Shopping Cart

No products in the cart.

ASME PTB 4 2012

$75.42

ASME PTB-4 ASME Section VIII-Division 1 Example Problem Manual

Published By Publication Date Number of Pages
ASME 2012 421
Guaranteed Safe Checkout
Category:

This document is the ASME B&PV Code, Section VIII, Division 1 example problem manual. The example problems in this manual follow the design-by-rule methods in ASME B&PV Code, Section VIII, Division 1. Many of the example problems are also solved using ASME B&PV Code, Section VIII, Division 2 design-by-rule procedures contained in Part 4 of this Code using the allowable stress from Division 1. In addition, where the design rules are the same, the Division 2 format has been used in this example problem manual because of the user-friendliness of these rules. With this approach, users of Division 1 will become familiar and adept at using Division 2, and this will also provide a significant training benefit to the Division 1 user, in that Division 2 has been designed as the home for the common rules initiative being undertaken by the ASME Section VIII Committee.

PDF Catalog

PDF Pages PDF Title
4 TABLE OF CONTENTS
8 FOREWORD
9 ACKNOWLEDGEMENTS
10 GENERAL REQUIREMENTS
1.1 Introduction
1.2 Scope
1.3 Definitions
1.4 Organization and Use
1.5 Comparison of VIII- 1 and VIII- 2 Design Rules
1.6 ASME Code Case 2695
12 1.8 Tables Table E1.1 – Comparison of Design Rules Between VIII- 2 and VIII- 1 Paragraph in Section VIII, Division 2 Comments Pertaining to Section VIII, Division 1
13 PTB- 4- 2012 Table E1.2 – ASME BPV Code Case 2695 Code Case 2695
14 EXAMPLE PROBLEM DESCRIPTIONS
2.1 General
2.2 Example Problem Format
2.3 Calculation Precision
16 MATERIALS REQUIREMENTS
3.1 Commentary on Rules to Establish the Minimum Design Metal Temperature ( MDMT)
17 Figure E3.1.1 – Logic Diagram for UCS- 66( a)
18 Figure E3.1.2 – Logic Diagram for UCS- 66( a)( 1)-( 5)
19 Figure E3.1.3 – Logic Diagram for UCS- 66( b)
20 3.2 Example E3.1 – Use of MDMT Exemptions Curves
21 3.3 Example E3.2 – Use of MDMT Exemption Curves with Stress Reduction
22 3.4 Example E3.3 – Determine the MDMT for a Nozzle- to- Shell Welded Assembly
3.4 Example E3.3 – Determine the MDMT for a Nozzle-to-Shell Welded Assembly
26 Figure E3.3.1 – Nozzle- Shell Detail
28 DESIGN BY RULE REQUIREMENTS
4.1 General Requirements Example E4.1.1 – Review of General Requirements for a Vessel Design
29 Example E4.1.2 – Required Wall Thickness of a Hemispherical Head
Section VIII, Division 1 Solution
30 PTB- 4- 2012 Section VIII, Division 2 Solution Using VIII- 1 Allowable Stresses
31 PTB- 4- 2012 4.2 Welded Joints 4.2.1 Example E4.2.1 – Nondestructive Examination Requirement for Vessel Design
Section VIII, Division 1 Solution
32 Section VIII, Division 2 Solution Using VIII- 1 Allowable Stresses
4.2.2 Example E4.2.2 – Nozzle Detail and Weld Sizing
35 Section VIII, Division 2 Solution
37 PTB- 4- 2012 4.3 Internal Design Pressure 4.3.1 Example E4.3.1 – Cylindrical Shell
Section VIII, Division 1 Solution
Section VIII, Division 2 Solution with VIII- 1 Allowable Stresses
4.3.2 Example E4.3.2 – Conical Shell
38 Section VIII, Division 1 Solution
Section VIII, Division 2 Solution with VIII- 1 Allowable Stresses
4.3.3 Example E4.3.3 – Spherical Shell
39 Section VIII, Division 1 Solution
Section VIII, Division 2 Solution with VIII- 1 Allowable Stresses
4.3.4 Example E4.3.4 – Torispherical Head
40 Section VIII, Division 1 Solution
Section VIII, Division 2 Solution with VIII- 1 Allowable Stresses
42 4.3.5 Example E4.3.5 – Elliptical Head
43 Section VIII, Division 1 Solution
Section VIII, Division 2 Solution with VIII- 1 Allowable Stresses
46 4.3.6 Example E4.3.6 – Combined Loadings and Allowable Stresses
Section VIII, Division 1 Solution
48 Section VIII, Division 2 Solution with VIII- 1 Allowable Stresses
51 PTB- 4- 2012 Table E4.3.6.1: Design Loads and Load Combinations from VIII- 2
52 PTB- 4- 2012 Table E4.3.6.2: Design Loads ( Net- Section Axial Force and Bending Moment) at the Location of Interest
53 PTB- 4- 2012 Table E4.3.6.3 – Load Case Combination at the Location of Interest
Force and Moment General Primary Membrane Allowable Stress
54 PTB- 4- 2012 4.3.7 Example E4.3.7 – Conical Transitions Without a Knuckle
Section VIII, Division 1 Solution
57 Section VIII, Division 2 Solution with VIII- 1 Allowable Stresses
76 Figure E4.3.7 – Conical Transition
4.3.8 Example E4.3.8 – Conical Transitions with a Knuckle
78 Section VIII, Division 2 Solution with VIII- 1 Allowable Stresses
81 Figure E4.3.8 – Knuckle Detail
82 PTB- 4- 2012 4.4 Shells Under External Pressure and Allowable Compressive Stresses 4.4.1 Example E4.4.1 – Cylindrical Shell
85 PTB- 4- 2012 4.4.2 Example E4.4.2 – Conical Shell
Section VIII, Division 1 Solution
87 Section VIII, Division 2 Solution
89 4.4.3 Example E4.4.3 – Spherical Shell and Hemispherical Head
Section VIII, Division 1 Solution
90 PTB- 4- 2012
Section VIII, Division 2 Solution
91 PTB- 4- 2012
92 PTB- 4- 2012 4.4.4 Example E4.4.4 – Torispherical Head
Section VIII, Division 1 Solution
93 PTB- 4- 2012
Section VIII, Division 2 Solution
94 PTB- 4- 2012
95 PTB- 4- 2012 4.4.5 Example E4.4.5 – Elliptical Head
Section VIII, Division 1 Solution
96 PTB- 4- 2012
Section VIII, Division 2 Solution
97 PTB- 4- 2012
98 PTB- 4- 2012
4.4.6 Example E4.4.6 – Combined Loadings and Allowable Compressive Stresses
99 PTB- 4- 2012
Section VIII, Division 1 Solution
100 PTB- 4- 2012
101 PTB- 4- 2012
102 PTB- 4- 2012
Section VIII, Division 2 Solution
103 PTB- 4- 2012
104 PTB- 4- 2012
105 PTB- 4- 2012
106 PTB- 4- 2012
107 PTB- 4- 2012
108 PTB- 4- 2012
109 PTB- 4- 2012
110 PTB- 4- 2012
111 PTB- 4- 2012
112 PTB- 4- 2012
113 PTB- 4- 2012
114 PTB- 4- 2012 A summary of the allowable compressive stresses are as follows:
115 PTB- 4- 2012 Table E4.4.6.1: Design Loads and Load Combinations from VIII- 2
116 PTB- 4- 2012 Table E4.4.6.2: Design Loads ( Net- Section Axial Force and Bending Moment) at the Location of Interest Design Load Parameter Description Magnitude of Pressure, Force
and Moment
117 PTB- 4- 2012 Table E4.4.6.3 – Load Case Combination at the Location of Interest Load Case Design Load Combination Magnitude of Pressure,
Force and Moment General Primary Membrane Allowable Stress
118 PTB- 4- 2012 4.4.7 Example E4.4.7 – Conical Transitions without a Knuckle
119 PTB- 4- 2012 Section VIII, Division 1 Solution
120 PTB- 4- 2012
121 PTB- 4- 2012
122 PTB- 4- 2012
123 PTB- 4- 2012
124 PTB- 4- 2012
125 PTB- 4- 2012
Section VIII, Division 2 Solution with VIII- 1 Allowable Stresses
126 PTB- 4- 2012
127 PTB- 4- 2012
128 PTB- 4- 2012
129 PTB- 4- 2012
130 PTB- 4- 2012
131 PTB- 4- 2012
132 PTB- 4- 2012
133 PTB- 4- 2012
134 PTB- 4- 2012
135 PTB- 4- 2012
136 PTB- 4- 2012
137 PTB- 4- 2012
138 PTB- 4- 2012
139 PTB- 4- 2012
140 PTB- 4- 2012
141 PTB- 4- 2012
142 PTB- 4- 2012
143 PTB- 4- 2012
144 PTB- 4- 2012
145 PTB- 4- 2012
146 PTB- 4- 2012 4.4.8 Example E4.4.8 – Conical Transitions with a Knuckle
Section VIII, Division 1 Solution
147 PTB- 4- 2012
148 PTB- 4- 2012
149 PTB- 4- 2012
Section VIII, Division 2 Solution with VIII- 1 Allowable Stresses
150 PTB- 4- 2012
151 PTB- 4- 2012
152 PTB- 4- 2012
153 PTB- 4- 2012
154 PTB- 4- 2012
155 PTB- 4- 2012 4.5 Shells Openings in Shells and Heads 4.5.1 Example E4.5.1 – Radial Nozzle in Cylindrical Shell
Section VIII, Division 1 Solution
156 PTB- 4- 2012
157 PTB- 4- 2012
158 PTB- 4- 2012
Section VIII, Division 2 Solution with VIII- 1 Allowable Stresses
159 PTB- 4- 2012
160 PTB- 4- 2012
161 PTB- 4- 2012
Figure E4.5.1 – Nozzle Detail
162 PTB- 4- 2012 4.5.2 Example E4.5.2 – Hillside Nozzle in Cylindrical Shell
Section VIII, Division 1 Solution
163 PTB- 4- 2012
164 PTB- 4- 2012
165 PTB- 4- 2012
166 PTB- 4- 2012
167 PTB- 4- 2012
Section VIII, Division 2 Solution with VIII- 1 Allowable Stresses
168 PTB- 4- 2012
169 PTB- 4- 2012
170 PTB- 4- 2012
171 PTB- 4- 2012
Figure E4.5.2 – Nozzle Detail
172 PTB- 4- 2012 4.5.3 Example E4.5.3 – Radial Nozzle in Ellipsoidal Head
Section VIII, Division 1 Solution
173 PTB- 4- 2012
174 PTB- 4- 2012
175 PTB- 4- 2012
Section VIII, Division 2 Solution with VIII- 1 Allowable Stresses
176 PTB- 4- 2012
177 PTB- 4- 2012
178 PTB- 4- 2012
179 PTB- 4- 2012 Figure E4.5.3 – Nozzle Details
180 PTB- 4- 2012 4.5.4 Example E4.5.4 – Radial Nozzle in Cylindrical Shell
Section VIII, Division 1 Solution
181 PTB- 4- 2012
182 PTB- 4- 2012
183 PTB- 4- 2012
184 PTB- 4- 2012
Section VIII, Division 2 Solution
185 PTB- 4- 2012
Figure E4.5.4 – Nozzle Details
186 PTB- 4- 2012 4.5.5 Example E4.5.5 – Pad Reinforced Radial Nozzle in Cylindrical Shell
Section VIII, Division 1 Solution
187 PTB- 4- 2012
188 PTB- 4- 2012
189 PTB- 4- 2012
190 PTB- 4- 2012
191 PTB- 4- 2012
192 PTB- 4- 2012
193 PTB- 4- 2012
Section VIII, Division 2 Solution
194 PTB- 4- 2012
Figure E4.5.5 – Nozzle Details
195 PTB- 4- 2012 4.5.6 Example E4.5.6 – Radial Nozzle in an Ellipsoidal Head with Inside Projection
Section VIII, Division 1 Solution
196 PTB- 4- 2012
197 PTB- 4- 2012
198 PTB- 4- 2012
199 PTB- 4- 2012
200 PTB- 4- 2012
Section VIII, Division 2 Solution
201 PTB- 4- 2012
Figure E4.5.6 – Nozzle Details
202 PTB- 4- 2012 4.6 Flat Heads 4.6.1 Example E4.6.1 – Flat Unstayed Circular Heads Attached by Bolts
Design rules for unstayed flat heads and covers are provided in UG- 34. The rules in this paragraph are the same as those provided in VIII- 2, paragraph 4.6. The design procedures in VIII- 2, paragraph 4.6 are used in this example problem with substitute references made to VIII- 1, UG- 34 and Mandatory Appendix 2 paragraphs.
203 PTB- 4- 2012
4.6.2 Example E4.6.2 – Flat Un- stayed Non- Circular Heads Attached by Welding
Design rules for unstayed flat heads and covers are provided in UG- 34. The rules in this paragraph are the same as those provided in VIII- 2, paragraph 4.6. The design procedures in VIII- 2, paragraph 4.6 are used in this example problem with substitute references made to VIII- 1, UG- 34 and Mandatory Appendix 13 paragraphs.
204 PTB- 4- 2012
4.6.3 Example E4.6.3 – Integral Flat Head with a Centrally Located Opening
205 PTB- 4- 2012
Design rules for Integral Flat Head with a Centrally Located Opening are provided in Mandatory Appendix 14. The rules in this appendix are the same as those provided in VIII- 2, paragraph 4.6. The design procedures in VIII- 2, paragraph 4.6 are used in this example problem with substitute references made to VIII- 1, Mandatory Appendix 14 and Appendix 2 paragraphs.
206 PTB- 4- 2012
207 PTB- 4- 2012
208 PTB- 4- 2012 Table E4.6.3.1 – Junction Stress Equations for an Integral Flat Head With Opening Head/ Shell Junction Stresses Opening/ Head Junction Stresses
209 PTB- 4- 2012 Table E4.6.3.2 – Stress Acceptance Criteria for an Integral Flat Head With Opening Head/ Shell Junction Stresses Opening/ Head Junction Stresses
210 PTB- 4- 2012
Figure E4.6.3 – Head, Shell and Nozzle Geometry
211 PTB- 4- 2012 4.7 Spherically Dished Bolted Covers 4.7.1 Example E4.7.1 – Thickness Calculation for a Type D Head
212 PTB- 4- 2012
Design rules for spherically dished bolted covers with ring type gaskets are provided in Mandatory Appendix 1- 6. The rules in this paragraph are the same as those provided in VIII- 2, paragraph 4.7. The design procedure in VIII- 2, paragraph 4.7 is used in this example problem with substitute references made to VIII- 1 Mandatory Appendix 1- 6 and Appendix 2.
213 PTB- 4- 2012
214 PTB- 4- 2012
215 PTB- 4- 2012
216 PTB- 4- 2012
217 PTB- 4- 2012
218 PTB- 4- 2012
219 PTB- 4- 2012
220 PTB- 4- 2012
221 PTB- 4- 2012
Figure E4.7.1 – Floating Head Geometry
222 PTB- 4- 2012 4.7.2 Example E4.7.2 – Thickness Calculation for a Type D Head Using the Alternative Rule in VIII- 2, Paragraph 4.7.5.3
223 PTB- 4- 2012
224 PTB- 4- 2012
225 PTB- 4- 2012
226 PTB- 4- 2012
227 PTB- 4- 2012
228 PTB- 4- 2012
229 PTB- 4- 2012
230 PTB- 4- 2012
231 PTB- 4- 2012 4.8 Quick- Actuating ( Quick Opening) Closures 4.8.1 Example E4.8.1 – Review of Requirements for Quick- Actuating Closures
Design rules for quick– actuating ( quick opening) closures are provided in UG- 35.2. The rules in this paragraph are the same as those provided in VIII- 2, paragraph 4.8.
232 PTB- 4- 2012
233 PTB- 4- 2012 4.9 Braced and Stayed Surfaces 4.9.1 Example E4.9.1 – Braced and Stayed Surfaces
Design rules for braced and stayed surfaces are provided in UG- 47, UG- 48, UG- 49, and UG- 50. The rules in these paragraphs are the same as those provided in VIII- 2, paragraph 4.9 with the exception that VIII- 2 only includes rules for welded stays. UW- 19 also provides requirements for welded- in stays.
234 PTB- 4- 2012
235 PTB- 4- 2012 Figure E4.9.1 – Stayed Plate Detail
236 PTB- 4- 2012 4.10 Ligaments 4.10.1 Example E4.10.1 – Ligaments
Design rules for ligaments are provided in UG- 53. The rules in this paragraph are the same as those provided in VIII- 2, paragraph 4.10. The design procedures in VIII- 2, paragraph 4.10 are used in this example problem with substitute references made to VIII- 1, UG- 53.
237 PTB- 4- 2012
Figure E4.10.1 – Installation Pattern
238 PTB- 4- 2012 4.11 Jacketed Vessels 4.11.1 Example E4.11.1 – Partial Jacket
Design rules for jacketed vessels are provided in Mandatory Appendix 9. The rules in this paragraph are the same as those provided in VIII- 2, paragraph 4.11.
239 PTB- 4- 2012
240 PTB- 4- 2012 4.11.2 Example E4.11.2 – Half- Pipe Jacket
Design rules for half- pipe jackets are provided in Nonmandatory Appendix EE. The rules in this paragraph are the same as those provided in VIII- 2, paragraph 4.11. The design rules from VIII- 2 are used in this example problem with substitute references made to VIII- 1 Nonmandatory Appendix EE.
241 PTB- 4- 2012
242 PTB- 4- 2012
243 PTB- 4- 2012 4.12 NonCircular Vessels 4.12.1 Example E4.12.1 – Type 1
Design rules for vessels of noncircular cross section are provided in Mandatory Appendix 13. The rules in this paragraph are the same as those provided in VIII- 2, paragraph 4.12. The design procedures in VIII- 2, paragraph 4.12 are used in this example problem with substitute references made to VIII- 1 Mandatory Appendix 13 paragraphs.
244 PTB- 4- 2012
245 PTB- 4- 2012
246 PTB- 4- 2012
247 PTB- 4- 2012
4.12.2 Example E4.12.2 – Type 4
248 PTB- 4- 2012
Design rules for vessels of noncircular cross section are provided in Mandatory Appendix 13. The rules in this paragraph are the same as those provided in VIII- 2, paragraph 4.12. The design procedures in VIII- 2, paragraph 4.12 are used in this example problem with substitute references made to VIII- 1 Mandatory Appendix 13 paragraphs.
249 PTB- 4- 2012
250 PTB- 4- 2012
251 PTB- 4- 2012
252 PTB- 4- 2012
253 PTB- 4- 2012
254 PTB- 4- 2012
255 PTB- 4- 2012
256 PTB- 4- 2012
257 PTB- 4- 2012 Figure E4.12.2 – Composite Section Details
258 PTB- 4- 2012 4.13 Layered Vessels 4.13.1 Example E4.13.1 – Layered Cylindrical Shell
Section VIII, Division 1 Solution
Section VIII, Division 2 Solution with VIII- 1 Allowable Stresses
259 PTB- 4- 2012 4.13.2 Example E4.13.2 – Layered Hemispherical Head
Section VIII, Division 1 Solution
Section VIII, Division 2 Solution with VIII- 1 Allowable Stresses
260 PTB- 4- 2012 4.13.3 Example E4.13.3 – Maximum Permissible Gap in a Layered Cylindrical Shell
Section VIII, Division 1 Solution
Section VIII, Division 2 Solution with VIII- 2 Allowable Stresses
261 PTB- 4- 2012 4.14 Evaluation of Vessels Outside of Tolerance 4.14.1 Example E4.14.1 – Shell Tolerances
4.14.2 Example E4.14.2 – Shell Tolerances and Fatigue Evaluation
262 PTB- 4- 2012 4.14.3 Example E4.14.3 – Local Thin Area
Section VIII, Division 1 Solution
263 PTB- 4- 2012 4.15 Supports and Attachments 4.15.1 Example E4.15.1 – Horizontal Vessel with Zick’s Analysis
Section VIII, Division 1 Solution
264 PTB- 4- 2012
265 PTB- 4- 2012
266 PTB- 4- 2012
267 PTB- 4- 2012
268 PTB- 4- 2012
269 PTB- 4- 2012
270 PTB- 4- 2012
Figure E4.15.1 – Saddle Details
271 PTB- 4- 2012 4.15.2 Example E4.15.2 – Vertical Vessel, Skirt Design
Section VIII, Division 1 Solution
272 PTB- 4- 2012
273 PTB- 4- 2012
274 PTB- 4- 2012
Section VIII, Division 2 Solution with VIII- 1 Allowable Stresses
275 PTB- 4- 2012
276 PTB- 4- 2012
277 PTB- 4- 2012
278 PTB- 4- 2012 Table E4.15.2.1: Design Loads and Load Combinations from VIII- 2
279 PTB- 4- 2012 Table E4.15.2.2: Design Loads ( Net- Section Axial Force and Bending Moment) at the Base of The Skirt Design Load Parameter Description Magnitude of Pressure, Force
and Moment
280 PTB- 4- 2012 Table E4.15.2.3: Load Case Combination at the Base of The Skirt Load Case Design Load Combination Magnitude of Pressure,
Force and Moment General Primary Membrane Allowable Stress
281 PTB- 4- 2012 4.16 Flanged Joints 4.16.1 Example E4.16.1 – Integral Type
Design rules for bolted flange connections with ring type gaskets are provided in VIII- 1 Mandatory Appendix 2. The rules in this paragraph are the same as those provided in VIII- 2, paragraph 4.16. The design procedures in VIII- 2, paragraph 4.16 are used in this example problem with substitute references made to VIII- 1 Mandatory Appendix 2 paragraphs.
282 PTB- 4- 2012
283 PTB- 4- 2012
284 PTB- 4- 2012
285 PTB- 4- 2012
286 PTB- 4- 2012
287 PTB- 4- 2012
288 PTB- 4- 2012
289 PTB- 4- 2012
290 PTB- 4- 2012
Figure E4.16.1 – Flanged Joints
291 PTB- 4- 2012 4.16.2 Example E4.16.2 – Loose Type
Design rules for bolted flange connections with ring type gaskets are provided in VIII- 1 Mandatory Appendix 2. The rules in this paragraph are the same as those provided in VIII- 2, paragraph 4.16. The design procedures in VIII- 2, paragraph 4.16 are used in this example problem with substitute references made to VIII- 1 Mandatory Appendix 2 paragraphs.
292 PTB- 4- 2012
293 PTB- 4- 2012
294 PTB- 4- 2012
295 PTB- 4- 2012
296 PTB- 4- 2012
297 PTB- 4- 2012
298 PTB- 4- 2012
299 PTB- 4- 2012
300 PTB- 4- 2012 4.17 Clamped Connections 4.17.1 Example E4.17.1 – Flange and Clamp Design Procedure
301 PTB- 4- 2012
Design rules for clamped connections are provided in VIII- 1 Mandatory Appendix 24. The rules in this paragraph are the same as those provided in VIII- 2, paragraph 4.17. The design procedures in VIII- 2, paragraph 4.17 are used in this example problem with substitute references made to VIII- 1 Mandatory Appendix 2 and Appendix 24 paragraphs.
302 PTB- 4- 2012
303 PTB- 4- 2012
304 PTB- 4- 2012
305 PTB- 4- 2012
306 PTB- 4- 2012
307 PTB- 4- 2012
308 PTB- 4- 2012
310 PTB- 4- 2012 4.18 Tubesheets in Shell and Tube Heat Exchangers 4.18.1 Example E4.18.1 – U- Tube Tubesheet Integral with Shell and Channel
311 PTB- 4- 2012
312 PTB- 4- 2012
313 PTB- 4- 2012
4.18.2 Example E4.18.2 – U- Tube Tubesheet Gasketed With Shell and Channel
314 PTB- 4- 2012
315 PTB- 4- 2012
316 PTB- 4- 2012
4.18.3 Example E4.18.3 – U- Tube Tubesheet Gasketed With Shell and Channel
317 PTB- 4- 2012
318 PTB- 4- 2012
4.18.4 Example E. 4.18.4 – U- Tube Tubesheet Gasketed With Shell and Integral with Channel, Extended as a Flange
319 PTB- 4- 2012
320 PTB- 4- 2012
321 PTB- 4- 2012
322 PTB- 4- 2012
4.18.5 Example E. 4.18.5 – Fixed Tubesheet Exchanger, Configuration b, Tubesheet Integral with Shell, Extended as a Flange and Gasketed on the Channel Side
323 PTB- 4- 2012
324 PTB- 4- 2012
325 PTB- 4- 2012
326 PTB- 4- 2012
327 PTB- 4- 2012
328 PTB- 4- 2012
329 PTB- 4- 2012
330 PTB- 4- 2012
331 PTB- 4- 2012
332 PTB- 4- 2012
333 PTB- 4- 2012 4.18.6 Example E. 4.18.6 – Fixed Tubesheet Exchanger, Configuration b, Tubesheet Integral with Shell, Extended as a Flange and Gasketed on the Channel Side
334 PTB- 4- 2012
335 PTB- 4- 2012
336 PTB- 4- 2012
337 PTB- 4- 2012
338 PTB- 4- 2012
339 PTB- 4- 2012
340 PTB- 4- 2012
341 PTB- 4- 2012
342 PTB- 4- 2012
343 PTB- 4- 2012
344 PTB- 4- 2012 4.18.7 Example E. 14.7 – Fixed Tubesheet Exchanger, Configuration a
345 PTB- 4- 2012
346 PTB- 4- 2012
347 PTB- 4- 2012
348 PTB- 4- 2012
349 PTB- 4- 2012
350 PTB- 4- 2012
351 PTB- 4- 2012
352 PTB- 4- 2012
353 PTB- 4- 2012
354 PTB- 4- 2012
355 PTB- 4- 2012 4.18.8 Example E4.18.8 – Stationary Tubesheet Gasketed With Shell and Channel; Floating Tubesheet Gasketed, Not Extended as a Flange
356 PTB- 4- 2012
357 PTB- 4- 2012
358 PTB- 4- 2012
359 PTB- 4- 2012
360 PTB- 4- 2012
361 PTB- 4- 2012
362 PTB- 4- 2012
4.18.9 Example E. 14.18.9 – Stationary Tubesheet Gasketed With Shell and Channel; Floating Tubesheet Integral
363 PTB- 4- 2012
364 PTB- 4- 2012
365 PTB- 4- 2012
366 PTB- 4- 2012
367 PTB- 4- 2012
368 PTB- 4- 2012
369 PTB- 4- 2012
370 PTB- 4- 2012
371 PTB- 4- 2012
4.18.10 Example E. 14.18.10 – Stationary Tubesheet Gasketed With Shell and Channel; Floating Tubesheet Internally Sealed
372 PTB- 4- 2012
373 PTB- 4- 2012
374 PTB- 4- 2012
375 PTB- 4- 2012
376 PTB- 4- 2012
377 PTB- 4- 2012
378 PTB- 4- 2012
379 PTB- 4- 2012 4.19 Bellows Expansion Joints 4.19.1 Example E4.19.1 – U- Shaped Un- reinforced Bellows Expansion Joint and Fatigue Evaluation
Design rules for bellows expansion joints are provided in Mandatory Appendix 26. The rules in this paragraph are the same as those provided in VIII- 2, paragraph 4.19. The design procedures in VIII- 2, paragraph 4.19 are used in this example problem with substitute references made to VIII- 1 Mandatory Appendix 26 paragraphs.
380 PTB- 4- 2012
381 PTB- 4- 2012
382 PTB- 4- 2012
383 PTB- 4- 2012
384 PTB- 4- 2012
385 PTB- 4- 2012
4.19.2 Example E4.19.2 – Toroidal Bellows Expansion Joint and Fatigue Evaluation
Design rules for bellows expansion joints are provided in Mandatory Appendix 26. The rules in this paragraph are the same as those provided in VIII- 2, paragraph 4.19. The design procedures in VIII- 2, paragraph 4.19 are used in this example problem with substitute
386 PTB- 4- 2012 references made to VIII- 1 Mandatory Appendix 26 paragraphs.
387 PTB- 4- 2012
388 PTB- 4- 2012
389 PTB- 4- 2012
390 PTB- 4- 2012
391 PTB- 4- 2012
392 PTB- 4- 2012
DESIGN BY ANALYSIS REQUIREMENTS
5.1 Design- By- Analysis for Section VIII, Division 1
5.2 Paragraph U- 2( g) – Design- By- Analysis Provision without Procedures
396 FABRICATION REQUIREMENTS
6.1 Example E6.1 – Postweld Heat Treatment of a Pressure Vessel
Section VIII, Division 1 Solution
399 6.2 Example E6.2 – Out- of- Roundness of a Cylindrical Forged Vessel
402 INSPECTION AND EXAMINATION REQUIREMENTS
7.1 Inspection and Examination Rules Commentary
404 PTB- 4- 2012 Table E7.1.1– Definition Of Weld Joint Types, Per Table UW- 12
Weld Joint Type Description
Table E7.1.2 – Weld Joint Categories, per paragraph UW- 3 Weld Category Description
405 Figure E7.1.1 – UW- 3 Illustration of Welded Joint Locations: Categories A, B, C, and D
406 Figure E7.1.2 – Logic Diagram for UW- 11( a)
407 Figure E7.1.3 – Logic Diagram for UW- 11( a)( 5). UW- 11( b) and UW- 11( c)
408 Figure E7.1.4 – Logic Diagram for UW- 12
409 Figure E7.2 – Vessel Sketch
7.2 Example E7.1 – NDE: Establish Joint Efficiencies, RT- 1
410 PTB- 4- 2012 Table E7.2 – NDE Weld Joint Requirements
411 7.3 Example E7.2 – NDE: Establish Joint Efficiencies, RT- 2
412 PTB- 4- 2012 Table E7.3 – NDE Weld Joint Requirements
413 7.4 Example E7.3 – NDE: Establish Joint Efficiencies, RT- 4
414 PTB- 4- 2012 Table E7.4 – NDE Weld Joint Requirements
415 PTB- 4- 2012
7.5 Example E7.4 – NDE: Establish Joint Efficiencies, RT- 3
416 PTB- 4- 2012 Table E7.5 – NDE Weld Joint Requirements
418 PRESSURE TESTING REQUIREMENTS
8.1 Example E8.1 – Determination of a Hydrostatic Test Pressure
419 8.2 Example E8.2 – Determination of a Pneumatic Test Pressure
ASME PTB 4 2012
$75.42