ASTM-D7685 2016
$44.96
D7685-11(2016) Standard Practice for In-Line, Full Flow, Inductive Sensor for Ferromagnetic and Non-ferromagnetic Wear Debris Determination and Diagnostics for Aero-Derivative and Aircraft Gas Turbine Engine Bearings
Published By | Publication Date | Number of Pages |
ASTM | 2016 | 16 |
ASTM D7685-11-Reapproved2016
Historical Standard: Standard Practice for In-Line, Full Flow, Inductive Sensor for Ferromagnetic and Non-ferromagnetic Wear Debris Determination and Diagnostics for Aero-Derivative and Aircraft Gas Turbine Engine Bearings
ASTM D7685
Scope
1.1 This practice covers the minimum requirements for an in-line, non-intrusive, through-flow oil debris monitoring system that monitors ferromagnetic and non-ferromagnetic metallic wear debris from both industrial aero-derivative and aircraft gas turbine engine bearings. Gas turbine engines are rotating machines fitted with high-speed ball and roller bearings that can be the cause of failure modes with high secondary damage potential. (1)2
1.2 Metallic wear debris considered in this practice range in size from 120 μm (micron) and greater. Metallic wear debris over 1000 μm are sized as over 1000 μm.
1.3 This practice is suitable for use with the following lubricants: polyol esters, phosphate esters, petroleum industrial gear oils and petroleum crankcase oils.
1.4 This practice is for metallic wear debris detection, not cleanliness.
1.5 The values stated in SI units are to be regarded as standard. The values given in parentheses are provided for information only.
1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
Keywords
alarm limits; bearing failure; ferromagnetic debris; non-ferromagnetic debris; gas turbines; in-line; metallic wear debris; sensors; wear particles;
ICS Code
ICS Number Code 49.050 (Aerospace engines and propulsion systems)
DOI: 10.1520/D7685-11R16