Shopping Cart

No products in the cart.

ASTM-E603 2012(Redline)

$30.55

E603-12b Standard Guide for Room Fire Experiments (Redline)

Published By Publication Date Number of Pages
ASTM 2012 22
Guaranteed Safe Checkout
Categories: ,

If you have any questions, feel free to reach out to our online customer service team by clicking on the bottom right corner. Weā€™re here to assist you 24/7.
Email:[email protected]

Significance and Use

This guide provides assistance for planning room fire tests. The object of each experiment is to evaluate the role of a material, product, or system in the fire growth within one or more compartments.

The relationship between laboratory fire test methods and actual room fires can be investigated by the use of full-scale and reduced-scale experiments. This guide is aimed at establishing a basis for conducting full-scale experiments for the study of room fire growth.

Room fire tests can be placed into four main categories: reconstruction, simulation, research and standardization.

Reconstruction room fire tests are full scale replicates of a fire scene with the geometry, materials, contents, and ignition source intended to duplicate a particular scenario. The usual purpose of such a test is to evaluate what happened or what might happen in such a scenario.

Simulation room fire tests are comparable to reconstruction fire tests, except that not all of the parameters are duplicated. A simulated fire test is one in which one or more components of a fire scenario are altered, usually in order to facilitate conducting the test. The compartment design must carefully address geometry and materials of construction to ensure that they do not significantly alter the fire response. Reconstruction and simulation fire tests often have a distinctive objective, such as time to flashover, that is related to the nature of the original fire scene.

Research room fire tests are conducted in order to elucidate the effects of one or more of the following: geometry, materials, placement of items, ventilation, or other parameters. The measured effects (such as room temperature, heat flux, heat release rate, time to flashover, post flashover conditions) are chosen to provide the most useful information.

Standardization room fire tests include scenarios that have been adopted by a standardization body. In this case, the compartment, ignition source, instrumentation and the nature of the contents are specified. The purpose of such a test is often the evaluation of a specific fire test response parameter. Simplified geometries and materials of construction are selected, party because the compartment is intended to be used repeatedly. Either simulated or actual commercial test objects are specified. The geometry of the compartment is generally specified to allow well-ventilated burning of the contents, with minimal radiative feedback, and to permit observation of flame spread. In most standardized fire tests, flashover is a termination point for the test.

In all cases, the room lining materials should be chosen carefully. Short duration fire response tests that do not reach flashover may be less affected by lining materials than longer duration fire tests that are intended to go to flashover. The thermal properties of the lining material (emissivity, thermal conductivity, thermal inertia) should be considered. The three main variables in compartment design must be considered for any of the types of room size fire tests: ventilation, geometry, and compartment materials (see Section 6).

1. Scope

1.1 This guide addresses means of conducting full-scale fire experiments that evaluate the fire-test-response characteristics of materials, products, or assemblies under actual fire conditions.

1.2 It is intended as a guide for the design of the experiment and for the use and interpretation of its results. The guide is also useful for establishing laboratory conditions that simulate a given set of fire conditions to the greatest extent possible.

1.3 This guide allows users to obtain fire-test-response characteristics of materials, products, or assemblies, which are useful data for describing or appraising their fire performance under actual fire conditions.

1.3.1 The results of experiments conducted in accordance with this guide are also useful elements for making regulatory decisions regarding fire safety requirements. The use for regulatory purposes of data obtained from experiments conducted using this guide requires that certain conditions and criteria be specified by the regulating authority.

1.4 The rationale for conducting room fire experiments in accordance with this guide is shown in 1.5-1.8

1.5 Room fire experiments are a means of generating input data for computer fire models and for providing output data with which to compare modeling results.

1.6 One of the major reasons for conducting room fire experiments is as an experimental means of assessing the potential fire hazard associated with the use of a material or product in a particular application. This should be borne in mind when designing nonstandard experiments.

1.7 A rationale for conducting room fire experiments is the case when smaller-scale fire tests inadequately represent end-use applications.

1.8 A further rationale for conducting room fire experiments is to verify the results obtained with smaller scale tests, to understand the scaling parameters for such tests.

1.9 Room fire tests can be placed into four main categories: reconstruction, simulation, research, and standardization.

1.10 This standard is used to measure and describe the response of materials, products, or assemblies to heat and flame under controlled conditions, but does not by itself incorporate all factors required for fire hazard or fire risk assessment of the materials, products, or assemblies under actual fire conditions

1.11 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

ASTM Standards

D4442 Test Methods for Direct Moisture Content Measurement of Wood and Wood-Base Materials D4444 Test Method for Laboratory Standardization and Calibration of Hand-Held Moisture Meters D5424 Test Method for Smoke Obscuration of Insulating Materials Contained in Electrical or Optical Fiber Cables When Burning in a Vertical Cable Tray Configuration D5537 Test Method for Heat Release, Flame Spread, Smoke Obscuration, and Mass Loss Testing of Insulating Materials Contained in Electrical or Optical Fiber Cables When Burning in a Vertical Cable Tray Configuration E176 Terminology of Fire Standards E800 Guide for Measurement of Gases Present or Generated During Fires E906 Test Method for Heat and Visible Smoke Release Rates for Materials and Products Using a Thermopile Method E1321 Test Method for Determining Material Ignition and Flame Spread Properties E1354 Test Method for Heat and Visible Smoke Release Rates for Materials and Products Using an Oxygen Consumption Calorimeter E1355 Guide for Evaluating the Predictive Capability of Deterministic Fire Models E1537 Test Method for Fire Testing of Upholstered Furniture E1590 Test Method for Fire Testing of Mattresses E1822 Test Method for Fire Testing of Stacked Chairs E2067 Practice for Full-Scale Oxygen Consumption Calorimetry Fire Tests E2257 Test Method for Room Fire Test of Wall and Ceiling Materials and Assemblies

UL Standards

UL1715 Fire Test of Interior Finish Material

ICBO Standards

UniformBuildingCodeS Room Fire Test Standard for Interior of Foam Plastic Systems

ISO Standards

GUM, Guide to the Expression of Uncertainty in Measurement

FM Standard

FM4880 Large Scale Open Building Corner Test

Keywords

burning characteristics; experiment design; flashover guide; full-scale test; guide; ignition; instrumentation; room fire experiment; ventilation;

ICS Code

ICS Number Code 13.220.50 (Fire-resistance of building materials and elements)

DOI: 10.1520/E0603-12B ASTM International is a member of CrossRef.

Citing ASTM Standards

[Back to Top]

ASTM-E603 2012
$30.55