Shopping Cart

No products in the cart.

BS EN 61800-7-203:2016

$215.11

Adjustable speed electrical power drive systems – Generic interface and use of profiles for power drive systems. Profile type 3 specification

Published By Publication Date Number of Pages
BSI 2016 206
Guaranteed Safe Checkout
Category:

If you have any questions, feel free to reach out to our online customer service team by clicking on the bottom right corner. We’re here to assist you 24/7.
Email:[email protected]

IEC 61800-7-203:2015 specifies profile type 3 for power drive systems (PDS). Profile type 3 can be mapped onto different communication network technologies. This edition includes the following significant technical changes with respect to the previous edition: a) minor updates in the Base Mode Parameter Access mechanism; b) minor updates and simplification in the Application Class 3 state machine definition.

PDF Catalog

PDF Pages PDF Title
6 English
CONTENTS
14 FOREWORD
16 INTRODUCTION
0.1 General
19 0.2 Patent declaration
Figures
Figure 1 – Structure of IEC 61800-7
21 1 Scope
2 Normative references
3 Terms, definitions and abbreviated terms
3.1 Terms and definitions
26 3.2 Abbreviated terms
27 4 General
4.1 Background
4.2 Requirements
28 4.3 Goals of the PROFIdrive Profile
5 Data types
5.1 Data types overview
5.2 Standard data types
29 5.3 Profile-specific data types
5.3.1 General
Tables
Table 1 – Standard data types
30 5.3.2 Normalised value: N2, N4
Table 2 – Profile specific data types
Table 3 – N2, N4-Range of values
31 5.3.3 Normalised value (variable normalisation): X2, X4
5.3.4 Fixed point value: E2
Table 4 – N2, N4-Coding
Table 5 – X2, X4-Range of values
Table 6 – X2, X4-Coding (example x=12/28)
32 5.3.5 Fixed point value: C4
5.3.6 Bit sequence: V2
Table 7 – E2-Range of values
Table 8 – E2-Coding
Table 9 – C4-Range of values
Table 10 – V2-Coding
33 5.3.7 Nibble: L2
5.3.8 Time constant: T2, T4
5.3.9 Time constant: D2
Table 11 – L2-Coding
Table 12 – T2, T4-Range of values
Table 13 – D2-Range of values
34 5.3.10 Reciprocal time constant: R2
6 Specifications
6.1 Integration of drives in automation systems
6.1.1 General
6.1.2 Base Model
Table 14 – R2-Range of values
35 Figure 2 – PROFIdrive Devices and there relationship
36 Figure 3 – General Communication Model of a PROFIdrive automation system
37 Figure 4 – The PROFIdrive Device (consists of one or several Functional Objects)
38 Figure 5 – Hierarchical order in the Object Model
39 Figure 6 – PROFIdrive Base Model contains the Application Layer and Communication Layer
40 Figure 7 – Typical use case for Clock Synchronous Operation
41 Figure 8 – General model for Clock Synchronous Operation
42 6.1.3 Drive model
Figure 9 – Base Model State Machine
43 Figure 10 – General Drive Unit model
44 Figure 11 – General Drive Object architecture
45 Figure 12 – Principle functional model of an Axis type Drive Object
46 6.1.4 P-Device communication model
Figure 13 – Classes of PROFIdrive P-Devices
Figure 14 – Classes of PROFIdrive Drive Units
47 6.1.5 Application Model and Application Classes
Figure 15 – Overview of the available communication services between the PROFIdrive Devices
48 Table 15 – Application Classes
49 Figure 16 – Application Class 1
50 Figure 17 – Application Class 2
51 Figure 18 – Application Class 3
52 Figure 19 – Application Class 4
Figure 20 – Application Class 5
53 6.2 Parameter model
6.2.1 Parameter definition
Figure 21 – Application Class 6
Table 16 – Parameter definition
54 Table 17 – Parameter description elements
55 Table 18 – Parameter description element “Identifier (ID)”
Table 19 – Parameter description element “variable attribute“
57 Table 20 – Variable index and conversion index for SI units
60 Table 21 – Conversion values for the conversion index (SI units)
61 Table 22 – Variable index and conversion index for US units
62 Table 23 – Conversion values for the conversion index (US units)
63 Table 24 – Parameter description elements “IO Data reference value/IO Data normalisation“
64 Table 25 – Text array for parameter description
Table 26 – Text array for the data type Boolean
65 6.2.2 Global and local parameters
Table 27 – Text array for data type V2 (bit sequence)
66 6.2.3 Base Mode Parameter Access
Figure 22 – Example overview of global and local parameters of a Multi-Axis/Modular Drive Unit
68 Figure 23 – Byte order for Words and Double words
Table 28 – Base mode parameter request
Table 29 – Base mode parameter response
71 Table 30 – Permissible combinations consisting of attribute, number of elements and subindex
72 Table 31 – Coding of the fields in parameter request/parameter response of Base Mode Parameter Access
74 Table 32 – Error numbers in Base Mode parameter responses
77 Figure 24 – Data flow for Base Mode Parameter Access
Table 33 – General state machine for the parameter manager processing
78 Table 34 – Sequence 1: Parameter request
Table 35 – Sequence 1: Parameter response positive with data of data type Word
Table 36 – Sequence 1: Parameter response positive with data of data type Double word
79 Table 37 – Sequence 1: Parameter response, negative
Table 38 – Sequence 2: Parameter request
Table 39 – Sequence 2: Parameter response, positive
Table 40 – Sequence 2: Parameter response, negative
80 Table 41 – Sequence 3: Parameter request
Table 42 – Sequence 3: Parameter response, positive
Table 43 – Sequence 3: Parameter response, negative
81 Table 44 – Sequence 4: Parameter request
Table 45 – Sequence 4: Parameter response, positive
Table 46 – Sequence 4: Parameter response, negative
82 Table 47 – Sequence 5: Parameter request
Table 48 – Sequence 5: Parameter response, positive
Table 49 – Sequence 5: Parameter response, negative
83 Table 50 – Sequence 6: Parameter request
Table 51 – Sequence 6: Parameter response (+): all partial accesses OK
84 Table 52 – Sequence 6: Parameter response (-): first and third partial access OK, second partial access erroneous
85 Table 53 – Sequence 7: Parameter request
Table 54 – Sequence 7: Parameter response (+): all partial accesses OK
86 Table 55 – Sequence 7: Parameter response (-): first and third partial access OK, second partial access erroneous
Table 56 – Sequence 8: Parameter request
Table 57 – Sequence 8: Parameter response positive with data of the data type word (for example ID)
87 Table 58 – Sequence 8: Parameter response positive with text
Table 59 – Sequence 8: Parameter response, negative
Table 60 – Sequence 9: Parameter request
88 Table 61 – Sequence 9: Parameter response, positive
Table 62 – Sequence 9: Parameter response, negative
Table 63 – Sequence 10: Parameter request
89 Table 64 – Sequence 10: Parameter response, positive
Table 65 – Sequence 10: Parameter response, negative
Table 66 – Sequence 11: Request of values, description and text in one request
90 Table 67 – Sequence 11: Parameter response (+): all partial accesses OK
Table 68 – Sequence 12: Request of values, header with illegal Request ID
91 6.3 Drive control application process
6.3.1 General Axis type Drive Object architecture
Table 69 – Sequence 12: Parameter response (-): service not supported
92 Figure 25 – General functional elements of the PROFIdrive Axis type DO
93 Figure 26 – Functional block diagram of the PROFIdrive Axis type DO
94 6.3.2 Control and status words
Table 70 – Overview on the assignment of the bits of control word 1
95 Table 71 – Detailed assignment of the common control word 1 bits (STW1) for speed control/positioning
96 Table 72 – Detailed assignment of the special control word 1 bits (STW1) for speed control mode
97 Table 73 – Detailed assignment of the special control word 1 bits (STW1) for the positioning mode
Table 74 – Overview on the assignment of the bits of control word 2
98 Table 75 – Overview on the assignment of the bits of Encoder control word 2
Table 76 – Overview on the assignment of the bits of status word 1
99 Table 77 – Detailed assignment of the common status word 1 bits (ZSW1)for the speed control /positioning mode
100 Table 78 – Detailed assignment of the special status word 1 bits (ZSW1) for the speed control mode
Table 79 – Detailed assignment of the special status word 1 bits (ZSW1)for the positioning mode
Table 80 – Overview on the assignment of the bits of status word 2
101 6.3.3 Operating modes and State Machine
Table 81 – Overview on the assignment of the bits of Encoder status word 2
Table 82 – Structure of Parameter 924 “Status word bit Pulses Enabled”
103 Figure 27 – General state diagram for all operating modes
105 Figure 28 – General functionality of a PROFIdrive Axis DO with Application Class 1 functionality
106 Figure 29 – Speed setpoint channel for use in Application Class 1 and 4
107 Figure 30 – General functionality of a PROFIdrive Axis DO with Application Class 4 functionality
108 Figure 31 – Reduced speed setpoint channel for use in Application Class 4 (optional)
109 Figure 32 – General functionality of a PROFIdrive Axis DO with Application Class 3 functionality
110 Figure 33 – Functionality of the Motion Controller in the Program submode
111 Figure 34 – Functionality of the Motion Controller in the MDI submode
112 Table 83 – Definition of signal SATZANW
Table 84 – Definition of signal AKTSATZ
113 Table 85 – Definition of signal MDI_MOD
114 Figure 35 – State diagram of the positioning mode
115 Figure 36 – Homing Procedure: Home Position Set
Figure 37 – Homing Procedure: Abortion by the controller
116 Figure 38 – Traversing Task active
Figure 39 – Change of the Traversing Tasks immediately
117 6.3.4 DO IO Data
118 Table 86 – Signal list – assignment
120 Table 87 – Definition of standard telegram 1
Table 88 – Definition of standard telegram 2
Table 89 – Definition of standard telegram 3
121 Table 90 – Definition of standard telegram 4
Table 91 – Definition of standard telegram 5
122 Table 92 – Definition of standard telegram 6
Table 93 – Definition of standard telegram 7
123 Table 94 – Definition of standard telegram 9
Table 95 – Definition of standard telegram 8
124 Table 96 – Parameters for configuring a telegram
Table 97 – Coding of P922
126 Figure 40 – Example for configuring a telegram
127 Table 98 – Example A/B for normalising DO IO Data, parameter values
128 Table 99 – Example A/B for normalising DO IO Data, parameter description elements
Table 100 – Example C for normalising DO IO Data, parameter values
129 6.3.5 Dynamic Servo Control (DSC)
Table 101 – Example C for normalising DO IO Data, parameter description elements
130 Figure 41 – Structure of the position control circuit based on the velocity setpoint interface without DSC
131 Figure 42 – Structure of the position control circuit based on the velocity setpoint interface with DSC
134 6.3.6 Position feedback interface
135 Figure 43 – Example of the sensor interface (Sensor-1: two actual values/Sensor-2: one actual value)
136 Table 102 – Structure of parameter 979 (sensor format)
Table 103 – Subindex 0 (header) of parameter 979
137 Table 104 – Subindex 1 (sensor type) of parameter 979
Table 105 – Subindex 2 (sensor resolution) of parameter 979
139 Figure 44 – Actual value format, Example 1
Figure 45 – Actual value format, Example 2
Figure 46 – Actual value format, Example 3
140 Figure 47 – Actual value format, Example 4
Figure 48 – Actual value format, Example 5
Figure 49 – Actual value format, Example 6
Figure 50 – Actual value format, Example 7
141 Figure 51 – Actual value format, Example 8
Table 106 – Assigning Gx_XIST2 (sensor-x position actual value-2)
142 Table 107 – Error codes in Gx_XIST2
143 Table 108 – Sensor control word
145 Table 109 – Sensor status word
146 Figure 52 – State diagram of the position feedback interface with designations of the states and transitions
147 Table 110 – States
149 Table 111 – Transitions
151 Figure 53 – Acknowledgement of acknowledgeable sensor error
Table 112 – Prioritisation of Sensor Control Word
152 Figure 54 – Acknowledgement of unacknowledgeable sensor error
153 Figure 55 – Timing diagram: Measurement on the fly – sequence 1
154 Figure 56 – Timing diagram: Measurement on the fly – sequence 2
155 Figure 57 – Timing diagram: Reference mark search
156 6.3.7 Periphery
6.3.8 Diagnosis
Table 113 – Example for standard telegram with additional peripheral control
157 Figure 58 – Overview about the diagnostic mechanisms of PROFIdrive
158 Figure 59 – Working of the warning mechanism
159 Figure 60 – Overview about the fault buffer mechanism
160 Figure 61 – Fault acknowledgement for the fault buffer mechanism
161 Figure 62 – Processing of the fault messages in the fault buffer mechanism
162 Table 114 – Fault buffer parameters
163 Figure 63 – Fault buffer with fault sequence example
Table 115 – Fault codes examples
164 Figure 64 – Fault number list and fault code list with example
Table 116 – Definition of the fault classes attribute
165 Table 117 – Definition of the PROFIdrive fault classes
166 6.3.9 Identification
Table 118 – Structure of parameter 964 (Drive Unit identification)
167 Table 119 – Definition of the Profile identification number
Table 120 – Structure of parameter 975 (DO identification)
Table 121 – Structure of P975.5
168 Table 122 – DO type class definition in P975.5
Table 123 – Assignment of the bits of DO sub class 1 identification in P975.6
169 6.3.10 Drive reset (power-on reset)
Table 124 – Structure of parameter 974 (Base Mode Parameter Access identification)
Table 125 – PROFIdrive I&M parameter definition
170 Table 126 – PROFIdrive parameter value definition
Table 127 – PROFIdrive error code definition
171 Figure 65 – Drive reset: Direct initiation (P972 = 1)
172 6.3.11 Operation priority of parameters and control priority
173 6.3.12 User data reliability
174 Figure 66 – Example: Permanent failure of the controller LS
175 Figure 67 – Example: Temporary failure of the controller LS (negative deviation)
Figure 68 – Example: Temporary failure of the controller LS (positive deviation; double step)
176 Figure 69 – Example: Permanent failure of the DO LS
Figure 70 – Example: Temporary failure of the DO LS (negative deviation)
Figure 71 – Example: Temporary failure of the DO LS (positive deviation; double step)
177 Figure 72 – Value of the DO Sign-Of-Life failure counter (axis-specific) with respect to the transferred controller Sign-Of-Life
178 6.3.13 Specified DO functions for the Application Classes
Table 128 – Specified DO functions for the Application Classes
179 6.4 Parameter definition
6.4.1 PROFIdrive Parameter listed by Function
Table 129 – Parameter for “Life sign monitoring”
Table 130 – Parameter for “DO IO DATA-Telegram selection and configuration”
180 Table 131 – Parameter for “Sensor interface”
Table 132 – Parameter for “Fault buffer handling”
Table 133 – Parameter for “Warning mechanism”
Table 134 – Parameter for “Closed loop control operating mode”
Table 135 – Parameter for “Set and store of the local parameter set”
181 Table 136 – Parameter for “Set and store complete parameter set”
Table 137 – Parameter for “Drive reset”
Table 138 – Parameter for “Operation priority for write parameters”
182 Table 139 – Parameter for “DO identification and setup”
Table 140 – Parameter for “Parameter set identification”
Table 141 – Parameter for “Device identification”
183 Table 142 – Parameter for “Alternative Supervisor DO IO Data control channel”
184 6.4.2 PROFIdrive Parameter listed by number
Table 143 – PROFIdrive Parameter listed by number
192 6.5 Integration of Drives in Process Technology (VIK-NAMUR)
6.5.1 General
Figure 73 – Functionality and Interfaces for drive integration according to VIK-NAMUR
193 6.5.2 Commands and Checkback Signals
Figure 74 – Principle structure of the drive interface according to VIK-NAMUR guideline
194 Table 144 – Overview on the assignment of the bits of control word1 for the process technology operating mode
195 Table 145 – Overview on the assignment of the bits of status word1 for the process technology operating mode
196 6.5.3 State diagrams
Table 146 – Overview on the assignment of the bits of drive status/fault word for the process technology operating mode
197 Figure 75 – Speed setpoint channel for VIK-NAMUR process technology operating mode
198 6.5.4 Inevitable line interruption
Figure 76 – Process technology operating mode, control word 1 bit 15and status word 1 bit 10,11,13,14
199 6.5.5 Forced inverter inhibit
Figure 77 – Process technology operating mode with inevitable line interruption
200 6.5.6 External interlock
6.5.7 Standard telegram
Figure 78 – Process technology operating mode with forced inverter inhibit
201 Table 147 – Definition of standard telegram 20
202 Bibliography
BS EN 61800-7-203:2016
$215.11