BS EN 61800-7-203:2016
$215.11
Adjustable speed electrical power drive systems – Generic interface and use of profiles for power drive systems. Profile type 3 specification
Published By | Publication Date | Number of Pages |
BSI | 2016 | 206 |
IEC 61800-7-203:2015 specifies profile type 3 for power drive systems (PDS). Profile type 3 can be mapped onto different communication network technologies. This edition includes the following significant technical changes with respect to the previous edition: a) minor updates in the Base Mode Parameter Access mechanism; b) minor updates and simplification in the Application Class 3 state machine definition.
PDF Catalog
PDF Pages | PDF Title |
---|---|
6 | English CONTENTS |
14 | FOREWORD |
16 | INTRODUCTION 0.1 General |
19 | 0.2 Patent declaration Figures Figure 1 – Structure of IEC 61800-7 |
21 | 1 Scope 2 Normative references 3 Terms, definitions and abbreviated terms 3.1 Terms and definitions |
26 | 3.2 Abbreviated terms |
27 | 4 General 4.1 Background 4.2 Requirements |
28 | 4.3 Goals of the PROFIdrive Profile 5 Data types 5.1 Data types overview 5.2 Standard data types |
29 | 5.3 Profile-specific data types 5.3.1 General Tables Table 1 – Standard data types |
30 | 5.3.2 Normalised value: N2, N4 Table 2 – Profile specific data types Table 3 – N2, N4-Range of values |
31 | 5.3.3 Normalised value (variable normalisation): X2, X4 5.3.4 Fixed point value: E2 Table 4 – N2, N4-Coding Table 5 – X2, X4-Range of values Table 6 – X2, X4-Coding (example x=12/28) |
32 | 5.3.5 Fixed point value: C4 5.3.6 Bit sequence: V2 Table 7 – E2-Range of values Table 8 – E2-Coding Table 9 – C4-Range of values Table 10 – V2-Coding |
33 | 5.3.7 Nibble: L2 5.3.8 Time constant: T2, T4 5.3.9 Time constant: D2 Table 11 – L2-Coding Table 12 – T2, T4-Range of values Table 13 – D2-Range of values |
34 | 5.3.10 Reciprocal time constant: R2 6 Specifications 6.1 Integration of drives in automation systems 6.1.1 General 6.1.2 Base Model Table 14 – R2-Range of values |
35 | Figure 2 – PROFIdrive Devices and there relationship |
36 | Figure 3 – General Communication Model of a PROFIdrive automation system |
37 | Figure 4 – The PROFIdrive Device (consists of one or several Functional Objects) |
38 | Figure 5 – Hierarchical order in the Object Model |
39 | Figure 6 – PROFIdrive Base Model contains the Application Layer and Communication Layer |
40 | Figure 7 – Typical use case for Clock Synchronous Operation |
41 | Figure 8 – General model for Clock Synchronous Operation |
42 | 6.1.3 Drive model Figure 9 – Base Model State Machine |
43 | Figure 10 – General Drive Unit model |
44 | Figure 11 – General Drive Object architecture |
45 | Figure 12 – Principle functional model of an Axis type Drive Object |
46 | 6.1.4 P-Device communication model Figure 13 – Classes of PROFIdrive P-Devices Figure 14 – Classes of PROFIdrive Drive Units |
47 | 6.1.5 Application Model and Application Classes Figure 15 – Overview of the available communication services between the PROFIdrive Devices |
48 | Table 15 – Application Classes |
49 | Figure 16 – Application Class 1 |
50 | Figure 17 – Application Class 2 |
51 | Figure 18 – Application Class 3 |
52 | Figure 19 – Application Class 4 Figure 20 – Application Class 5 |
53 | 6.2 Parameter model 6.2.1 Parameter definition Figure 21 – Application Class 6 Table 16 – Parameter definition |
54 | Table 17 – Parameter description elements |
55 | Table 18 – Parameter description element “Identifier (ID)” Table 19 – Parameter description element “variable attribute“ |
57 | Table 20 – Variable index and conversion index for SI units |
60 | Table 21 – Conversion values for the conversion index (SI units) |
61 | Table 22 – Variable index and conversion index for US units |
62 | Table 23 – Conversion values for the conversion index (US units) |
63 | Table 24 – Parameter description elements “IO Data reference value/IO Data normalisation“ |
64 | Table 25 – Text array for parameter description Table 26 – Text array for the data type Boolean |
65 | 6.2.2 Global and local parameters Table 27 – Text array for data type V2 (bit sequence) |
66 | 6.2.3 Base Mode Parameter Access Figure 22 – Example overview of global and local parameters of a Multi-Axis/Modular Drive Unit |
68 | Figure 23 – Byte order for Words and Double words Table 28 – Base mode parameter request Table 29 – Base mode parameter response |
71 | Table 30 – Permissible combinations consisting of attribute, number of elements and subindex |
72 | Table 31 – Coding of the fields in parameter request/parameter response of Base Mode Parameter Access |
74 | Table 32 – Error numbers in Base Mode parameter responses |
77 | Figure 24 – Data flow for Base Mode Parameter Access Table 33 – General state machine for the parameter manager processing |
78 | Table 34 – Sequence 1: Parameter request Table 35 – Sequence 1: Parameter response positive with data of data type Word Table 36 – Sequence 1: Parameter response positive with data of data type Double word |
79 | Table 37 – Sequence 1: Parameter response, negative Table 38 – Sequence 2: Parameter request Table 39 – Sequence 2: Parameter response, positive Table 40 – Sequence 2: Parameter response, negative |
80 | Table 41 – Sequence 3: Parameter request Table 42 – Sequence 3: Parameter response, positive Table 43 – Sequence 3: Parameter response, negative |
81 | Table 44 – Sequence 4: Parameter request Table 45 – Sequence 4: Parameter response, positive Table 46 – Sequence 4: Parameter response, negative |
82 | Table 47 – Sequence 5: Parameter request Table 48 – Sequence 5: Parameter response, positive Table 49 – Sequence 5: Parameter response, negative |
83 | Table 50 – Sequence 6: Parameter request Table 51 – Sequence 6: Parameter response (+): all partial accesses OK |
84 | Table 52 – Sequence 6: Parameter response (-): first and third partial access OK, second partial access erroneous |
85 | Table 53 – Sequence 7: Parameter request Table 54 – Sequence 7: Parameter response (+): all partial accesses OK |
86 | Table 55 – Sequence 7: Parameter response (-): first and third partial access OK, second partial access erroneous Table 56 – Sequence 8: Parameter request Table 57 – Sequence 8: Parameter response positive with data of the data type word (for example ID) |
87 | Table 58 – Sequence 8: Parameter response positive with text Table 59 – Sequence 8: Parameter response, negative Table 60 – Sequence 9: Parameter request |
88 | Table 61 – Sequence 9: Parameter response, positive Table 62 – Sequence 9: Parameter response, negative Table 63 – Sequence 10: Parameter request |
89 | Table 64 – Sequence 10: Parameter response, positive Table 65 – Sequence 10: Parameter response, negative Table 66 – Sequence 11: Request of values, description and text in one request |
90 | Table 67 – Sequence 11: Parameter response (+): all partial accesses OK Table 68 – Sequence 12: Request of values, header with illegal Request ID |
91 | 6.3 Drive control application process 6.3.1 General Axis type Drive Object architecture Table 69 – Sequence 12: Parameter response (-): service not supported |
92 | Figure 25 – General functional elements of the PROFIdrive Axis type DO |
93 | Figure 26 – Functional block diagram of the PROFIdrive Axis type DO |
94 | 6.3.2 Control and status words Table 70 – Overview on the assignment of the bits of control word 1 |
95 | Table 71 – Detailed assignment of the common control word 1 bits (STW1) for speed control/positioning |
96 | Table 72 – Detailed assignment of the special control word 1 bits (STW1) for speed control mode |
97 | Table 73 – Detailed assignment of the special control word 1 bits (STW1) for the positioning mode Table 74 – Overview on the assignment of the bits of control word 2 |
98 | Table 75 – Overview on the assignment of the bits of Encoder control word 2 Table 76 – Overview on the assignment of the bits of status word 1 |
99 | Table 77 – Detailed assignment of the common status word 1 bits (ZSW1)for the speed control /positioning mode |
100 | Table 78 – Detailed assignment of the special status word 1 bits (ZSW1) for the speed control mode Table 79 – Detailed assignment of the special status word 1 bits (ZSW1)for the positioning mode Table 80 – Overview on the assignment of the bits of status word 2 |
101 | 6.3.3 Operating modes and State Machine Table 81 – Overview on the assignment of the bits of Encoder status word 2 Table 82 – Structure of Parameter 924 “Status word bit Pulses Enabled” |
103 | Figure 27 – General state diagram for all operating modes |
105 | Figure 28 – General functionality of a PROFIdrive Axis DO with Application Class 1 functionality |
106 | Figure 29 – Speed setpoint channel for use in Application Class 1 and 4 |
107 | Figure 30 – General functionality of a PROFIdrive Axis DO with Application Class 4 functionality |
108 | Figure 31 – Reduced speed setpoint channel for use in Application Class 4 (optional) |
109 | Figure 32 – General functionality of a PROFIdrive Axis DO with Application Class 3 functionality |
110 | Figure 33 – Functionality of the Motion Controller in the Program submode |
111 | Figure 34 – Functionality of the Motion Controller in the MDI submode |
112 | Table 83 – Definition of signal SATZANW Table 84 – Definition of signal AKTSATZ |
113 | Table 85 – Definition of signal MDI_MOD |
114 | Figure 35 – State diagram of the positioning mode |
115 | Figure 36 – Homing Procedure: Home Position Set Figure 37 – Homing Procedure: Abortion by the controller |
116 | Figure 38 – Traversing Task active Figure 39 – Change of the Traversing Tasks immediately |
117 | 6.3.4 DO IO Data |
118 | Table 86 – Signal list – assignment |
120 | Table 87 – Definition of standard telegram 1 Table 88 – Definition of standard telegram 2 Table 89 – Definition of standard telegram 3 |
121 | Table 90 – Definition of standard telegram 4 Table 91 – Definition of standard telegram 5 |
122 | Table 92 – Definition of standard telegram 6 Table 93 – Definition of standard telegram 7 |
123 | Table 94 – Definition of standard telegram 9 Table 95 – Definition of standard telegram 8 |
124 | Table 96 – Parameters for configuring a telegram Table 97 – Coding of P922 |
126 | Figure 40 – Example for configuring a telegram |
127 | Table 98 – Example A/B for normalising DO IO Data, parameter values |
128 | Table 99 – Example A/B for normalising DO IO Data, parameter description elements Table 100 – Example C for normalising DO IO Data, parameter values |
129 | 6.3.5 Dynamic Servo Control (DSC) Table 101 – Example C for normalising DO IO Data, parameter description elements |
130 | Figure 41 – Structure of the position control circuit based on the velocity setpoint interface without DSC |
131 | Figure 42 – Structure of the position control circuit based on the velocity setpoint interface with DSC |
134 | 6.3.6 Position feedback interface |
135 | Figure 43 – Example of the sensor interface (Sensor-1: two actual values/Sensor-2: one actual value) |
136 | Table 102 – Structure of parameter 979 (sensor format) Table 103 – Subindex 0 (header) of parameter 979 |
137 | Table 104 – Subindex 1 (sensor type) of parameter 979 Table 105 – Subindex 2 (sensor resolution) of parameter 979 |
139 | Figure 44 – Actual value format, Example 1 Figure 45 – Actual value format, Example 2 Figure 46 – Actual value format, Example 3 |
140 | Figure 47 – Actual value format, Example 4 Figure 48 – Actual value format, Example 5 Figure 49 – Actual value format, Example 6 Figure 50 – Actual value format, Example 7 |
141 | Figure 51 – Actual value format, Example 8 Table 106 – Assigning Gx_XIST2 (sensor-x position actual value-2) |
142 | Table 107 – Error codes in Gx_XIST2 |
143 | Table 108 – Sensor control word |
145 | Table 109 – Sensor status word |
146 | Figure 52 – State diagram of the position feedback interface with designations of the states and transitions |
147 | Table 110 – States |
149 | Table 111 – Transitions |
151 | Figure 53 – Acknowledgement of acknowledgeable sensor error Table 112 – Prioritisation of Sensor Control Word |
152 | Figure 54 – Acknowledgement of unacknowledgeable sensor error |
153 | Figure 55 – Timing diagram: Measurement on the fly – sequence 1 |
154 | Figure 56 – Timing diagram: Measurement on the fly – sequence 2 |
155 | Figure 57 – Timing diagram: Reference mark search |
156 | 6.3.7 Periphery 6.3.8 Diagnosis Table 113 – Example for standard telegram with additional peripheral control |
157 | Figure 58 – Overview about the diagnostic mechanisms of PROFIdrive |
158 | Figure 59 – Working of the warning mechanism |
159 | Figure 60 – Overview about the fault buffer mechanism |
160 | Figure 61 – Fault acknowledgement for the fault buffer mechanism |
161 | Figure 62 – Processing of the fault messages in the fault buffer mechanism |
162 | Table 114 – Fault buffer parameters |
163 | Figure 63 – Fault buffer with fault sequence example Table 115 – Fault codes examples |
164 | Figure 64 – Fault number list and fault code list with example Table 116 – Definition of the fault classes attribute |
165 | Table 117 – Definition of the PROFIdrive fault classes |
166 | 6.3.9 Identification Table 118 – Structure of parameter 964 (Drive Unit identification) |
167 | Table 119 – Definition of the Profile identification number Table 120 – Structure of parameter 975 (DO identification) Table 121 – Structure of P975.5 |
168 | Table 122 – DO type class definition in P975.5 Table 123 – Assignment of the bits of DO sub class 1 identification in P975.6 |
169 | 6.3.10 Drive reset (power-on reset) Table 124 – Structure of parameter 974 (Base Mode Parameter Access identification) Table 125 – PROFIdrive I&M parameter definition |
170 | Table 126 – PROFIdrive parameter value definition Table 127 – PROFIdrive error code definition |
171 | Figure 65 – Drive reset: Direct initiation (P972 = 1) |
172 | 6.3.11 Operation priority of parameters and control priority |
173 | 6.3.12 User data reliability |
174 | Figure 66 – Example: Permanent failure of the controller LS |
175 | Figure 67 – Example: Temporary failure of the controller LS (negative deviation) Figure 68 – Example: Temporary failure of the controller LS (positive deviation; double step) |
176 | Figure 69 – Example: Permanent failure of the DO LS Figure 70 – Example: Temporary failure of the DO LS (negative deviation) Figure 71 – Example: Temporary failure of the DO LS (positive deviation; double step) |
177 | Figure 72 – Value of the DO Sign-Of-Life failure counter (axis-specific) with respect to the transferred controller Sign-Of-Life |
178 | 6.3.13 Specified DO functions for the Application Classes Table 128 – Specified DO functions for the Application Classes |
179 | 6.4 Parameter definition 6.4.1 PROFIdrive Parameter listed by Function Table 129 – Parameter for “Life sign monitoring” Table 130 – Parameter for “DO IO DATA-Telegram selection and configuration” |
180 | Table 131 – Parameter for “Sensor interface” Table 132 – Parameter for “Fault buffer handling” Table 133 – Parameter for “Warning mechanism” Table 134 – Parameter for “Closed loop control operating mode” Table 135 – Parameter for “Set and store of the local parameter set” |
181 | Table 136 – Parameter for “Set and store complete parameter set” Table 137 – Parameter for “Drive reset” Table 138 – Parameter for “Operation priority for write parameters” |
182 | Table 139 – Parameter for “DO identification and setup” Table 140 – Parameter for “Parameter set identification” Table 141 – Parameter for “Device identification” |
183 | Table 142 – Parameter for “Alternative Supervisor DO IO Data control channel” |
184 | 6.4.2 PROFIdrive Parameter listed by number Table 143 – PROFIdrive Parameter listed by number |
192 | 6.5 Integration of Drives in Process Technology (VIK-NAMUR) 6.5.1 General Figure 73 – Functionality and Interfaces for drive integration according to VIK-NAMUR |
193 | 6.5.2 Commands and Checkback Signals Figure 74 – Principle structure of the drive interface according to VIK-NAMUR guideline |
194 | Table 144 – Overview on the assignment of the bits of control word1 for the process technology operating mode |
195 | Table 145 – Overview on the assignment of the bits of status word1 for the process technology operating mode |
196 | 6.5.3 State diagrams Table 146 – Overview on the assignment of the bits of drive status/fault word for the process technology operating mode |
197 | Figure 75 – Speed setpoint channel for VIK-NAMUR process technology operating mode |
198 | 6.5.4 Inevitable line interruption Figure 76 – Process technology operating mode, control word 1 bit 15and status word 1 bit 10,11,13,14 |
199 | 6.5.5 Forced inverter inhibit Figure 77 – Process technology operating mode with inevitable line interruption |
200 | 6.5.6 External interlock 6.5.7 Standard telegram Figure 78 – Process technology operating mode with forced inverter inhibit |
201 | Table 147 – Definition of standard telegram 20 |
202 | Bibliography |