Sheathing Diaphragms
12.5.3.2.2 Strength of Double-Layer Straight Lumber Sheathing Diaphragms
12.5.3.2.3 Acceptance Criteria for Double-Layer Straight Lumber Sheathing Diaphragms
12.5.3.2.4 Connections of Double-Layer Straight Lumber Sheathing Diaphragms
12.5.3.3 Single-Layer Diagonal Lumber Sheathing Diaphragms
12.5.3.3.1 Stiffness of Single-Diagonal Sheathing Diaphragms
12.5.3.3.2 Strength of Single-Layer Diagonal Lumber Sheathing Diaphragms
12.5.3.3.3 Acceptance Criteria for Single-Layer Diagonal Lumber Sheathing Diaphragms
221 12.5.3.3.4 Connections of Single-Layer Diagonal Lumber Sheathing Diaphragms
12.5.3.4 Diagonal Lumber Sheathing with Straight Lumber Sheathing or Flooring above Diaphragms
12.5.3.4.1 Stiffness of Diagonal Lumber Sheathing with Straight Lumber Sheathing or Flooring above Diaphragms
12.5.3.4.2 Strength of Diagonal Lumber Sheathing with Straight Lumber Sheathing or Flooring above Diaphragms
12.5.3.4.3 Acceptance Criteria for Diagonal Lumber Sheathing with Straight Lumber Sheathing or Flooring above Diaphragms
12.5.3.4.4 Connections of Diagonal Lumber Sheathing with Straight Lumber Sheathing or Flooring above Diaphragms
12.5.3.5 Double-Layer Diagonal Lumber Sheathing Diaphragms
12.5.3.5.1 Stiffness of Double-Layer Diagonal Lumber Sheathing Diaphragms
12.5.3.5.2 Strength of Double-Layer Diagonal Lumber Sheathing Diaphragms
12.5.3.5.3 Acceptance Criteria for Double-Layer Diagonal Lumber Sheathing Diaphragms
12.5.3.5.4 Connections of Double-Layer Diagonal Lumber Sheathing Diaphragms
12.5.3.6 Wood Structural Panel Sheathing Diaphragm
12.5.3.6.1 Stiffness of Wood Structural Panel Sheathing Diaphragms
12.5.3.6.2 Strength of Wood Structural Panel Sheathing Diaphragms
222 12.5.3.6.3 Acceptance Criteria for Wood Structural Panel Sheathing Diaphragms
12.5.3.6.4 Connections of Wood Structural Panel Sheathing Diaphragms
12.5.3.7 Wood Structural Panel Overlays on Straight or Diagonal Lumber Sheathing Diaphragms
12.5.3.7.1 Stiffness of Wood Structural Panel Overlays on Straight or Diagonal Lumber Sheathing Diaphragms
12.5.3.7.2 Strength of Wood Structural Panel Overlays on Straight or Diagonal Lumber Sheathing Diaphragms
12.5.3.7.3 Acceptance Criteria for Wood Structural Panel Overlays on Straight or Diagonal Lumber Sheathing Diaphragms
12.5.3.7.4 Connections of Wood Structural Panel Overlays on Straight or Diagonal Lumber Sheathing Diaphragms
12.5.3.8 Wood Structural Panel Overlays on Existing Wood Structural Panel Sheathing Diaphragms
12.5.3.8.1 Stiffness of Wood Structural Panel Overlays on Existing Wood Structural Panel Sheathing Diaphragms
12.5.3.8.2 Strength of Wood Structural Panel Overlays on Existing Wood Structural Panel Sheathing Diaphragms
12.5.3.8.3 Acceptance Criteria for Wood Structural Panel Overlays on Existing Wood Structural Panel Sheathing Diaphragms
12.5.3.8.4 Connections of Wood Structural Panel Overlays on Existing Wood Structural Panel Sheathing Diaphragms
12.5.3.9 Braced Horizontal Diaphragms
12.6 WOOD FOUNDATIONS
12.6.1 Types of Wood Foundations
12.6.2 Analysis, Strength, and Acceptance Criteria for Wood Foundations
12.6.3 Retrofit Measures for Wood Foundations
12.7 OTHER WOOD ELEMENTS AND COMPONENTS
12.7.1 General
223 12.7.1.1 Stiffness of Other Wood Elements and Components
12.7.1.2 Strength of Other Wood Elements and Components
12.7.1.3 Acceptance Criteria for Other Wood Elements and Components
224 Chapter 13: Architectural, Mechanical, and Electrical Components
Chapter 13: Architectural, Mechanical, and Electrical Components
13.1 SCOPE
13.2 EVALUATION AND RETROFIT PROCEDURE FOR NONSTRUCTURAL COMPONENTS
226 13.3 COMPONENT CONDITION ASSESSMENT AND ANCHORAGE TESTING
13.3.1 Condition Assessment
227 13.3.2.1 Components Evaluated to the Operational Performance Level
13.3.2.1.1 Concrete or Masonry Anchors Used for Distributed Systems
13.3.2.1.2 Concrete or Masonry Anchors Used in the Attachment of Equipment and Other Components
13.3.2.2 Components Evaluated to the Position Retention or Life Safety Performance Level
13.3.2.2.1 Concrete or Masonry Anchors Used in the Seismic Bracing of Distributed Systems
C7.2.3.3 Snow Load
228 13.3.2.2.2 Concrete or Masonry Anchors Used in the Attachment of Equipment and Other Nonstructural Components
13.3.2.3 Tension Testing Procedure
13.3.2.4 Torque Testing Procedure
13.3.2.6 Shear Capacity of Existing Anchors
13.4 EVALUATION PROCEDURES
13.4.1 Acceptance Criteria
C4.4.3.8 Prestressed Elements
229 13.4.3 Prescriptive Procedure
13.4.4 Force Analysis: General Equations
13.4.4.1 Horizontal Seismic Forces
13.4.4.2 Vertical Seismic Forces
13.4.4.3 Load Combinations
13.4.4.4 Nonstructural Support Capacity
13.4.4.4.1 Existing Components
13.4.4.4.2 New Components
C7.2.9.1 Overturning Effects for Linear Procedures
232 8.4.5.2.2 Combined Footings, Mat Foundations, and Foundations Idealized as Isolated Footings
13.4.5 Deformation Analysis
13.4.6 Component Testing
13.4.7 Overturning Evaluation
13.5 RETROFIT APPROACHES
13.6 ARCHITECTURAL COMPONENTS: DEFINITION, BEHAVIOR, AND ACCEPTANCE CRITERIA
13.6.1 Exterior Wall Components
13.6.1.1 Adhered Veneer
13.6.1.1.1 Definition and Scope
13.6.1.1.3 Acceptance Criteria
233 9.6.3 Stiffness, Strength, Acceptance Criteria, and Connection Design for Cold-Formed Steel Light-Frame Construction Shear Wall Systems
13.6.1.1.4 Evaluation Requirements
13.6.1.2 Anchored Veneer
13.6.1.2.1 Definition and Scope
13.6.1.2.2 Component Behavior and Retrofit Methods
13.6.1.2.3 Acceptance Criteria
13.6.1.2.4 Evaluation Requirements
13.6.1.3.1 Definition and Scope
13.6.1.3.3 Acceptance Criteria
234 13.6.1.3.4 Evaluation Requirements
13.6.1.4 Prefabricated Panels
13.6.1.4.1 Definition and Scope
13.6.1.4.2 Component Behavior and Retrofit Methods
13.6.1.5.1 Definition and Scope
13.6.1.5.2 Component Behavior and Retrofit Methods
13.6.1.5.3 Acceptance Criteria
235 13.6.1.5.4 Evaluation Requirements
13.6.2 Partitions
13.6.2.1 Definition and Scope
13.6.2.2 Component Behavior and Retrofit Methods
13.6.2.3 Acceptance Criteria
13.6.2.3.2 Position Retention Nonstructural Performance Level
13.6.2.3.3 Operational Nonstructural Performance Level
236 13.6.2.4 Evaluation Requirements
13.6.3 Interior Veneers
13.6.3.1 Definition and Scope
13.6.3.2 Component Behavior and Retrofit Methods
13.6.3.3.1 Life Safety and Position Retention Nonstructural Performance Level
13.6.3.3.2 Operational Nonstructural Performance Level
13.6.3.4 Evaluation Requirements
13.6.4 Ceilings
13.6.4.1 Definition and Scope
13.6.4.2 Component Behavior and Retrofit Methods
13.6.4.3 Acceptance Criteria
13.6.4.3.1 Life Safety Nonstructural Performance Level
13.6.4.3.2 Position Retention Nonstructural Performance Level
13.6.4.3.3 Operational Nonstructural Performance Level
13.6.5 Parapets and Cornices
14.5.3.2 Response Spectrum Method
237 11.6.2 Seismic Evaluation of Existing Masonry Foundations
13.6.5.3 Acceptance Criteria
13.6.5.3.1 Life Safety and Position Retention Nonstructural Performance Level
13.6.5.3.2 Operational Nonstructural Performance Level
13.6.5.4 Evaluation Requirements
13.6.6 Architectural Appendages and Marquees
13.6.6.1 Definition and Scope
13.6.6.2 Component Behavior and Retrofit Methods
13.6.6.3 Acceptance Criteria
13.6.6.3.1 Life Safety and Position Retention Nonstructural Performance Level
13.6.6.3.2 Operational Nonstructural Performance Level
13.6.6.4 Evaluation Requirements
13.6.7 Penthouses
13.6.7.1 Definition and Scope
13.6.7.2 Component Behavior and Retrofit Methods
13.6.7.3 Acceptance Criteria
13.6.7.3.1 Life Safety and Position Retention Nonstructural Performance Level
13.6.7.3.2 Operational Nonstructural Performance Level
13.6.8 Tile Roofs
13.6.8.1 Definition and Scope
A.3.2.7.4 Narrow Wood Shear Walls
C12.5.2.1.7 Braced Horizontal Diaphragms
238 13.6.8.2 Component Behavior and Retrofit Methods
13.6.8.3 Acceptance Criteria
13.6.8.3.1 Life Safety and Position Retention Nonstructural Performance Level
13.6.8.3.2 Operational Nonstructural Performance Level
13.6.9 Chimneys and Stacks
13.6.9.1 Definition and Scope
13.6.9.2 Component Behavior and Retrofit Methods
13.6.9.3 Acceptance Criteria
13.6.9.3.1 Life Safety and Position Retention Nonstructural Performance Level
13.6.9.3.2 Operational Nonstructural Performance Level
13.6.9.4 Evaluation Requirements
13.6.10.1 Definition and Scope
13.6.10.2 Component Behavior and Retrofit Methods
13.6.10.3 Acceptance Criteria
13.6.10.3.1 Life Safety and Position Retention Nonstructural Performance Level
13.6.10.3.2 Operational Nonstructural Performance Level
A.3.2.8.4 Narrow Cold-Formed Steel Wood Structural Panel or Steel Sheet-Sheathed Shear Walls
239 7.5.2.2.1 Acceptance Criteria for Deformation-Controlled Actions for LSP or LDP
13.6.10.4 Evaluation Requirements
13.6.11 Doors Required for Emergency Services Egress in Essential Facilities
13.6.11.1 Definition and Scope
13.6.11.2 Component Behavior and Retrofit Methods
13.6.11.3 Acceptance Criteria
13.6.11.3.1 Life Safety and Position Retention Nonstructural Performance Levels
13.6.11.3.2 Operational Nonstructural Performance Level
13.6.11.4 Evaluation Requirements
13.6.12 Computer Access Floors
13.6.12.1 Definition and Scope
13.6.12.2 Component Behavior and Retrofit Methods
13.6.12.3 Acceptance Criteria
13.6.12.3.1 Life Safety Nonstructural Performance Level
13.6.12.3.2 Position Retention Nonstructural Performance Level
13.6.12.3.3 Operational Nonstructural Performance Level
13.6.12.4 Evaluation Requirements
13.7 MECHANICAL, ELECTRICAL, AND PLUMBING COMPONENTS: DEFINITION, BEHAVIOR, AND ACCEPTANCE CRITERIA
13.7.1 Mechanical Equipment
13.7.1.1 Definition and Scope
240 13.7.1.2 Component Behavior and Retrofit Methods
13.7.1.3 Acceptance Criteria
13.7.1.3.1 Life Safety Nonstructural Performance Level
13.7.1.3.2 Position Retention Nonstructural Performance Level
13.7.1.3.3 Operational Nonstructural Performance Level
13.7.1.4 Evaluation Requirements
13.7.2 Storage Vessels and Water Heaters
13.7.2.1 Definition and Scope
13.7.2.2 Component Behavior and Retrofit Methods
13.7.2.3 Acceptance Criteria
13.7.2.3.1 Life Safety and Position Retention Nonstructural Performance Level
13.7.2.3.2 Operational Nonstructural Performance Level
241 13.7.2.4 Evaluation Requirements
13.7.3 Pressure Piping
13.7.3.1 Definition and Scope
13.7.3.2 Component Behavior and Retrofit Methods
13.7.3.3 Acceptance Criteria
13.7.3.3.1 Life Safety Nonstructural Performance Level
13.7.3.3.2 Position Retention Nonstructural Performance Level
13.7.3.3.3 Operational Nonstructural Performance Level
13.7.3.4 Evaluation Requirements
13.7.4 Fire Suppression Piping
13.7.4.1 Definition and Scope
13.7.4.2 Component Behavior and Retrofit Methods
13.7.4.3 Acceptance Criteria
13.7.4.3.1 Life Safety Nonstructural Performance Level
13.7.4.3.2 Position Retention Nonstructural Performance Level
13.7.4.3.3 Operational Nonstructural Performance Level
13.7.4.4 Evaluation Requirements
13.7.5 Fluid Piping Other Than Fire Suppression
13.7.5.1 Definition and Scope
A.5.2.2 Transfer to Steel Frames
242 13.7.5.2 Component Behavior and Retrofit Methods
13.7.5.3 Acceptance Criteria
13.7.5.3.1 Life Safety Nonstructural Performance Level
13.7.5.3.2 Position Retention Nonstructural Performance Level
13.7.5.3.3 Operational Nonstructural Performance Level
13.7.5.4 Evaluation Requirements
13.7.6 Ductwork
13.7.6.1 Definition and Scope
13.7.6.2 Component Behavior and Retrofit Methods
13.7.6.3 Acceptance Criteria
13.7.6.3.1 Life Safety Nonstructural Performance Level
13.7.6.3.2 Position Retention Nonstructural Performance Level
13.7.6.3.3 Operational Nonstructural Performance Level
13.7.6.4 Evaluation Requirements
243 13.7.7 Electrical and Communications Equipment
13.7.7.1 Definition and Scope
13.7.7.2 Component Behavior and Retrofit Methods
13.7.7.3 Acceptance Criteria
13.7.7.3.1 Life Safety Nonstructural Performance Level
13.7.7.3.2 Position Retention Nonstructural Performance Level
13.7.7.3.3 Operational Nonstructural Performance Level
13.7.7.4 Evaluation Requirements
13.7.8 Electrical and Communications Distribution Components
13.7.8.1 Definition and Scope
13.7.8.2 Component Behavior and Retrofit Methods
13.7.8.3 Acceptance Criteria
13.7.8.3.1 Life Safety Nonstructural Performance Level
13.7.8.3.2 Position Retention Nonstructural Performance Level
13.7.8.3.3 Operational Nonstructural Performance Level
244 13.7.8.4 Evaluation Requirements
13.7.9 Light Fixtures
13.7.9.1 Definition and Scope
13.7.9.2 Component Behavior and Retrofit Methods
13.7.9.3 Acceptance Criteria
13.7.9.3.1 Life Safety Nonstructural Performance Level
13.7.9.3.2 Position Retention Nonstructural Performance Level
13.7.9.3.3 Operational Nonstructural Performance Level
13.7.9.4 Evaluation Requirements
13.7.10 Rooftop Solar Photovoltaic Arrays
13.7.10.1 Definition and Scope
13.7.10.2 Component Behavior and Retrofit Methods
13.7.10.3 Acceptance Criteria
13.7.10.3.1 Life Safety and Position Retention Nonstructural Performance Level
13.7.10.3.2 Operational Nonstructural Performance Level
13.7.10.4 Evaluation Requirements
245 13.7.11 Elevators
13.7.11.1 Definition and Scope
13.7.11.2 Component Behavior and Retrofit Methods
13.7.11.3 Acceptance Criteria
13.7.11.3.1 Life Safety Nonstructural Performance Level
13.7.11.3.2 Position Retention Nonstructural Performance Level
13.7.11.3.3 Operational Nonstructural Performance Level
13.7.11.4 Evaluation Requirements
13.7.12 Conveyors
13.7.12.1 Definition and Scope
13.7.12.2 Component Behavior and Retrofit Methods
13.7.12.3 Acceptance Criteria
13.7.12.3.1 Life Safety Nonstructural Performance Level
13.7.12.3.2 Position Retention Nonstructural Performance Level
13.7.12.3.3 Operational Nonstructural Performance Level
13.7.12.4 Evaluation Requirements
13.8 FURNISHINGS AND CONTENTS: DEFINITION, BEHAVIOR, AND ACCEPTANCE CRITERIA
13.8.1 Steel Storage Racks
13.8.1.1 Definition and Scope
13.8.1.2 Component Behavior and Retrofit Methods
13.8.1.3 Acceptance Criteria
13.8.1.3.1 Life Safety Nonstructural Performance Level
13.8.1.3.2 Position Retention Nonstructural Performance Level
246 13.8.1.3.3 Operational Nonstructural Performance Level
13.8.1.4 Evaluation Requirements
13.8.2 Contents
13.8.2.1 Definition and Scope
13.8.2.2 Component Behavior and Retrofit Methods
13.8.2.3 Acceptance Criteria
13.8.2.3.1 Life Safety Nonstructural Performance Level
13.8.2.3.2 Position Retention Nonstructural Performance Level
13.8.2.3.3 Operational Nonstructural Performance Level
13.8.2.4 Evaluation Requirements
13.8.3 Hazardous Material Storage
13.8.3.1 Definition and Scope
13.8.3.2 Component Behavior and Retrofit Methods
13.8.3.3 Acceptance Criteria
13.8.3.3.1 Life Safety and Position Retention Nonstructural Performance Level
13.8.3.3.2 Operational Nonstructural Performance Level
13.8.3.4 Evaluation Requirements
13.8.4 Computer and Communication Racks
13.8.4.1 Definition and Scope
13.8.4.2 Component Behavior and Retrofit Methods
13.8.4.3 Acceptance Criteria
13.8.4.3.1 Life Safety Nonstructural Performance Level
13.8.4.3.2 Position Retention Nonstructural Performance Level
13.8.4.3.3 Operational Nonstructural Performance Level
247 13.8.4.4 Evaluation Requirements
248 4.4.1 Overview
Chapter 14: Seismic Isolation
Chapter 14: Seismic Isolation
14.1 SCOPE
14.2 GENERAL REQUIREMENTS
14.2.2 Seismic Hazard
14.2.2.1 Ground Motion Acceleration Histories
14.2.3.1 Environmental Conditions
14.2.3.2 Wind Displacement
14.2.3.5 Displacement Restraint
A.2.1.1 Load Path
249 11.2.3.6.2 Alternative Procedures for Determining Expected URM Shear Strength by Testing for Tensile Splitting Strength
14.2.3.6 Vertical Load Stability
14.2.3.7 Overturning
14.2.3.8 Inspection and Replacement
14.2.4.1 Horizontal Distribution of Force
14.2.4.2 Minimum Separations
14.2.5 Elements of Structures and Nonstructural Components
14.2.5.2 Components at or above the Isolation Interface
14.2.5.4 Components below the Isolation Interface
14.2.6 Seismic Load Effects and Load Combinations
C12.3.5 Retrofit Measures
250 7.4.1.1 Nonlinear Static and Dynamic Procedures Employing Lumped-Plasticity Load-Deformation Models
14.2.6.2 Isolation System Device Vertical Load Combinations
14.3 SEISMIC ISOLATION SYSTEM DEVICE PROPERTIES
14.3.1 Isolation System Device Types
14.3.3 Bounding Properties of Isolation System Devices
14.3.3.2 Testing Variations on Design Properties
C9.6.3 Stiffness, Strength, Acceptance Criteria, and Connection Design for Cold-Formed Steel Light-Frame Construction Shear Wall Systems
C7.3.2 Acceptance Criteria.
251 14.4 MODELING
14.4.1.1 Upper-Bound and Lower-Bound Force-Deflection Behavior of Isolation System Devices
14.4.1.2 Isolation System Properties
14.4.1.3 Isolation System Models for Linear Procedures
14.4.2 Isolation System and Superstructure Modeling
14.4.2.1 General
14.4.2.2 Isolation System Model
14.4.2.3 Superstructure Model
14.5 ANALYSIS PROCEDURES
A.3.1.4.7 Strong Column-Weak Beam.
252 8.6.1.1 Base Slab Averaging
13.6.1.5 Glazed Exterior Wall Systems
14.5.1.1 Linear Static Procedure
14.5.1.2 Linear Dynamic Procedure
14.5.1.3 Nonlinear Static Procedure
14.5.1.4 Nonlinear Dynamic Procedure
14.5.1.5 Design Forces and Deformations
14.5.2 Linear Static Procedure
14.5.2.2 Minimum Lateral Displacements
14.5.2.2.1 Isolation System Displacement.
15.9.2.3 Design Actions
253 14.5.2.2.3 Total Isolation System Displacement.
14.5.2.3 Minimum Lateral Forces
14.5.2.3.1 Isolation System and Structural Elements at or below the Base Level
14.5.2.3.2 Structural Elements above the Base Level.
14.5.2.3.3 Limits on Vst
14.5.2.4 Vertical Distribution of Force
254 14.5.2.5 Design Forces and Deformations
14.5.3 Linear Dynamic Procedure
14.5.3.1 General
14.5.3.3 Isolation System and Structural Elements at or below the Base Level
14.5.3.4 Structural Elements above the Base Level
14.5.3.6 Design Forces and Deformations
14.5.4 Nonlinear Static Procedure
14.5.4.1 General
14.5.4.2 Target Displacement
255 9.7.3.1.1 Strength of Generic Cold-Formed Steel Moment Connection
14.5.4.3 Seismic Force Pattern
14.5.4.4 Design Forces and Deformations
14.5.5.2 Accidental Mass Eccentricity
14.5.5.3 Isolation System and Structural Elements at or below the Base Level
14.5.5.4 Structural Elements above the Base Level
14.5.5.5 Scaling of Results
14.5.5.6 Design Forces and Deformations
14.6 ISOLATION SYSTEM TESTING AND DESIGN PROPERTIES
14.6.3 Prototype Tests
14.6.3.1 General
14.6.3.2 Record
14.6.3.3 Sequence and Cycles
256 14.6.3.4 Vertical-Load-Carrying Isolation System Devices
14.6.3.5 Dynamic Testing
14.6.3.6 Isolation System Devices Dependent on Bilateral Load
14.6.3.7 Maximum and Minimum Vertical Load
14.6.3.8 Sacrificial Wind-Restraint Systems
14.6.3.9 Testing Similar Isolation System Devices
257 14.6.4 Production Testing
14.6.5 Determination of Force-Deflection Characteristics
14.6.6 Test Specimen Adequacy
258 14.7 DESIGN REVIEW
260 4.1.2 Seismic Hazard Level
Chapter 15: Design Requirements for Structures with Supplemental Energy Dissipation
Chapter 15: Design Requirements for Structures with Supplemental Energy Dissipation
15.1 SCOPE
15.2 GENERAL DESIGN REQUIREMENTS
15.2.1 General Requirements
15.2.2 Seismic Hazard
15.2.2.1 Ground Motion Acceleration Histories
15.2.3.1 Device Classification
15.2.3.2 Multiaxis Movement
15.2.3.3 Inspection and Periodic Testing
261 8.2.2.3 Settlement of Nonliquefiable Soils
15.2.3.4 Performance Objectives and System Redundancy
15.3 PROPERTIES OF ENERGY DISSIPATION DEVICES
15.3.2 Maximum and Minimum Damper Properties
15.4 ANALYSIS PROCEDURE SELECTION
15.4.1 General Limitations for the Linear Analysis Procedures
C8.2.2 Seismic-Geologic Site Hazards
C12.2.3 Condition Assessment
262 12.2.3.1 General
15.5 NONLINEAR DYNAMIC PROCEDURES
15.5.1 General Requirements
15.5.2.1 Displacement-Dependent Devices
15.5.2.2 Velocity-Dependent Devices
15.5.2.2.1 Solid Viscoelastic Devices
15.5.2.2.2 Fluid Viscoelastic Devices
16.2.3.2 Diaphragms
A.3.1.2 Moment Frames with Infill Walls
C2.4.4 Basic Performance Objective Equivalent to New Building Standards (BPON)
C5.4.2.4 Geometric Irregularity
263 8.4.4 Fixed-Base Procedure
15.5.3 Accidental Eccentricity
15.6 DETAILED SYSTEM REQUIREMENTS
15.6.1 General
15.6.2 Wind Forces
15.6.3 Inspection and Replacement
15.7 DESIGN REVIEW
15.8 REQUIRED TESTS OF ENERGY DISSIPATION DEVICES
15.8.1 Prototype Tests
15.8.1.1 General
16.2.3.2.6 Diaphragm Shear Transfer
A.3.1.3.6 Column Splices
C9.6.1 General
264 15.8.1.3 Testing Similar Devices
15.8.1.4 Determination of Force-Velocity-Displacement Characteristics
265 14.5.1 Selection of Analysis Procedure
15.8.1.5 Device Adequacy
15.8.1.5.1 General Requirements
15.8.1.5.2 Displacement-Dependent Devices
15.8.2 Production Tests
15.9 LINEAR ANALYSIS PROCEDURES
15.9.1 Modeling of Energy Dissipation Devices
15.9.1.1 Displacement-Dependent Devices
15.9.1.2 Velocity-Dependent Devices
15.9.1.2.1 Solid Viscoelastic Devices
266 15.9.2 Linear Static Procedure
15.9.2.1 Displacement-Dependent Devices
15.9.2.2 Velocity-Dependent Devices
C8.6.2.1 Radiation Damping for Rectangular Foundations
267 11.3.4.2 In-Plane Lateral Stiffness of Reinforced Masonry Walls and Wall Piers
13.6.1.4.3 Acceptance Criteria
15.9.2.4 Linear Dynamic Procedure
15.9.2.5 Displacement-Dependent Devices
15.9.2.6 Velocity-Dependent Devices
268 15.10 NONLINEAR STATIC PROCEDURE
15.10.1 Displacement-Dependent Devices
270 7.2.2 Effective Seismic Weight
Chapter 16: System-Specific Performance Procedures
Chapter 16: System-Specific Performance Procedures
16.1 SCOPE
16.2 SPECIAL PROCEDURE FOR UNREINFORCED MASONRY
16.2.1 Scope
16.2.2 Condition of Existing Materials
16.2.2.1 Layup of Walls
C1.3.1 Assignment of Performance Objective
C3.1.2 Stiffness
271 16.2.2.2 Testing
16.2.2.2.1 In-Place Mortar Tests
16.2.2.2.2 Masonry
16.2.2.2.3 Wall Anchors
272 16.2.2.3.2 Masonry Compression
16.2.2.3.3 Masonry Tension
16.2.2.3.4 Foundations
16.2.3 Analysis
16.2.3.1 Cross Walls
273 16.2.3.1.2 Shear Strength
16.2.3.2.1 Shear Strength
16.2.3.2.3 Acceptability Criteria
274 16.2.3.2.4 Chords and Collectors
16.2.3.2.5 Diaphragm Openings
275 7.2.11.4 Diaphragm Collectors
16.2.3.3 Shear Walls
16.2.3.3.2 Shear Wall Strengths
16.2.3.3.3 Shear Wall Acceptance Criteria
16.2.3.4 Buildings with Open Fronts
16.2.3.5 New Vertical Elements
16.2.3.5.1 General
16.2.3.5.2 Combinations of Vertical Elements
276 12.3.4.1 Wood Construction
14.4.1.4 Isolation System Device Models for Nonlinear Procedures
16.2.3.5.3 Wood Structural Panels
16.2.3.5.4 Forces on New Vertical Elements
16.2.3.5.5 Acceptance Criteria for New Vertical Elements
16.2.3.5.6 Drift Limits
16.2.4 Other Components and Systems of Unreinforced Masonry Buildings
16.2.4.1 References to Applicable Sections
16.2.4.2 Out-of-Plane Demands
16.2.4.2.1 Wall Bracing General
277 11.3.3 Unreinforced Masonry Walls Subject to Out-of-Plane Actions
16.2.4.2.2 Vertical Bracing Members
16.2.4.2.3 Intermediate Wall Bracing
16.2.4.3 Wall Anchorage
16.2.4.4 Truss and Beam Supports
16.2.5 Detailing for New Elements
278 Chapter 17: Tier 1 Checklists
Chapter 17: Tier 1 Checklists
17.1 BASIC CHECKLISTS
17.1.1 Very Low Seismicity Checklist
17.1.2 Basic Configuration Checklist
17.2 STRUCTURAL CHECKLISTS FOR BUILDING TYPES W1: WOOD LIGHT FRAMES, SMALL RESIDENTIAL
17.3 STRUCTURAL CHECKLISTS FOR BUILDING TYPE W2: WOOD FRAMES, LARGE RESIDENTIAL, COMMERCIAL, INDUSTRIAL, AND INSTITUTIONAL
C12.2.1 General
286 17.4 STRUCTURAL CHECKLISTS FOR BUILDING TYPES S1: STEEL MOMENT FRAMES WITH STIFF DIAPHRAGMS, AND S1A: STEEL MOMENT FRAMES WITH FLEXIBLE DIAPHRAGMS
289 17.5 STRUCTURAL CHECKLIST FOR BUILDING TYPES S2: STEEL BRACED FRAMES WITH STIFF DIAPHRAGMS, AND S2A: STEEL BRACED FRAMES WITH FLEXIBLE DIAPHRAGMS
292 17.6 STRUCTURAL CHECKLISTS FOR BUILDING TYPE S3: METAL BUILDING FRAMES
294 17.7 STRUCTURAL CHECKLISTS FOR BUILDING TYPE S4: DUAL SYSTEMS WITH BACKUP STEEL MOMENT FRAMES AND STIFF DIAPHRAGMS
17.8 STRUCTURAL CHECKLISTS FOR BUILDING TYPES S5: STEEL FRAMES WITH INFILL MASONRY SHEAR WALLS AND STIFF DIAPHRAGMS, AND S5A: STEEL FRAMES WITH INFILL MASONRY SHEAR WALLS AND FLEXIBLE DIAPHRAGMS
302 17.9 STRUCTURAL CHECKLISTS FOR BUILDING TYPE CFS1: COLD-FORMED STEEL LIGHT-FRAME BEARING WALL CONSTRUCTION, SHEAR WALL LATERAL SYSTEM
17.10 STRUCTURAL CHECKLISTS FOR BUILDING TYPE CFS2: COLD-FORMED STEEL LIGHT-FRAME BEARING WALL CONSTRUCTION, STRAP-BRACED LATERAL WALL SYSTEM
307 17.11 STRUCTURAL CHECKLISTS FOR BUILDING TYPE C1: CONCRETE MOMENT FRAMES
17.12 STRUCTURAL CHECKLIST FOR BUILDING TYPES C2: CONCRETE SHEAR WALLS WITH STIFF DIAPHRAGMS, AND C2A: CONCRETE SHEAR WALLS WITH FLEXIBLE DIAPHRAGMS
17.13 STRUCTURAL CHECKLISTS FOR BUILDING TYPES C3: CONCRETE FRAMES WITH INFILL MASONRY SHEAR WALLS, AND C3A: CONCRETE FRAMES WITH INFILL MASONRY SHEAR WALLS AND FLEXIBLE DIAPHRAGMS
317 17.14 STRUCTURAL CHECKLISTS FOR BUILDING TYPES PC1: PRECAST OR TILT-UP CONCRETE SHEAR WALLS WITH FLEXIBLE DIAPHRAGMS, AND PC1A: PRECAST OR TILT-UP CONCRETE SHEAR WALLS WITH STIFF DIAPHRAGMS
321 17.15 STRUCTURAL CHECKLISTS FOR BUILDING TYPE PC2: PRECAST CONCRETE FRAMES WITH SHEAR WALLS
324 17.16 STRUCTURAL CHECKLISTS FOR BUILDING TYPE PC2A: PRECAST CONCRETE FRAMES WITHOUT SHEAR WALLS
17.17 STRUCTURAL CHECKLISTS FOR BUILDING TYPES RM1: REINFORCED MASONRY BEARING WALLS WITH FLEXIBLE DIAPHRAGMS, AND RM2: REINFORCED MASONRY BEARING WALLS WITH STIFF DIAPHRAGMS
330 17.18 STRUCTURAL CHECKLISTS FOR BUILDING TYPES URM: UNREINFORCED MASONRY BEARING WALLS WITH FLEXIBLE DIAPHRAGMS, AND URMA: UNREINFORCED MASONRY BEARING WALLS WITH STIFF DIAPHRAGMS
334 17.19 NONSTRUCTURAL CHECKLIST
342 CHAPTER 18: REFERENCE DOCUMENTS
CHAPTER 18: REFERENCE DOCUMENTS
18.1 CONSENSUS STANDARDS AND OTHER REFERENCE DOCUMENTS
346 Appendix A: Guidelines for Deficiency-Based Procedures
Appendix A: Guidelines for Deficiency-Based Procedures
A.1 GENERAL
347 A.2 PROCEDURES FOR BUILDING SYSTEMS
A.2.1 General
348 4.2.2 Building Type
9.4.2.1.1 Default Mechanical Properties and Nominal or Specified Properties of Cold-Formed Steel Light-Frame Construction
16.2.2.1.2 Concrete Masonry Units and Structural Clay Load-Bearing Wall Tile
A.2.1.3 Mezzanines
A.2.2 Configuration
A.2.2.1 General
A.2.2.2 Weak Story
C11.2.2.3 Supplemental Tests
349 A.2.2.4 Vertical Irregularities
C9.4.2.5 Default Mechanical Properties
350 15.3.1 Nominal Design Properties
A.2.2.5 Geometry
A.2.2.6 Mass
A.2.2.7 Torsion
C5.4.1.3 Mezzanines
C8.2.2.2.1 Liquefaction-Affected Structural Evaluation
351 A.3 PROCEDURES FOR SEISMIC-FORCE-RESISTING SYSTEMS
352 A.3.1.1 General
A.3.1.2.1 Interfering Walls
C16.2.3.5.5 Acceptance Criteria for New Vertical Elements
353 A.3.1.3.1 Drift Check
A.3.1.3.5 Panel Zones
354 A.3.1.3.8 Compact Members
A.3.1.3.9 Beam Penetrations.
A.3.1.3.10 Girder Flange Continuity Plates. There are girder flange continuity plates at all moment-resisting-frame joints.
A.3.1.3.11 Out-of-Plane Bracing. Beam-column joints are braced out of plane.
A.3.1.3.12 Bottom-Flange Bracing. The bottom flanges of beams are braced out of plane.
A.3.1.4 Concrete Moment Frames
355 A.3.1.4.1 Column Shear Stress Check.
A.3.1.4.4 Prestressed Frame Elements.
A.3.1.4.5 Captive Columns. There are no columns at a level with height-to-depth ratios less than 50% of the nominal height-to-depth ratio of the typical columns at that level for Collapse Prevention and 75% for Immediate Occupancy.
C12.4.2.1.12 Plaster on Metal Lath
356 8.5.1.1 Stiffness Parameters
11.3.2.2.6 Expected Strengths of Rectangular URM Wall Spandrels Subject to In-Plane Actions.
A.3.1.4.8 Beam Bars.
A.3.1.4.9 Column-Bar Splices.
A.3.1.4.10 Beam-Bar Splices.
A.3.1.4.11 Column-Tie Spacing.
A.3.1.4.12 Stirrup Spacing.
A.3.1.4.13 Joint Transverse Reinforcing.
A.3.1.5 Precast Concrete Moment Frames
A.3.1.5.2 Precast Frames.
C14.5.2.4 Vertical Distribution of Force
357 9.6.3.4.1 Stiffness of Fiberboard Panels
13.6.1.4.4 Evaluation Requirements
A.3.1.5.3 Precast Connections.
A.3.1.6 Frames Not Part of the Seismic-Force-Resisting System
A.3.1.6.1 Concrete Bearing Walls
A.3.1.6.2 Deflection Compatibility
A.3.1.6.3 Flat Slabs
A.3.2 Shear Walls
A.3.2.1 General
358 A.3.2.1.1 Redundancy
359 9.6.3.5.1 Stiffness of Plaster on Metal Lath Shear Walls
A.3.2.2.1 Shear Stress Check.
A.3.2.2.2 Reinforcing Steel
A.3.2.2.3 Coupling Beams
A.3.2.2.4 Overturning
A.3.2.2.5 Confinement Reinforcing
A.3.2.2.6 Wall Reinforcing at Openings
360 14.5.5.1 General
A.3.2.3 Precast Concrete Shear Walls
A.3.2.3.2 Reinforcing Steel.
A.3.2.3.3 Wall Openings
A.3.2.3.4 Panel-to-Panel Connections
A.3.2.3.5 Wall Thickness
A.3.2.4 Reinforced Masonry Shear Walls
A.3.2.4.1 Shear Stress Check
A.3.2.4.2 Reinforcing Steel
C7.4.4.2.4 Cyclic Response in Nonlinear Dynamic Procedure
C13.7.2.1 Definition and Scope
361 A.3.2.4.3 Reinforcing at Wall Openings
A.3.2.4.4 Proportions
A.3.2.5 Unreinforced Masonry Shear Walls
A.3.2.5.1 Shear Stress Check
A.3.2.5.2 Proportions
A.3.2.5.3 Masonry Layup
A.3.2.6 Infill Walls in Frames
A.3.2.6.1 Infill Wall Connections
C7.5.1 General Requirements
362 9.8.3.1 Stiffness
A.3.2.6.2 Proportions
A.3.2.6.3 Cavity Walls
A.3.2.6.4 Infill Walls
A.3.2.6.5 Infill Wall Eccentricity
A.3.2.7 Walls in Wood-Frame Buildings
A.3.2.7.2 Stucco (Exterior Plaster) Shear Walls
A.3.2.7.3 Gypsum Wallboard or Plaster Shear Walls
363 A.3.2.7.5 Walls Connected through Floors
A.3.2.7.6 Hillside Site
A.3.2.7.7 Cripple Walls
A.3.2.7.8 Openings
A.3.2.7.9 Hold-Down Anchors
A.3.2.8.1 Shear Stress Check
C13.7.10.4 Evaluation Requirements
364 A.3.2.8.2 Stucco (Exterior Plaster) Shear Walls
A.3.2.8.3 Gypsum Wallboard or Plaster Shear Walls
A.3.2.8.5 Walls Connected through Floors
A.3.2.8.6 Hillside Site
A.3.2.8.7 Cripple Walls
365 12.4.3.11 Gypsum Sheathing Shear Walls
A.3.2.8.9 Hold-Down Anchors
A.3.3 Braced Frames
A.3.3.1 General
A.3.3.1.1 Redundancy
A.3.3.1.2 Brace Axial Stress Check
366 13.6.10 Stairs and Ramps
A.3.3.1.3 Column Splices
A.3.3.1.4 Slenderness of Diagonals
A.3.3.1.5 Connection Strength
A.3.3.1.6 Out-of-Plane Bracing
A.3.3.1.7 Compact Members
A.3.3.1.8 Net Area
A.3.3.2.1 K-Bracing
C13.8.3.2 Component Behavior and Retrofit Methods
367 A.3.3.2.2 Tension-Only Braces
A.3.3.2.3 Chevron Bracing
A.3.3.2.4 Concentrically Braced Frame Joints
A.3.3.2.5 Narrow Strap-Braced Walls
A.3.3.2.6 Walls Connected Through Floors
A.3.3.2.7 Hillside Site
A.3.3.2.8 Hold-Down Anchors
A.3.3.2.9 Strap-Braced Walls-Chord Stud Axial Check
A.3.3.2.10 Strap-Brace Detailing
368 A.3.3.3 Eccentrically Braced Frames
A.4 PROCEDURES FOR DIAPHRAGMS
A.4.1 General
370 A.4.1.1 Diaphragm Continuity
A.4.1.2 Crossties
A.4.1.3 Roof Chord Continuity
371 A.4.1.4 Openings at Shear Walls
A.4.1.5 Openings at Frames
A.4.1.6 Openings at Exterior Masonry Shear Walls
A.4.1.7 Plan Irregularities
A.4.1.8 Diaphragm Reinforcement at Openings
372 A.4.2 Wood Diaphragms
A.4.2.1 Straight Sheathing
A.4.2.2 Diagonally Sheathed and Unblocked Diaphragms
A.4.2.3 Blocked Diaphragms
373 A.4.2.4 Cantilevered Wood Diaphragms
A.4.3 Metal Deck Diaphragms
A.4.3.1 Non-Concrete-Filled Diaphragms
A.4.4 Concrete Diaphragms
A.4.5 Precast Concrete Diaphragms
A.4.5.1 Topping Slab
374 A.4.6 Horizontal Bracing
A.4.7 Other Diaphragms
A.4.7.1 Other Diaphragms
A.5 PROCEDURES FOR CONNECTIONS
A.5.1 Anchorage for Normal Forces
A.5.1.1 Wall Anchorage
A.5.1.2 Wood Ledgers
375 A.5.1.3 Minimum Number of Wall Anchors Per Panel
A.5.1.4 Stiffness of Wall Anchors
A.5.2 Shear Transfer
A.5.2.1 Transfer to Shear Walls or Concrete and Infill Walls
A.5.2.3 Topping Slab to Walls or Frames
A.5.3 Vertical Components
376 A.5.3.1 Steel Columns
A.5.3.2 Concrete Columns
A.5.3.3 Wood or Cold-Formed Steel Posts
A.5.3.4 Wood Sills and Cold-Formed Steel Base Tracks
377 A.5.3.5 Foundation Dowels
A.5.3.6 Precast Wall Panels
A.5.3.7 Wood Sill and Cold-Formed Steel Base Track Bolts
A.5.3.8 Uplift at Pile Caps
A.5.4 Interconnection of Elements
A.5.4.1 Girder-Column Connection
A.5.4.2 Girders
378 A.5.4.3 Corbel Bearing
A.5.4.4 Corbel Connections
A.5.4.5 Beam, Girder, and Truss Supports
A.5.5 Panel Connections
A.5.5.1 Roof Panels
A.5.5.2 Wall Panels
A.6 PROCEDURES FOR GEOLOGIC SITE HAZARDS AND FOUNDATIONS
A.6.1 Geologic Site Hazards
A.6.1.1 Liquefaction
A.6.1.2 Slope Failure
379 A.6.1.3 Surface Fault Rupture
A.6.1.4 Tsunami
A.6.2 Foundation Configuration
A.6.2.1 Overturning
A.6.2.2 Ties between Foundation Elements
A.6.2.3 Deep Foundations
380 A.6.2.4 Sloping Sites
381 A.7 PROCEDURES FOR NONSTRUCTURAL COMPONENTS
A.7.1 Partitions
A.7.1.1 Unreinforced Masonry
A.7.1.2 Drift
A.7.1.3 Structural Separations
A.7.1.4 Tops
A.7.2 Ceiling Systems
A.7.2.1 Heavy or Light Partitions Supported by Ceilings
A.7.2.2 Integrated Ceilings
382 A.7.2.3 Suspended Lath and Plaster or Gypsum Board
A.7.2.4 Edge Clearance
A.7.2.5 Continuity across Structure
A.7.2.6 Edge Support
A.7.2.7 Seismic Joints
A.7.3 Light Fixtures
A.7.3.1 Emergency Lighting
A.7.3.2 Independent Support
A.7.3.3 Pendant Supports
A.7.3.4 Lens Covers
383 A.7.4 Cladding and Glazing
A.7.4.1 Cladding Anchors
A.7.4.2 Cladding Isolation
A.7.4.3 Multistory Panels
A.7.4.4 Panel Connections
A.7.4.5 Bearing Connections
A.7.4.6 Inserts
A.7.4.7 Overhead Glazing
A.7.4.8 Threaded Rods
A.7.5 Masonry Veneer
A.7.5.1 Ties
A.7.5.2 Shelf Angles
384 A.7.5.3 Weakened Planes
A.7.5.4 Weep Holes
A.7.6 Metal Stud Backup Systems
A.7.6.1 Stud Tracks
A.7.6.2 Openings
A.7.7 Concrete Block and Masonry Backup Systems
A.7.7.1 Anchorage
A.7.7.2 Unreinforced Masonry Backup
A.7.8 Parapets, Cornices, Ornamentation, and Appendages
A.7.8.1 Unreinforced Masonry Parapets or Cornices
A.7.8.2 Canopies
A.7.8.3 Concrete Parapets
A.7.8.4 Appendages
A.7.8.5 Penthouses
385 A.7.8.6 Tile Roofs
A.7.9 Masonry Chimneys
A.7.9.1 Unreinforced Masonry Chimneys
A.7.9.2 Anchorage
A.7.10 Stairs
A.7.10.1 Stair Enclosures
A.7.10.2 Stair Details
A.7.11 Building Contents and Furnishing
A.7.11.1 Industrial Storage Racks
A.7.11.2 Tall Narrow Contents
A.7.11.3 Fall-Prone Contents
A.7.11.4 Access Floors
386 A.7.11.5 Equipment on Access Floors
A.7.11.6 Suspended Contents
A.7.12 Mechanical and Electrical Equipment
A.7.12.1 Emergency Power
A.7.12.2 Hazardous Material Equipment
A.7.12.3 Equipment Support Deterioration
A.7.12.4 Fall-Prone Equipment
A.7.12.5 In-Line Equipment
A.7.12.6 Tall Narrow Equipment
A.7.12.7 Mechanical Doors
A.7.12.8 Suspended Equipment
A.7.12.9 Vibration Isolators
A.7.12.10 Heavy Equipment
387 A.7.12.11 Electrical Equipment
A.7.12.12 Conduit Couplings
A.7.13 Piping
A.7.13.1 Fire Suppression Piping
A.7.13.2 Flexible Couplings
A.7.13.3 Sprinkler Ceiling Clearance
A.7.13.4 Fluid and Gas Piping
A.7.13.5 C-Clamps
A.7.13.6 Piping Crossing Seismic Joints
A.7.14 Ducts
A.7.14.1 Stair and Smoke Ducts
A.7.14.2 Duct Bracing
388 A.7.14.3 Duct Support
A.7.14.4 Ducts Crossing Seismic Joints
A.7.15 Hazardous Materials
A.7.15.1 Hazardous Material Storage
A.7.15.2 Shutoff Valves
A.7.15.3 Shutoff Valves
A.7.15.4 Flexible Couplings
A.7.16 Elevators
A.7.16.1 Retainer Guards
A.7.16.2 Retainer Plate
A.7.16.3 Elevator Equipment
A.7.16.4 Seismic Switch
389 A.7.16.5 Shaft Walls
A.7.16.6 Counterweight Rails
A.7.16.7 Brackets
A.7.16.8 Spreader Bracket
A.7.16.9 Go-Slow Elevators
390 APPENDIX B: APPLYING ASCE 41 IN BUILDING CODES, REGULATORY POLICIES, AND MITIGATION PROGRAMS
APPENDIX B: APPLYING ASCE 41 IN BUILDING CODES, REGULATORY POLICIES, AND MITIGATION PROGRAMS
B.1 INTRODUCTION
B.2 MANDATORY MITIGATION
392 B.2.2 Implementation Issues
B.2.3 Historic Buildings
393 B.3 VOLUNTARY MITIGATION
B.3.1 Performance Objectives
B.3.2 Implementation Issues
C13.3.2.1.2 Concrete or Masonry Anchors Used in the Attachment of Equipment and Other Components
394 B.3.4 Example Programs
B.4 TRIGGERED MITIGATION
B.4.2 Implementation Issues
395 B.4.3 Historic Buildings
398 APPENDIX C: SUMMARY DATA SHEET
APPENDIX C: SUMMARY DATA SHEET
400 Chapter C1: General Requirements
Chapter C1: General Requirements
C1.1 SCOPE
402 C1.3 SEISMIC EVALUATION PROCESS
403 C1.3.3 As-Built Information
C1.3.4 Evaluation Procedures
404 C1.4 SEISMIC RETROFIT PROCESS
406 5.2.6 Knowledge Factor
11.2.2.5 Pointing or Repointing of Unreinforced Masonry Walls
16.2.2.1.3 Walls with Other Layups
C1.4 SEISMIC RETROFIT PROCESS
C1.4.1 Assignment of Performance Objective
C1.4.4 Verification of Retrofit Design
C9.4.2.3 Test Methods to Quantify Mechanical Properties
C15.3.1 Nominal Design Properties
407 C1.4.5 Quality Assurance and Structural Observation
C1.4.5.1 Special Inspections and Testing
C1.4.5.2 Structural Observation
408 Chapter C2: Performance Objectives and Seismic Hazards
Chapter C2: Performance Objectives and Seismic Hazards
C2.2 PERFORMANCE LEVELS
C2.2.1 Structural Performance Levels and Ranges
419 13.3.2 Testing Requirements for Evaluating the Performance of Existing Anchorage for Nonstructural Components
C2.3 Seismic Hazard
C2.3.1 Seismic Hazard
C2.3.1.1 BSE-2N Seismic Hazard Level
C2.3.1.3 BSE-2E Seismic Hazard Level
C5.2.3 Condition Assessment
C11.2.2.5 Pointing or Repointing of Unreinforced Masonry Walls
420 16.2.2.3.1 Shear Strength
C2.3.1.4 BSE-1E Seismic Hazard Level
C2.3.1.5 Seismic Hazard Levels for Other Probabilities of Exceedance, Risk Targets, or Deterministic Hazards
C2.3.2 General Response Spectrum
C2.3.2.1 Multiperiod General Horizontal Response Spectrum
C2.3.2.2 Two-Period General Horizontal Response Spectrum
C2.3.2.3 General Vertical Response Spectrum
C2.3.3 Site-Specific Procedure for Hazards Caused by Ground Shaking
C7.2.4.2.3 Consideration of Torsional Effects for Nonlinear Procedures
421 C2.3.4 Ground Motion Acceleration Histories
C2.4 PERFORMANCE OBJECTIVES
422 C2.4.1 Basic Performance Objective for Existing Buildings (BPOE)
C13.4.4.4 Nonstructural Support Capacity
424 C2.4.2 Enhanced Performance Objectives
C2.4.3 Limited Performance Objectives
C2.4.6 System-Specific Performance Procedures
425 C2.5 LEVEL OF SEISMICITY
426 5.2.1 Performance Level and Seismic Hazard Level
8.2.1.1 Subsurface Soil Conditions
Chapter C3: Evaluation and Retrofit Requirements
Chapter C3: Evaluation and Retrofit Requirements
C3.2 AS-BUILT INFORMATION
C3.2.1 Building Type
C3.2.2 Building Configuration
C3.2.3 Component Properties
C3.2.4 Site and Foundation Information
C3.2.5.1 Building Pounding
C3.2.5.2 Shared Element Condition
427 C3.2.5.3 Hazards from Adjacent Buildings
C3.3 COMMON BUILDING TYPES
C3.4 BENCHMARK BUILDINGS
433 8.2.2.2.1 Liquefaction-Affected Structural Evaluation
C3.4.2.1 Level of Seismicity
434 9.4.3.2 Scope and Procedures
11.2.3.6.1 Determination of Expected URM Shear Strength by Testing for Bed-Joint Shear Strength
C3.5 EVALUATION AND RETROFIT PROCEDURES
C3.5.1.2 Buildings Composed of More than One of the Common Building Types
C3.5.1.2.1 Combinations of Systems in Different Directions
C3.5.1.2.2 Combinations of Systems in the Same Direction
435 7.3.1 Modeling
C3.5.3.1 Evaluation Requirements
C3.5.3.2 Retrofit Requirements
C3.5.4 Tier 3 Systematic Evaluation and Retrofit Procedures
C3.5.4.1 Evaluation Requirements
C3.5.4.2 Retrofit Requirements
C11.3.2 Unreinforced Masonry Walls and Wall Piers Subject to In-Plane Actions
436 Chapter C4: Tier 1 Screening
Chapter C4: Tier 1 Screening
C4.1 SCOPE
C4.1.1 Performance Level
C4.2 SCOPE OF INVESTIGATION REQUIRED
C4.2.1 On-Site Investigation and Condition Assessment
C4.2.3 Default Material Values
C4.3 SELECTION AND USE OF CHECKLISTS
C4.4 TIER 1 ANALYSIS

C5.2.2 As-Built Information

440 12.2.2.2.2 Connections
C4.4.3.1 Story Drift for Moment Frames
C4.4.3.2 Shear Stress in Concrete Frame Columns
C4.4.3.7 Flexible Diaphragm Connection Forces
442 Chapter C5: Tier 2 Deficiency-Based Evaluation and Retrofit
Chapter C5: Tier 2 Deficiency-Based Evaluation and Retrofit
C5.1 SCOPE
C5.2 GENERAL REQUIREMENTS
C5.2.1 Performance Level and Seismic Hazard Level
443 B.4.1 Performance Objectives
C5.2.5 Tier 2 Acceptance Criteria
C5.2.6 Knowledge Factor
C5.3 TIER 2 DEFICIENCY-BASED EVALUATION REQUIREMENTS
C5.4 PROCEDURES FOR BASIC CONFIGURATION OF BUILDING SYSTEMS
C5.4.1.1 Load Path
C5.4.1.2 Adjacent Buildings
C16.2.2.2.1 In-Place Mortar Tests
444 4.4.3.1 Story Drift for Moment Frames
7.2.6 Multidirectional Seismic Effects
8.4.6 Shallow Foundation Lateral Load
12.2.3 Condition Assessment
14.3.5 Upper- and Lower-Bound Properties
C5.4.2.3 Vertical Irregularities
C5.4.2.5 Mass Irregularity
C5.4.3 Geologic Site Hazards and Foundation Components
C5.4.3.1 Geologic Site Hazards
C5.4.3.3 Overturning
C5.5 PROCEDURES FOR SEISMIC-FORCE-RESISTING SYSTEMS
C5.5.1 General
C5.5.2.1.5 Strong Column-Weak Beam
C5.5.2.2 Procedures for Steel Moment Frames
C5.5.2.2.3 Panel Zones
C5.5.2.2.5 Compact Members
C5.5.2.2.7 Girder Flange Continuity Plates
C5.5.2.3 Procedures for Concrete Moment Frames
C5.5.2.3.4 No Shear Failures
C5.5.2.3.5 Continuous Beam Bars
C5.5.2.3.6 Column and Beam Bar Splices
C5.5.2.3.7 Column-Tie Spacing and Beam Stirrup Spacing
C5.5.2.3.9 Joint Eccentricity
C5.5.2.3.10 Stirrup and Tie Hooks
C5.5.3 Procedures for Shear Walls
C5.5.3.1.1 Shear Stress Check
C9.5.1.2 Use of Nonlinear Procedures for Cold-Formed Steel Light-Frame Construction
445 A.3.1.5.1 Precast Connection Check.
C5.5.4 Procedures for Braced Frames
C5.7 PROCEDURES FOR CONNECTIONS
C5.7.4 Interconnection of Elements
C5.7.4.4 Beam, Girder, and Truss Supported on Unreinforced Masonry (URM) Walls or URM Pilasters
C5.8 TIER 2 DEFICIENCY-BASED RETROFIT REQUIREMENTS
C5.8.1 Compliance with Deficiency-Based Evaluation
C5.8.2 Additional Evaluation of the Resulting Building
C5.8.2.1 Building Configuration
C5.8.2.2 Increased Gravity Demands to Existing Elements
C5.8.2.3 Increased Seismic Demands to Existing Elements
C5.8.3 Evaluation of New and Modified Structural Elements and Connections
C5.8.4.2 Design and Detailing Requirements
446 C5.8.4.3 Scope of Evaluation Requirements for Existing Components
448 Chapter C6: Tier 3 Systematic Evaluation and Retrofit
Chapter C6: Tier 3 Systematic Evaluation and Retrofit
C6.2 DATA COLLECTION REQUIREMENTS
C6.2.2 Condition Assessment
C6.2.3.1 Knowledge Factor for Linear Procedures
449 C6.2.3.2 Property Bounding for Nonlinear Procedures
C13.3.1 Condition Assessment
450 C6.3 TIER 3 EVALUATION REQUIREMENTS
C6.4 TIER 3 RETROFIT REQUIREMENTS
452 B.2.1 Performance Objectives
B.2.4 Example Programs
Chapter C7: Analysis Procedures and Acceptance Criteria
Chapter C7: Analysis Procedures and Acceptance Criteria
C7.1 SCOPE
C7.2 GENERAL ANALYSIS REQUIREMENTS
C7.2.2 Effective Seismic Weight
C7.2.3 Component Gravity Loads and Load Combinations
C7.2.3.1 Dead Load
C7.2.3.2 Live Load
C7.2.4 Mathematical Modeling
C12.2.2.2.2 Connections
453 C7.2.4.2.1 Total Torsional Moment
C7.2.4.2.2 Consideration of Torsional Effects for Linear Procedures
454 C7.2.4.3 Primary and Secondary Components
C7.2.4.3.1 Linear Procedures
455 4.4.3.4 Diagonal Bracing
C7.2.4.5 Foundation Modeling
C7.2.5 Configuration
C7.2.6.1 Concurrent Seismic Effects
456 C7.2.7 P-delta Effects
C7.2.8 Soil-Structure Interaction
C7.2.9 Overturning
457 C7.2.10 Sliding at the Soil-Structure Interface
C7.2.10.1 Foundation Interconnection
C7.2.11 Diaphragms, Chords, Collectors, and Ties
C12.4.2.1.1 Single-Layer Horizontal Lumber Sheathing or Siding
458 C7.2.13 Structural Walls and Their Anchorage
C7.2.13.2 Out-of-Plane Strength of Walls
C7.2.15.2 Separation Exceptions
C7.2.16 Verification of Analysis Assumptions
C7.3 ANALYSIS PROCEDURE SELECTION
459 C7.3.1 Linear Procedures
C7.3.1.1 Method to Determine Limitations on Use of Linear Procedures
460 C7.3.1.2 Limitations on Use of the Linear Static Procedure
C7.3.2 Nonlinear Procedures
C7.3.2.1 Nonlinear Static Procedure
C7.3.2.2 Nonlinear Dynamic Procedure
C7.4 ANALYSIS PROCEDURES
C7.4.1 Linear Static Procedure
C7.4.1.1 Basis of the Procedure
C7.4.1.2 Period Determination for Linear Static Procedure
C7.4.1.2.1 Method 1: Analytical
C7.4.1.2.2 Method 2: Empirical
461 C7.4.1.3.1 Pseudo Seismic Force for Linear Static Procedure
462 11.3.4.3.1 Reinforced Masonry Walls and Wall Piers with Rectangular Sections
C7.4.1.3.4 Diaphragms for Linear Static Procedure
C7.4.1.3.5 Distribution of Seismic Forces for Unreinforced Masonry Buildings with Flexible Diaphragms for Linear Static Procedure
C7.4.2 Linear Dynamic Procedure
C7.4.2.1 Basis of the Procedure
C7.4.2.2 Modeling and Analysis Considerations for Linear Dynamic Procedure
463 14.5.2.2.2 Effective Period at the Displacement DX.
C7.4.2.2.3 Response Spectrum Method for Linear Dynamic Procedure
C7.4.2.3 Determination of Forces and Deformations for Linear Dynamic Procedure
C7.4.2.3.2 Diaphragms for LDP
C7.4.3 Nonlinear Static Procedure
C7.4.3.1 Basis of the Procedure
C7.4.3.2 Modeling and Analysis Considerations for Nonlinear Static Procedure
464 13.6.2.3.1 Life Safety Nonstructural Performance Level
C7.4.3.2.1 General Requirements for Nonlinear Static Procedure
C7.4.3.2.2 Component Modeling for Nonlinear Static Procedure
C7.4.3.2.4 Lateral Load Distribution for Nonlinear Static Procedure
C7.4.3.2.5 Idealized Force-Displacement Curve for Nonlinear Static Procedure
C7.4.3.3 Determination of Forces, Displacements, and Deformations for Nonlinear Static Procedure
C7.4.3.3.2 Target Displacement for Nonlinear Static Procedure
465 C7.4.3.3.4 Diaphragms for Nonlinear Static Procedure
466 12.4.3.3.2 Strength of Vertical Wood Siding Shear Walls
C7.4.4 Nonlinear Dynamic Procedure
C7.4.4.1 Basis of the Procedure
C7.4.4.2.1 General Requirements for Nonlinear Dynamic Procedure
C7.4.4.2.3 Nonlinear Response History Method for Nonlinear Dynamic Procedure
C7.4.4.2.5 Adaptive Models in NDP
C7.4.4.3 Determination of Forces and Deformations for Nonlinear Dynamic Procedure
467 C7.4.4.3.2 Diaphragms for Nonlinear Dynamic Procedure
468 C7.4.4.4 Damping for Nonlinear Dynamic Procedure
C7.5 ACCEPTANCE CRITERIA
469 C7.5.1.1 Deformation-Controlled and Force-Controlled Actions
470 11.4.2.7.3 Acceptance Criteria for Nonlinear Procedures for Infill Wall In-Plane Actions
13.6.5.2 Component Behavior and Retrofit Methods
C7.5.1.2 Critical and Noncritical Actions
C7.5.1.3 Expected and Lower-Bound Strengths
C7.5.1.4 Material Properties
C7.5.2 Linear Procedures
C7.5.2.1.1 Deformation-Controlled Actions for Linear Static Procedure or Linear Dynamic Procedure
C7.5.2.1.2 Force-Controlled Actions for Linear Static Procedure or Linear Dynamic Procedure
471 C7.5.2.2 Acceptance Criteria for Linear Procedures
C7.5.3 Nonlinear Procedures
C7.5.3.2 Acceptance Criteria for Nonlinear Procedures
C7.5.3.2.1 Unacceptable Response for Nonlinear Dynamic Procedure
472 C7.5.3.2.2 Acceptance Criteria for Deformation-Controlled Actions for NSP or NDP
473 C7.5.3.2.3 Acceptance Criteria for Force-Controlled Actions for Nonlinear Static Procedure or Nonlinear Dynamic Procedure
C7.6 EXPERIMENTALLY DERIVED MODELING PARAMETERS AND ACCEPTANCE CRITERIA
C7.6.1 Criteria for General Use Parameters
476 7.4.3.3.1 General Requirements for Nonlinear Static Procedure
C7.6.2 Criteria for Individual Project Testing
C7.6.2.1 Experimental Setup
477 C7.6.2.2 Data Reduction and Reporting
C7.6.3 Modeling Parameters and Acceptance Criteria for Nonadaptive Force-Deformation Curves
C12.5.2.1.4 Diagonal Lumber Sheathing with Straight Lumber Sheathing or Flooring Above
479 C7.6.4 Modeling Parameters and Acceptance Criteria for Component Actions Based on Experimental Data for Fiber Models
C7.6.5 Modeling Parameters and Acceptance Criteria for Component Actions Based on Experimental Data for Adaptive Force-Deformation Models in the Mathematical Model
480 Chapter C8: Foundations, Subsurface Soil, and Geologic Site Hazards
Chapter C8: Foundations, Subsurface Soil, and Geologic Site Hazards
C8.1 SCOPE
C8.2 SITE CHARACTERIZATION
C8.2.1 Subsurface Soil and Foundation Information
C8.2.1.1 Subsurface Soil Conditions
C8.2.1.2 Foundation Conditions
C8.2.1.2.2 Foundation Loads
C8.2.1.4 Soil Shear Modulus and Poisson’s Ratio Parameters
C13.2.1 Classification of Components
481 C8.2.2.1 Fault Rupture
C8.2.2.2 Liquefaction
483 C8.2.2.2.2 Postliquefaction Structural Evaluation
C8.2.2.3 Settlement of Nonliquefiable Soils
C8.2.2.4 Landsliding
C8.3 MITIGATION OF SEISMIC-GEOLOGIC SITE HAZARDS
484 C8.4 SHALLOW FOUNDATIONS
487 5.4.2.6 Torsion Irregularity
C8.4.2 Expected Soil Bearing Capacities
C8.4.2.1 Prescriptive Expected Soil Bearing Capacities
488 C8.4.2.2 Site-Specific Capacities
489 C8.4.4 Fixed-Base Procedure
490 11.2.3.9.3 Comprehensive Testing of Reinforced and Unreinforced Masonry
C8.4.4.1 Linear Procedures
C8.4.4.1.1 Isolated Spread Footings
497 C8.4.4.1.2 Combined Footings, Mat Foundations, and Isolated Spread Footings
499 7.4.1.1.3 Structural Walls and Wall Segments Controlled by Shear-Friction
C8.4.4.2 Nonlinear Procedures
C8.4.5.1 Soil Stiffness
C8.4.5.2 Linear Procedures
C8.4.5.2.1 Isolated Spread Footings
500 C8.4.5.2.2 Combined Footings, Mat Foundations, and Foundations Idealized as Isolated Footings
501 C8.4.5.3 Nonlinear Procedures
502 C8.4.5.3.1 Modeling Parameters for Nonlinear Static Procedure
503 C8.4.5.3.2 Modeling Parameters for Nonlinear Dynamic Procedure
C8.4.5.3.3 Acceptance Criteria
C8.4.6 Shallow Foundation Lateral Load
C8.5 DEEP FOUNDATIONS
C8.5.1 Pile Foundations
C8.5.2 Drilled Shafts
C8.6 SOIL-STRUCTURE INTERACTION EFFECTS
504 9.6.3.1.4 Connections of Wood Structural Panels
11.3.2.3.1 Linear Procedures for In-Plane URM Wall Actions.
12.4.2.1.3 Vertical Wood Siding Only
C8.6.1 Kinematic Interaction
C8.6.1.1 Base Slab Averaging
C8.6.1.2 Embedment
C8.6.2 Foundation Damping Soil-Structure Interaction Effects
505 C8.7 SEISMIC EARTH PRESSURE
506 C8.8 FOUNDATION RETROFIT
508 Chapter C9: Steel and Iron
Chapter C9: Steel and Iron
C9.1 SCOPE
C9.2 REFERENCE STANDARD FOR STRUCTURAL STEEL, COMPOSITE STEEL-CONCRETE, AND CAST AND WROUGHT IRON
C9.3 MODIFICATION TO THE REFERENCE STANDARD FOR STRUCTURAL STEEL, COMPOSITE STEEL-CONCRETE, AND CAST AND WROUGHT IRON
C9.4 MATERIAL PROPERTIES AND CONDITION ASSESSMENT FOR COLD-FORMED STEEL
509 3.2.4 Site and Foundation Information
5.4.1.2 Adjacent Buildings
14.2.3 Isolation System
C9.4.2.1 Material Properties
C9.4.2.2 Component Properties
C9.4.3.1 General
510 4.4.3 Quick Checks for Strength and Stiffness
C9.4.3.3 Basis for the Mathematical Building Model
C9.5 GENERAL ASSUMPTIONS AND REQUIREMENTS FOR COLD-FORMED STEEL
C9.5.1 Stiffness
C9.5.2 Strength and Acceptance Criteria
C9.5.2.2 Deformation-Controlled Actions
511 C9.5.3 Connection Requirements in Cold-Formed Steel Light-Frame Construction
C9.5.5 Retrofit Measures
C9.6 COLD-FORMED STEEL LIGHT-FRAME CONSTRUCTION, SHEAR WALL SYSTEMS
C9.6.2 Types of Cold-Formed Steel Light-Frame Construction, Shear Wall Systems
C9.6.2.1 Existing Cold-Formed Steel Light-Frame Shear Walls
C9.6.2.2 Enhanced Cold-Formed Steel Light-Frame Shear Walls
512 11.3.2.2.7 Expected Strengths of URM Wall Spandrels with Shallow Arches Subject to In-Plane Actions.

C9.6.3.1.1 Stiffness of Wood Structural Panels
C9.6.3.1.3 Acceptance Criteria for Wood Structural Panels
C9.7 COLD-FORMED STEEL MOMENT-FRAME SYSTEMS

C9.7.3.1 Generic Cold-Formed Steel Moment Connection
C9.7.3.1.1 Strength of Generic Cold-Formed Steel Moment Connection
C9.7.3.1.4 Connections for Cold-Formed Steel Generic Moment Connection
C9.7.3.2 Cold-Formed Steel Special Bolted Moment Frame
C9.7.3.2.3 Acceptance Criteria for Cold-Formed Steel Special Bolted Moment Frame
C9.8 COLD-FORMED STEEL LIGHT-FRAME CONSTRUCTION, STRAP-BRACED WALL SYSTEMS
C9.8.1 General
C9.8.2 Types of Cold-Formed Steel Light-Framed Construction with Strap-Braced Walls
C9.8.2.1 Existing Cold-Formed Steel Light-Frame Construction with Strap-Braced Walls
C9.8.2.2 Cold-Formed Steel Light-Frame Construction with Enhanced Strap-Braced Walls
C9.9 CFS DIAPHRAGMS

514 C3.2.5 Adjacent Buildings
Chapter C10: Concrete
Chapter C10: Concrete
C10.3 Modifications to the Reference Standard
C10.3.1 General Assumptions and Requirements. Replace Section C3.1 of ACI 369.1 with the italicized text as follows.

C3.1.1 General
C3.1.2.1 Linear procedures.
C16.2.1 Scope

515 B.3.3 Historic Buildings
C3.1.2.2.3
C3.1.2.2.3.
C3.1.2.2 Nonlinear procedures,
C12.2.2.2.1 Elements
518 4.4.2.3 Spectral Acceleration
C10.3.2 Concrete Structural Walls. Replace Sections C7.1 through C7.7 of ACI 369.1 with the italicized text as follows.
C7.1 Types of Concrete Structural Walls and Associated Components

C7.1.2 Reinforced concrete columns supporting discontinuous structural walls.

520 C7.1.3 Reinforced concrete coupling beams.
C7.2.1 Flexural Strength.
C7.2.2 Shear Strength.
C7.2.3 Shear-Friction Strength.
521 12.2.3.2.1 Visual Condition Assessment
15.5.2.2.3 Fluid Viscous Devices

C7.3 Linear Static and Dynamic Procedures for Structural Walls and Wall Segments

C7.3.1

523 C7.4.1 Modeling.
C7.4.1.1 Nonlinear Static and Nonlinear Dynamic Procedures Employing Lumped-Plasticity Load-Deformation Models
C7.4.1.1.2. Structural Walls and Wall Segments Controlled by Shear.
524 C7.4.1.1.3 Structural Walls and Wall Segments Controlled by Shear-Friction.
525 C7.4.1.2 Solid Element and Layered Shell Element Models Employ Multi-Dimensional Concrete Material Models.
526 C7.4.1.1.3. Structural Walls and Wall Segments Controlled by Shear-Friction.
C7.4.2 Acceptance Criteria
C7.7 Retrofit Measures for Reinforced Concrete Structural Walls, Wall Segments, and Coupling Beams
527 C12.1 Types of Concrete Foundations
C12.1.2 Deep Concrete Foundations
C12.1.2.1. Driven Concrete Pile Foundations.
C12.1.2.2. Cast-in-Place Concrete Pile Foundations.
C12.2 Analysis of Existing Concrete Foundations
530 C2.2.2 Nonstructural Performance Levels
Chapter C11: Masonry
Chapter C11: Masonry
C11.1 SCOPE
C11.2 CONDITION ASSESSMENT AND MATERIAL PROPERTIES
C11.2.1 General
C11.2.2 Condition Assessment
532 C11.2.2.4 Condition Enhancement
C11.2.3 Properties of In-Place Materials and Components
C11.2.3.3 Masonry Compressive Strength
533 4.4.2.2 Story Shear Forces
9.4.2.4 Minimum Number of Tests
9.4.2.4.2 Comprehensive Testing for Cold-Formed Steel
16.2.2.3 Masonry Strength
C4.4.3.6 Column Axial Stress Caused by Overturning
C7.1.1 Monolithic reinforced concrete structural walls and wall segments.
C11.2.3.4 Masonry Elastic Modulus in Compression
C11.2.3.5 Masonry Flexural Tensile Strength
C11.2.3.6 Unreinforced Masonry Shear Strength
C11.2.3.6.1 Determination of Expected URM Shear Strength by Testing for Bed-Joint Shear Strength
C11.2.3.6.2 Alternative Procedures for Determining Expected URM Shear Strength by Testing for Tensile Splitting Strength
C11.2.3.7 Masonry Shear Modulus
C14.2.5.2 Components at or above the Isolation Interface
534 15.5.2.3 Other Types of Devices
C7.2.6 Multidirectional Seismic Effects
C11.2.3.10 Default Properties
C11.3 MASONRY WALLS
C11.3.1 Types of Masonry Walls
C11.3.1.2 New Masonry Walls
C11.3.1.3 Retrofitted Masonry Walls
C14.3.2 Nominal Design Properties of Isolation System Devices
535 C11.3.2.1 Stiffness of URM Walls and Wall Piers Subject to In-Plane Actions
C13.6.1.1.1 Definition and Scope
537 C5.5.1.1 Redundancy
C11.3.2.2 Strength of URM Walls Subject to In-Plane Actions
C13.6.1.1.2 Component Behavior and Retrofit Methods
538 14.3.2 Nominal Design Properties of Isolation System Devices
C11.3.2.2.1 Expected In-Plane Rocking Strength of URM Walls and Wall Piers
539 C7.2.12 Continuity
C11.3.2.2.2 Expected In-Plane Bed-Joint Sliding Strength of URM Walls and Wall Piers
540 C11.3.2.2.3 Lower-Bound In-Plane Toe-Crushing Strength of URM Walls and Wall Piers
C11.3.2.2.4 Lower-Bound In-Plane Diagonal Tension Strength of URM Walls and Wall Piers
C11.3.2.2.6 Expected Strengths of Rectangular URM Wall Spandrels Subject to In-Plane Actions
541 9.5.5 Retrofit Measures
C11.3.2.2.7 Expected Strengths of URM Wall Spandrels with Shallow Arches Subject to In-Plane Actions
542 14.4.1 Isolation System Device Modeling
15.8.1.2 Sequence and Cycles of Testing
C11.3.2.3 Acceptance Criteria for URM In-Plane Actions
C11.3.2.3.1 Linear Procedures for In-Plane URM Wall Actions
C11.3.2.3.2 Nonlinear Procedures for In-Plane URM Wall Actions
544 C11.3.3.2 Strength of URM Walls Subject to Out-of-Plane Actions
C11.3.3.3 Acceptance Criteria for URM Walls Subject to Out-of-Plane Actions
C14.5.2.2 Minimum Lateral Displacements
545 C11.3.4 Reinforced Masonry Walls and Wall Piers In-Plane Actions
546 11.3.2.2.4 Lower-Bound In-Plane Diagonal Tension Strength of URM Walls and Wall Piers
C11.3.4.3 Flexure-Governed In-Plane Actions of Reinforced Masonry Walls and Wall Piers
C11.3.4.4 Shear-Governed In-Plane Actions of Reinforced Masonry Walls and Wall Piers
547 11.3.3.1 Stiffness of URM Walls Subject to Out-of-Plane Actions
C8.5.1.2 Capacity Parameters
C11.3.4.6 Acceptance Criteria for In-Plane Actions of Reinforced Masonry Walls and Wall Piers
C11.3.5 Reinforced Masonry Wall Out-of-Plane Actions
C11.3.5.3 Acceptance Criteria for Reinforced Masonry Wall Out-of-Plane Actions
C11.4 MASONRY INFILLS
C11.4.1 Types of Masonry Infills
C11.4.1.1 Existing Masonry Infills
C11.4.1.3 Retrofitted Masonry Infills
C11.4.2.1 Stiffness: Masonry Infill In-Plane Actions
C11.4.2.2 Stiffness: Masonry Infill with Openings In-Plane Actions
C13.6.2.1 Definition and Scope
548 C11.4.2.3 Strength: Infilled Reinforced Concrete Frames In-Plane Actions
549 A.3.2.2 Concrete Shear Walls
C11.4.2.5 Drift: Infill Wall In-Plane Actions
C11.4.2.6 Strut Model for Infill In-Plane Actions
C11.4.2.7 Acceptance Criteria for Infill Wall In-Plane Actions
C11.4.3 Masonry Infill Wall Out-of-Plane Actions
C11.4.3.1 Stiffness: Infill Wall Out-of-Plane Actions
C11.4.3.2 Strength: Infill Wall Out-of-Plane Actions
C11.4.3.3 Strength: Infill Wall In-Plane and Out-of-Plane Interaction
550 A.3.2.3.1 Shear Stress Check
C11.5 ANCHORAGE TO MASONRY WALLS
C11.5.2 Analysis of Anchors
C11.5.3 Quality Assurance for Anchors in Masonry Walls
C11.6 MASONRY FOUNDATION ELEMENTS
C11.6.1 Types of Masonry Foundations
C11.6.3 Foundation Retrofit Measures
C11.7 MASONRY DIAPHRAGMS
C11.7.1 General
C11.7.2 Seismic Evaluation of Masonry Diaphragms
551 C11.7.3 Retrofit Measures for Masonry Diaphragms
552 Chapter C12: Wood
Chapter C12: Wood
C12.1 SCOPE
C12.2 MATERIAL PROPERTIES AND CONDITION ASSESSMENT
553 10.3.1 General Assumptions and Requirements.
12.2.2 Properties of In-Place Materials and Components
C4.4.2.1 Pseudo Seismic Force
C3.1.2.2.4.

C12.2.2.1.3 Nominal or Specified Properties
C12.2.2.3 Test Methods to Quantify Material Properties

554 13.3.2.5 Alternate Test Criteria
14.2.4 Structural System
C9.4.3.2 Scope and Procedures
C12.2.2.5.1 Wood Construction Default Properties
C12.2.3.1 General
C12.2.3.2 Scope and Procedures for Condition Assessment
C12.2.3.3 Basis for the Mathematical Building Model
C16.2.3 Analysis
555 C11.2.3.8 Steel Reinforcement Yield Strength Properties
C12.3 GENERAL ASSUMPTIONS AND REQUIREMENTS

C12.3.3 Connection Requirements
C12.4 WOOD SHEAR WALLS
C12.4.1 General

556 14.3.4 Property Modification Factors
C7.5.1 Modeling
C12.4.2 Types of Wood Shear Walls
C12.4.2.1 Existing Wood Shear Walls
C12.4.2.1.2 Diagonal Lumber Sheathing
C12.4.2.1.3 Vertical Wood Siding Only
C12.4.2.1.4 Wood Siding over Horizontal Lumber Sheathing
C12.4.2.1.5 Wood Siding over Diagonal Lumber Sheathing
C12.4.2.1.6 Wood Structural Panel Sheathing or Siding
C12.4.2.1.7 Stucco on Studs
C12.4.2.1.8 Gypsum Plaster on Wood Lath
C12.4.2.1.9 Gypsum Plaster on Gypsum Lath
C12.4.2.1.10 Gypsum Wallboard
C12.4.2.1.11 Gypsum Sheathing
C12.4.2.1.13 Horizontal Lumber Sheathing with Cut-In Braces or Diagonal Blocking
C12.4.2.1.14 Fiberboard or Particleboard Sheathing
C12.4.2.2 Enhanced Wood Shear Walls
557 13.2 Definitions
C5.5.3.1 General Procedures for Shear Walls
C12.4.2.3 New Wood Shear Walls
C12.4.3 Stiffness, Strength, Acceptance Criteria, and Connection Design for Wood Shear Walls
C12.4.3.1 Single-Layer Horizontal Lumber Sheathing or Siding Shear Walls
C12.4.3.1.1 Stiffness of Single-Layer Horizontal Lumber Sheathing or Siding Shear Walls
C12.4.3.1.2 Strength of Single-Layer Horizontal Lumber Sheathing or Siding Shear Walls
C12.4.3.1.3 Acceptance Criteria for Single-Layer Horizontal Lumber Sheathing or Siding Shear Walls
C12.4.3.1.4 Connections of Single-Layer Horizontal Lumber Sheathing or Siding Shear Walls
C12.4.3.2 Diagonal Lumber Sheathing Shear Walls
C12.4.3.2.1 Stiffness of Diagonal Lumber Sheathing Shear Walls
C12.4.3.2.2 Strength of Diagonal Lumber Sheathing Shear Walls
C12.4.3.3 Vertical Wood Siding Shear Walls
C12.4.3.3.1 Stiffness of Vertical Wood Siding Shear Walls
C12.4.3.3.2 Strength of Vertical Wood Siding Shear Walls
C12.4.3.3.4 Connections of Vertical Wood Siding Shear Walls
C12.4.3.4 Wood Siding over Horizontal Lumber Sheathing Shear Walls
C12.4.3.4.1 Stiffness of Wood Siding over Horizontal Lumber Sheathing Shear Walls
558 C12.4.3.4.2 Strength of Wood Siding over Horizontal Lumber Sheathing Shear Walls
C12.4.3.5 Wood Siding over Diagonal Lumber Sheathing Shear Walls
C12.4.3.5.1 Stiffness of Wood Siding over Diagonal Lumber Sheathing Shear Walls
C12.4.3.5.2 Strength of Wood Siding over Diagonal Lumber Sheathing Shear Walls
C12.4.3.6 Wood Structural Panel Sheathing or Siding Shear Walls
C12.4.3.6.2 Strength of Wood Structural Panel Sheathing or Siding Shear Walls
C12.4.3.7 Stucco on Studs, Sheathing, or Fiberboard Shear Walls
C12.4.3.7.1 Stiffness of Stucco on Studs, Sheathing, or Fiberboard Shear Walls
C12.4.3.7.2 Strength of Stucco on Studs, Sheathing, or Fiberboard Shear Walls
C12.4.3.7.4 Connections of Stucco on Studs, Sheathing, or Fiberboard Shear Walls
C12.4.3.8 Gypsum Plaster on Wood Lath Shear Walls
C12.4.3.8.1 Stiffness of Gypsum Plaster on Wood Lath Shear Walls
C12.4.3.8.4 Connections of Gypsum Plaster on Wood Lath Shear Walls
C12.4.3.9 Gypsum Plaster on Gypsum Lath Shear Walls
C12.4.3.9.1 Stiffness of Gypsum Plaster on Gypsum Lath Shear Walls
C12.4.3.9.4 Connections of Gypsum Plaster on Gypsum Lath Shear Walls
C12.4.3.10 Gypsum Wallboard Shear Walls
C12.4.3.10.1 Stiffness of Gypsum Wallboard Shear Walls
C12.4.3.10.2 Strength of Gypsum Wallboard Shear Walls
C12.4.3.11 Gypsum Sheathing Shear Walls
C12.4.3.11.1 Stiffness of Gypsum Sheathing Shear Walls
559 7.4.3.2.5 Idealized Force-Displacement Curve for Nonlinear Static Procedure
C12.4.3.11.2 Strength of Gypsum Sheathing Shear Walls
C12.4.3.12 Plaster on Metal Lath Shear Walls
C12.4.3.12.1 Stiffness of Plaster on Metal Lath Shear Walls
C12.4.3.12.4 Connections of Plaster on Metal Lath Shear Walls
C12.4.3.13 Horizontal Lumber Sheathing with Cut-In Braces or Diagonal Blocking Shear Walls
C12.4.3.13.1 Stiffness of Horizontal Lumber Sheathing with Cut-In Braces or Diagonal Blocking Shear Walls
C12.4.3.13.4 Connections of Horizontal Lumber Sheathing with Cut-In Braces or Diagonal Blocking Shear Walls
C12.4.3.14 Fiberboard or Particleboard Sheathing Shear Walls
C12.4.3.14.1 Stiffness of Fiberboard or Particleboard Sheathing Shear Walls
C12.4.3.14.2 Strength of Fiberboard or Particleboard Sheathing Shear Walls
C12.4.3.14.4 Connections of Fiberboard or Particleboard Sheathing Shear Walls
C12.5 WOOD DIAPHRAGMS
C12.5.1 General
C12.5.2 Types of Wood Diaphragms
C12.5.2.1 Existing Wood Diaphragms
C12.5.2.1.1 Single-Layer Straight Lumber Sheathing
C12.5.2.1.2 Double-Layer Straight Lumber Sheathing
C12.5.2.1.3 Single-Layer Diagonal Lumber Sheathing
C13.7.4.2 Component Behavior and Retrofit Methods
C13.7.5.1 Definition and Scope
560 12.4.3.8.1 Stiffness of Gypsum Plaster on Wood Lath Shear Walls
A.3.2.8 Cold-Formed Steel Light-Frame Construction, Shear Wall Systems
C12.5.2.1.5 Double-Layer Diagonal Lumber Sheathing
C12.5.2.1.6 Wood Structural Panel Sheathing
C12.5.2.2 Enhanced Wood Diaphragms
C12.5.2.3 New Wood Diaphragms
561 A.3.3.2 Concentrically Braced Frames
C12.5.3 Stiffness, Strength, Acceptance Criteria, and Connection Design for Wood Diaphragms
C12.5.3.1.1 Stiffness of Single-Layer Straight Lumber Sheathing Diaphragms
C12.5.3.1.2 Strength of Single-Layer Straight Lumber Sheathing Diaphragms
C12.5.3.1.3 Acceptance Criteria for Single-Layer Straight Lumber Sheathing Diaphragms
C12.5.3.1.4 Connections of Single-Layer Straight Lumber Sheathing Diaphragms
C12.5.3.2 Double-Layer Straight Lumber Sheathing Diaphragms
C12.5.3.2.1 Stiffness of Double-Layer Straight Lumber Sheathing Diaphragms
C12.5.3.2.2 Strength of Double-Layer Straight Lumber Sheathing Diaphragms
C12.5.3.3 Single-Layer Diagonal Lumber Sheathing Diaphragms
C12.5.3.3.1 Stiffness of Single-Layer Diagonal Lumber Sheathing Diaphragms
C12.5.3.3.2 Strength of Single-Layer Diagonal Lumber Sheathing Diaphragms
C12.5.3.4 Diagonal Lumber Sheathing with Straight Lumber Sheathing or Flooring above Diaphragms
C12.5.3.4.1 Stiffness of Diagonal Lumber Sheathing with Straight Lumber Sheathing or Flooring above Diaphragms
C12.5.3.4.2 Strength of Diagonal Lumber Sheathing with Straight Lumber Sheathing or Flooring above Diaphragms
C12.5.3.5 Double-Layer Diagonal Lumber Sheathing Diaphragms
C12.5.3.5.1 Stiffness of Double-Layer Diagonal Lumber Sheathing Diaphragms
C12.5.3.5.2 Strength of Double-Layer Diagonal Lumber Sheathing Diaphragms
562 C12.5.3.6.1 Stiffness of Wood Structural Panel Sheathing Diaphragms
C12.5.3.6.2 Strength of Wood Structural Panel Sheathing Diaphragms
C12.5.3.7.1 Stiffness of Wood Structural Panel Overlays on Straight or Diagonal Lumber Sheathing Diaphragms
C12.5.3.8 Wood Structural Panel Overlays on Existing Wood Structural Panel Sheathing Diaphragms
C12.5.3.8.1 Stiffness of Wood Structural Panel Overlays on Existing Wood Structural Panel Sheathing Diaphragms
C12.6 WOOD FOUNDATIONS
C12.6.1 Types of Wood Foundations
563 C12.6.2 Analysis, Strength, and Acceptance Criteria for Wood Foundations
C12.6.3 Retrofit Measures for Wood Foundations
C12.7 OTHER WOOD ELEMENTS AND COMPONENTS
C12.7.1 General
C12.7.1.2 Strength of Other Wood Elements and Components
C12.7.1.3 Acceptance Criteria for Other Wood Elements and Components
564 Chapter C13: Architectural, Mechanical, and Electrical Components
Chapter C13: Architectural, Mechanical, and Electrical Components
C13.1 SCOPE
C13.2 EVALUATION AND RETROFIT PROCEDURE FOR NONSTRUCTURAL COMPONENTS
C13.3 COMPONENT ASSESSMENT AND ANCHORAGE TESTING
565 3.2.5 Adjacent Buildings
3.2.5.2 Shared Element Condition
9.4.3 Condition Assessment
C3.4.1 Benchmark Procedure Checklist
C4.4.2.4 Period
C5.4.2 Building Configuration
C13.3.2 Testing Requirements for Evaluating the Performance of Existing Attachments for Nonstructural Components
C13.3.2.1 Components Evaluated to the Operational Performance Level
C13.3.2.2 Components Evaluated to the Position Retention or Life Safety Performance Level
C13.3.2.2.1 Concrete or Masonry Anchors Used in the Seismic Bracing of Distributed Systems
C13.3.2.3 Tension Testing Procedure
C13.3.2.5 Alternate Test Criteria
C13.4 EVALUATION PROCEDURES
C13.4.2 Analytical Procedure
C13.4.3 Prescriptive Procedure
C16.2.2.3.2 Masonry Compression
566 C4.4.3.9 Flexural Stress in Columns and Beams of Steel Moment Frames
C13.4.4.3 Load Combination
C13.4.4.4.1 Existing Components
C13.4.5 Deformation Analysis
C13.5 RETROFIT APPROACHES
567 C13.6 ARCHITECTURAL COMPONENTS: DEFINITION, BEHAVIOR, AND ACCEPTANCE CRITERIA
C13.6.1.1 Adhered Veneer
C13.6.1.2 Anchored Veneer
C13.6.1.2.1 Definition and Scope
C13.6.1.2.2 Component Behavior and Retrofit Methods
568 7.2.11 Diaphragms, Chords, Collectors, and Ties
7.2.11.3 Diaphragm Chords
8.4.5.3 Nonlinear Procedures
7.4.1.2 Nonlinear Static and Nonlinear Dynamic Procedures Employing Models Other Than Lumped-Plasticity Load-Deformation Models.
12.3.2.3 Force-Controlled Actions
12.3.2.3.1 Wood Construction
12.3.5 Retrofit Measures
A.3.1.4.3 Flat Slab Frames.
C13.6.1.2.3 Acceptance Criteria
C13.6.1.3 Glass Block Units and Other Nonstructural Masonry
C13.6.1.3.2 Component Behavior and Retrofit Methods
C13.6.1.4 Prefabricated Panels
C13.6.1.4.1 Definition and Scope
C13.6.1.4.2 Component Behavior and Retrofit Methods
C13.6.1.5 Glazed Exterior Wall Systems
C13.6.1.5.1 Definition and Scope
C13.6.1.5.2 Component Behavior and Retrofit Methods
C13.6.1.5.3 Acceptance Criteria
C14.5.2 Linear Static Procedure
569 C13.6.1.5.4 Evaluation Requirements
C13.6.2 Partitions
C13.6.2.2 Component Behavior and Retrofit Methods
C13.6.3 Interior Veneers
C13.6.3.2 Component Behavior and Retrofit Methods
C13.6.4 Ceilings
C13.6.4.1 Definition and Scope
C13.6.4.2 Component Behavior and Retrofit Methods
C13.6.5 Parapets and Cornices
C13.6.5.1 Definition and Scope
C13.6.5.2 Component Behavior and Retrofit Methods
C13.6.6 Architectural Appendages and Marquees
C13.6.6.2 Component Behavior and Retrofit Methods
570 13.6.3.3 Acceptance Criteria
C13.6.9 Chimneys and Stacks
C13.6.9.2 Component Behavior and Retrofit Methods
C13.6.10.1 Definition and Scope
C13.6.10.2 Component Behavior and Retrofit Methods
C13.6.11 Doors Required for Emergency Services Egress in Essential Facilities
C13.6.11.1 Definition and Scope
C13.6.12 Computer Access Floors
C13.6.12.1 Definition and Scope
C13.6.12.2 Component Behavior and Retrofit Methods
C13.6.12.4 Evaluation Requirements
C13.7 MECHANICAL, ELECTRICAL, AND PLUMBING COMPONENTS: DEFINITION, BEHAVIOR, AND ACCEPTANCE CRITERIA
C13.7.1 Mechanical Equipment
C13.7.1.1 Definition and Scope
C13.7.1.2 Component Behavior and Retrofit Methods
571 14.6.2 Qualification Tests
C13.7.1.4 Evaluation Requirements
C13.7.2 Storage Vessels and Water Heaters
C13.7.2.2 Component Behavior and Retrofit Methods
C13.7.2.4 Evaluation Requirements
C13.7.3 Pressure Piping
C13.7.3.2 Component Behavior and Retrofit Methods
C13.7.3.4 Evaluation Requirements
C13.7.4 Fire Suppression Piping
C13.7.4.3 Acceptance Criteria
C13.7.4.4 Evaluation Requirements
C13.7.5 Fluid Piping Other Than Fire Suppression
C13.7.5.2 Component Behavior and Retrofit Methods
C13.7.5.4 Evaluation Requirements
572 C12.5.2.3.4 New Braced Horizontal Diaphragms
C13.7.6 Ductwork
C13.7.6.2 Component Behavior and Retrofit Methods
C13.7.7 Electrical and Communications Equipment
C13.7.7.2 Component Behavior and Retrofit Methods
C13.7.7.4 Evaluation Requirements
C13.7.8 Electrical and Communications Distribution Components
C13.7.9 Light Fixtures
C13.7.9.2 Component Behavior and Retrofit Methods
C13.7.10 Rooftop Solar Photovoltaic Arrays
C13.7.10.1 Definition and Scope
C13.7.10.2 Component Behavior and Retrofit Methods
C13.7.11 Elevators
C13.7.11.2 Component Behavior and Retrofit Methods
C13.7.11.4 Evaluation Requirements
C13.7.12 Conveyors
C13.7.12.2 Component Behavior and Retrofit Methods
C13.8 FURNISHINGS AND CONTENTS: DEFINITION, BEHAVIOR, AND ACCEPTANCE CRITERIA
C13.8.1 Steel Storage Racks
C13.8.1.1 Definition and Scope
573 C13.8.1.2 Component Behavior and Retrofit Methods
C13.8.2 Contents
C13.8.2.1 Definition and Scope
C13.8.2.2 Component Behavior and Retrofit Methods
C13.8.3 Hazardous Material Storage
C13.8.4 Computer and Communication Racks
C13.8.4.1 Definition and Scope
C13.8.4.2 Component Behavior and Retrofit Methods
574 2.3.2 General Response Spectrum
11.2.3.1 General
14.2.3.4 Lateral Restoring Force
C2.3.1.2 BSE-1N Seismic Hazard Level
C7.2.4.2 Torsion
C8.2.1.3 Load-Deformation Characteristics of Subsurface Soil under Seismic Loading
Chapter C14: Seismic Isolation
Chapter C14: Seismic Isolation
C14.1 SCOPE
C14.2 GENERAL REQUIREMENTS
C14.2.3 Isolation System
C14.2.3.1 Environmental Conditions
C14.2.3.2 Wind Displacement
C14.2.3.3 Fire Resistance
C14.2.3.4 Lateral Restoring Force
C14.2.3.5 Displacement Restraint
C14.2.3.6 Vertical Load Stability
C14.2.3.7 Overturning
575 5.4.1.3 Mezzanines
C3.4.2.2 Seismic Force Provisions
  Specimen Shear Strength versus Shear Demand Associated with Flexural Yielding.
C11.2.3.6.3 Determination of Lower-Bound URM Shear Strength by Testing for Bed-Joint Shear Strength
C14.2.3.8 Inspection and Replacement
C14.2.4 Structural System
C14.2.5 Elements of Structures and Nonstructural Components
C14.2.5.3 Components Crossing the Isolation Interface
C14.2.6 Seismic Load Effects and Load Combinations
576 C14.3 SEISMIC ISOLATION SYSTEM DEVICE PROPERTIES
C14.3.1 Isolation System Device Types
C14.3.3 Bounding Properties of Isolation System Devices
C14.3.3.1 Specification Tolerance on Design Properties
C14.3.3.2 Testing Variations on Design Properties
577 7.2.8 Soil-Structure Interaction
15.6.4 Maintenance
A.3.1.3.7 Strong Column-Weak Beam
C14.3.3.3 Aging and Environmental Effects on Design Properties
C14.3.4 Property Modification Factors
C14.3.5 Upper- and Lower-Bound Properties
C14.4 MODELING
C14.4.1 Isolation System Device Modeling
578 C10.3.3 Concrete Foundations. Replace Sections C12.1 through C12.4 of ACI 369.1 with the italicized text as follows.
C14.4.2 Isolation System and Superstructure Modeling
C14.4.2.3 Superstructure Model
C14.5 ANALYSIS PROCEDURES
C14.5.1 Selection of Analysis Procedure
C14.5.1.1 Linear Static Procedure
C14.5.2.2.1 Isolation System Displacement
C14.5.2.2.2 Effective Period at the Displacement DX.
C14.5.2.2.3 Total Isolation System Displacement
579 7.2.14.1 Interconnection
8.5.1.2 Capacity Parameters
C14.5.2.3 Minimum Lateral Forces
C14.5.2.3.1 Isolation System and Structural Elements at or below the Base Level
C14.5.2.3.2 Structural Elements above the Base Level
C14.5.2.3.3 Limits on Vst
580 8.5.3.2.1 Fixed-Base Assumption
9.6.3.2.4 Connections of Steel Sheet Sheathing
C11.4.2 Masonry Infill In-Plane Actions
C14.5.5 Nonlinear Dynamic Procedure
C14.5.5.2 Accidental Mass Eccentricity
C14.6 ISOLATION SYSTEM TESTING AND DESIGN PROPERTIES
C14.6.3 Prototype Tests
C14.6.3.5 Dynamic Testing
C14.6.3.9 Testing Similar Isolation System Devices
C14.6.4 Production Testing
581 C14.6.5 Determination of Force-Deflection Characteristics
C14.7 DESIGN REVIEW
582 C11.2.2.2 Comprehensive Condition Assessment
Chapter C15: Design Requirements for Structures with Supplemental Energy Dissipation
Chapter C15: Design Requirements for Structures with Supplemental Energy Dissipation
C15.1 SCOPE
C15.2 GENERAL DESIGN REQUIREMENTS

C15.2.2.1 Ground Motion Acceleration Histories
C15.2.3 Damping Device Requirements
C15.2.3.1 Device Classification

584 7.2.4.2.3 Consideration of Torsional Effects for Nonlinear Procedures
3.1.3 Flanged Construction
7.1.1 Monolithic Reinforced Concrete Structural Walls and Wall Segments
C12.3.2.2 Deformation-Controlled Actions
C15.3 PROPERTIES OF ENERGY DISSIPATION DEVICES
C15.3.2 Maximum and Minimum Damper Properties
C15.4 ANALYSIS PROCEDURE SELECTION
C15.4.1 General Limitations for the Linear Analysis Procedures
C15.5 NONLINEAR DYNAMIC PROCEDURES
C15.5.1 General Requirements
C15.5.2.2.2 Fluid Viscoelastic Devices
C15.5.2.3 Other Types of Devices
C15.5.3 Accidental Eccentricity
C16.2.3.5.2 Combinations of Vertical Elements
585 C15.7 DESIGN REVIEW
C15.8 REQUIRED TESTS OF ENERGY DISSIPATION DEVICES
C15.8.2 Production Tests
C15.10 NONLINEAR STATIC PROCEDURE
C15.10.2 Velocity-Dependent Devices
586 Chapter C16: System-Specific Performance Procedures
Chapter C16: System-Specific Performance Procedures
C16.1 SCOPE
C16.2 SPECIAL PROCEDURE FOR UNREINFORCED MASONRY
587 11.2.2.2 Comprehensive Condition Assessment
C7.2.4.1 Basic Assumptions
C16.2.2 Condition of Existing Materials
C16.2.2.2 Testing
C16.2.2.2.2 Masonry
C16.2.2.2.3 Wall Anchors
C16.2.2.3 Masonry Strength
C16.2.2.3.1 Shear Strength
588 B.4.4 Example Programs
C16.2.3.2 Diaphragms
C16.2.3.2.3 Acceptability Criteria
C16.2.3.5.4 Forces on New Vertical Elements
589 C8.4.3 Simplified Procedure
C16.2.3.5.6 Drift Limits
C16.2.4 Other Components and Systems of URM Buildings
C16.2.4.2 Out-of-Plane Demands
C16.2.4.3 Wall Anchorage
C16.2.5 Detailing for New Elements
592 C6.2.3 Material Properties
C14.2.2 Seismic Hazard
Chapter C17: Tier 1 Checklists
Chapter C17: Tier 1 Checklists
C17.1 BASIC CHECKLISTS
C17.1.1 Very Low Seismicity Checklist
C17.1.2 Basic Configuration Checklist
C17.2 STRUCTURAL CHECKLISTS FOR BUILDING TYPES W1: WOOD LIGHT FRAMES, SMALL RESIDENTIAL
C17.3 STRUCTURAL CHECKLISTS FOR BUILDING TYPE W2: WOOD FRAMES, LARGE RESIDENTIAL, COMMERCIAL, INDUSTRIAL, AND INSTITUTIONAL
C17.4 STRUCTURAL CHECKLISTS FOR BUILDING TYPES S1: STEEL MOMENT FRAMES WITH STIFF DIAPHRAGMS, AND S1A: STEEL MOMENT FRAMES WITH FLEXIBLE DIAPHRAGMS
C17.5 STRUCTURAL CHECKLISTS FOR BUILDING TYPES S2: STEEL BRACED FRAMES WITH STIFF DIAPHRAGMS, AND S2A: STEEL BRACED FRAMES WITH FLEXIBLE DIAPHRAGMS
C17.6 STRUCTURAL CHECKLISTS FOR BUILDING TYPE S3: METAL BUILDING FRAMES
C17.7 STRUCTURAL CHECKLISTS FOR BUILDING TYPE S4: DUAL SYSTEMS WITH BACKUP STEEL MOMENT FRAMES AND STIFF DIAPHRAGMS
C17.8 STRUCTURAL CHECKLISTS FOR BUILDING TYPES S5: STEEL FRAMES WITH INFILL MASONRY SHEAR WALLS AND STIFF DIAPHRAGMS, AND S5A: STEEL FRAMES WITH INFILL MASONRY SHEAR WALLS AND FLEXIBLE DIAPHRAGMS
C17.9 STRUCTURAL CHECKLISTS FOR BUILDING TYPE CFS1: COLD-FORMED STEEL LIGHT-FRAME BEARING WALL CONSTRUCTION, SHEAR WALL LATERAL SYSTEM
593 C17.10 STRUCTURAL CHECKLISTS FOR BUILDING TYPE CFS2: COLD-FORMED STEEL LIGHT-FRAME BEARING WALL CONSTRUCTION, STRAP-BRACED LATERAL WALL SYSTEM
C17.11 STRUCTURAL CHECKLISTS FOR BUILDING TYPE C1: CONCRETE MOMENT FRAMES
C17.12 STRUCTURAL CHECKLISTS FOR BUILDING TYPES C2: CONCRETE SHEAR WALLS WITH STIFF DIAPHRAGMS, AND C2A: CONCRETE SHEAR WALLS WITH FLEXIBLE DIAPHRAGMS
C17.13 STRUCTURAL CHECKLISTS FOR BUILDING TYPES C3: CONCRETE FRAMES WITH INFILL MASONRY SHEAR WALLS, AND C3A: CONCRETE FRAMES WITH INFILL MASONRY SHEAR WALLS AND FLEXIBLE DIAPHRAGMS
C17.14 STRUCTURAL CHECKLISTS FOR BUILDING TYPES PC1: PRECAST OR TILT-UP CONCRETE SHEAR WALLS WITH FLEXIBLE DIAPHRAGMS, AND PC1A: PRECAST OR TILT-UP CONCRETE SHEAR WALLS WITH STIFF DIAPHRAGMS
C17.15 STRUCTURAL CHECKLISTS FOR BUILDING TYPE PC2: PRECAST CONCRETE FRAMES WITH SHEAR WALLS
C17.16 STRUCTURAL CHECKLISTS FOR BUILDING TYPE PC2A: PRECAST CONCRETE FRAMES WITHOUT SHEAR WALLS
C17.17 STRUCTURAL CHECKLISTS FOR BUILDING TYPES RM1: REINFORCED MASONRY BEARING WALLS WITH FLEXIBLE DIAPHRAGMS, AND RM2: REINFORCED MASONRY BEARING WALLS WITH STIFF DIAPHRAGMS
C17.18 STRUCTURAL CHECKLISTS FOR BUILDING TYPES URM: UNREINFORCED MASONRY BEARING WALLS WITH FLEXIBLE DIAPHRAGMS, AND URMA: UNREINFORCED MASONRY BEARING WALLS WITH STIFF DIAPHRAGMS
C17.19 NONSTRUCTURAL CHECKLIST
594 CHAPTER C18: REFERENCES
CHAPTER C18: REFERENCES
608 INDEX
INDEX
ASCE 41 2023
$146.25