BS EN 62026-7:2013
$215.11
Low-voltage switchgear and controlgear. Controller-device interfaces (CDIs) – CompoNet
Published By | Publication Date | Number of Pages |
BSI | 2013 | 194 |
IEC 62026-7:2010 specifies an interface system providing bit-level and word-level communication between a controller and control circuit devices such as sensors, actuators, and switching elements. The interface system uses cabling with round or flat profiles containing a two conductor signalling pair and optionally a two conductor power supply pair. This part establishes requirements for the interchangeability of components with such interfaces. This standard cancels and replaces IEC/PAS 62026-7 published in 2009. This first edition constitutes a general technical revision with clarifications only and with no significant change in the technology.
PDF Catalog
PDF Pages | PDF Title |
---|---|
9 | English CONTENTS |
19 | INTRODUCTION |
21 | 1 Scope 2 Normative references |
22 | 3 Terms, definitions, symbols and abbreviated terms 3.1 Terms and definitions |
25 | 3.2 Symbols and abbreviated terms |
26 | 4 Classification 4.1 General |
27 | Figures Figure 1 – Segment layer |
28 | 4.2 Network specifications 4.3 Components Tables Table 1 – Network specifications |
29 | 4.4 CompoNet communication model 4.5 CompoNet and CIP Figure 2 – CompoNet components |
30 | 5 Characteristics 5.1 Communication cycle Figure 3 – Time domains Table 2 – OSI reference model and CompoNet |
31 | 5.2 Messaging protocol Figure 4 – A typical communication cycle Figure 5 – A general frame |
32 | Figure 6 – Preamble of frames Figure 7 – Transmission direction Table 3 – Command codes |
33 | Figure 8 – Transmission direction Table 4 – Command restrictions for slave MAC |
34 | Figure 9 – OUT frame format Figure 10 – OUT command code Table 5 – Block name description Table 6 – CN target |
35 | Table 7 – I/O refresh |
36 | Figure 11 – TRG frame format Figure 12 – TRG command code Figure 13 – CN frame format Table 8 – Block name description |
37 | Figure 14 – CN command code Table 9 – Block name description Table 10 – Duplication checking function status Table 11 – A_EVENT sending request |
38 | Figure 15 – IN frame format Table 12 – Status of CN frames Table 13 – Warning bit of CN frames Table 14 – Alarm bit of CN frames Table 15 – Block name description |
39 | Figure 16 – IN command code Figure 17 – A_EVENT frame format Table 16 – Encoded length |
40 | Figure 18 – A_EVENT command code Table 17 – Block name description Table 18 – Acknowledgement bit of A_EVENT Table 19 – Command type of A_EVENT |
41 | Figure 19 – B_EVENT frame format Table 20 – Block name description |
42 | Figure 20 – B_EVENT command code meanings Table 21 – Acknowledgement bit of B_EVENT Table 22 – Command type of B_EVENT |
43 | Figure 21 – B_EVENT message format Figure 22 – E_CMD block Table 23 – E_CMD block meanings |
44 | Figure 23 – Group block Figure 24 – Item block Table 24 – Group block meanings Table 25 – Item block meanings |
47 | Figure 25 – Status Read (STR Response) event data |
49 | Figure 26 – Configuration event data (STW Request) |
50 | Figure 27 – Poll data |
51 | Figure 28 – B_EVENT general decoding phase |
52 | Table 26 – Processing rules for a STR request Table 27 – Processing rules for an A_EVENT poll request Table 28 – Processing rules for a STW request |
53 | Figure 29 – Flow chart for processing a matched STW request |
54 | Figure 30 – BEACON frame format Figure 31 – BEACON command code Table 29 – STW request commands Table 30 – Block name description |
55 | Table 31 – Control code of BEACON frames Table 32 – Speed Code of BEACON frames |
56 | Figure 32 – Object diagram of A_Event message flow Figure 33 – A_EVENT message format |
57 | Figure 34 – Compact message type request format (non-fragmented frame/first fragment frame) |
58 | Figure 35 – Expanded message type request format (non-fragmented frame/first fragment frame) Figure 36 – Compact/Expanded message successful response format (unfragmented frame/first fragment frame) |
59 | Figure 37 – Compact/Expanded message unsuccessful response format (unfragmented frame/first fragment frame) Figure 38 – Compact/Expanded message request format for fragments Figure 39 – Compact/Expanded message response format for fragments |
60 | Figure 40 – Service data format Table 33 – Control code format |
62 | Table 34 – A Data encoding example |
63 | Table 35 – Fragment type values |
64 | Table 36 – Fragmented transmission |
65 | Table 37 – Fragmented reception |
67 | Table 38 – Explicit message timeout values |
68 | 5.3 CompoNet communication object classes |
69 | Table 39 – Maximum value of expected packet rate Table 40 – CompoNet connection object attribute access rules |
72 | Table 41 – CompoNet Link object specific additional error codes |
73 | Table 42 – Connection instance ID for predefined master/slave connections Table 43 – Default multicast poll connection object attribute values |
74 | Figure 41 – Predefined master/slave I/O connection state transition diagram Table 44 – Predefined master/slave I/O connection state event matrix |
76 | Figure 42 – Predefined master/slave I/O connection state transition diagram |
77 | Figure 43 – Connection flow |
78 | Table 45 – CompoNet Link class attributes Table 46 – CompoNet Link class services Table 47 – CompoNet Link instance attributes |
79 | Table 48 – MAC ID range |
80 | Table 49 – Data rate Table 50 – Allocation choice Table 51 – Data rate switch value |
81 | Table 52 – Bit definitions for node state octet Table 53 – Bit definitions for node network state Table 54 – CompoNet Link object common services |
82 | Figure 44 – Allocate request service data Table 55 – CompoNet Link Object class specific services Table 56 – Allocation choice octet contents |
83 | Figure 45 – Allocate response service data Figure 46 – Release request service data Table 57 – EPR value Table 58 – Explicit message timer Table 59 – Release master/slave connection set request parameters |
84 | Table 60 – Release choice octet contents Table 61 – Repeater class attribute Table 62 – Repeater class services |
85 | Table 63 – Instance attributes of repeater class |
86 | 5.4 Network access state machine Figure 47 – Reset service parameter Table 64 – Repeater common service Table 65 – Reset attributes |
87 | Table 66 – Data rate and network watchdog time periods |
88 | Figure 48 – State transition diagram Table 67 – Description of the state machine |
89 | Figure 49 – Sub-state of non-participated state Figure 50 – Sub-state of participated state |
90 | Figure 51 – Data rate detection diagram |
91 | Table 68 – Duplicate MAC ID detection mechanism Table 69 – Repeating directions of frames |
92 | 5.5 I/O connection 5.6 TDMA Figure 52 – BEACON changed by repeaters Figure 53 – Multicast I/O connections |
93 | Figure 54 – Master MAC and Physical circuit diagram Table 70 – Master timing features |
94 | Figure 55 – Slave MAC and Physical circuit diagram Table 71 – Slave timing features |
95 | Figure 56 – Repeater MAC and Physical circuit diagram Table 72 – Repeater timing features Table 73 – Cable propagation delay |
96 | Figure 57 – Transmission process Table 74 – Maximum cable length Table 75 – Parameters in TimeDomain calculation |
97 | Figure 58 – Transmission cycle model Table 76 – Frame marks |
98 | Table 77 – TimeDomain settings for nodes at first segment layer Table 78 – TimeDomain settings for nodes at 2nd and 3rd segment layers |
99 | Figure 59 – CnDefaultTimeDomain cycle model Table 79 – Repeater delay for CnDefaultTimeDomain calculation Table 80 – Parameters for CnDefaultTimeDomain calculation |
100 | Figure 60 – Master event communication model Table 81 – First segment layer settings Table 82 – Settings for 2nd and 3rd segment layers |
101 | Figure 61 – Slave event communication model Table 83 – Parameters for Event Time Domain calculations |
102 | 5.7 Physical layer Figure 62 – Manchester encoding (inverted) Table 84 – CompoNet Manchester encoding Table 85 – Allowable connectors for the master port |
103 | Table 86 – Master port impedance during receive Table 87 – Master port impedance during transmit |
104 | Figure 63 – Master port transmit mask Table 88 – Master port transmit specifications for data rate of 4 Mbit/s, 3 Mbit/s and 1,5 Mbit/s Table 89 – Master port transmit specifications for data rate of 93,75 kbit/s |
105 | Figure 64 – Output waveform test circuit for master or slave port Table 90 – Allowable connectors for permanently attached cables Table 91 – Allowable connectors for the slave port |
106 | Table 92 – Slave port impedance during receive Table 93 – Slave port impedance during transmit |
107 | Figure 65 – Slave port transmit mask Table 94 – Slave port transmit specifications for data rate of 4 Mbit/s; 3 Mbit/s and 1,5 Mbit/s Table 95 – Slave port transmit specifications for data rate of 93,75 kbit/s |
108 | Figure 66 – Receive mask 1 |
109 | Figure 67 – Receive mask 2 Figure 68 – Receive mask 3 |
110 | Figure 69 – PHY/MAC interface diagram Figure 70 – Digital receive mask 1 Table 96 – Specifications for digital receive mask 1 |
111 | Figure 71 – Digital receive mask 2 Figure 72 – Digital receive mask 3 Table 97 – Specifications for digital receive mask 2 Table 98 – Specifications for digital receive mask 3 |
112 | Figure 73 – Logical transmit mask Table 99 – Specifications for logical transmit |
113 | Figure 74 – Recommended circuit for a master port |
114 | Figure 75 – Recommended circuit for a slave port Figure 76 – Transformer symbol |
115 | Table 100 – Specification for pulse transformer Table 101 – Specifications for transformer core |
116 | Figure 77 – Driver voltage measurement circuit Figure 78 – Propagation delay test circuit Table 102 – Specifications for transceiver |
117 | Figure 79 – An isolation example of a master port Table 103 – Sending Table 104 – Receiving |
118 | Figure 80 – An isolation example of an I/O module with connectivity to other power sources Figure 81 – An isolation example of a simple slave that requires connection to devices with ungrounded signal wiring Figure 82 – An isolation example of a non-network powered slave |
119 | Table 105 – Cable types Table 106 – Cable conductor colours |
120 | Figure 83 – Media topology |
121 | Figure 84 – Position of a terminator Figure 85 – Number of devices per segment Table 107 – CompoNet round cable I: network limitations |
122 | Figure 86 – Cable length limitation Illustration Figure 87 – Branch restriction Table 108 – CompoNet 4-conductor cables: network limitations |
123 | Figure 88 – Wiring selection |
124 | Figure 89 – General wiring method |
125 | Figure 90 – Flexible wiring method Table 109 – Resistance characteristics Table 110 – Network power supply specifications |
126 | Table 111 – Local power supply specifications Table 112 – Node external power supply specifications |
127 | Figure 91 – Power dispatching method Figure 92 – Network segment powered by the master Figure 93 – Connection with power supply |
128 | Figure 94 – Network segments powered by repeaters |
129 | 6 Product information 7 Normal service, mounting and transport conditions 7.1 Normal service conditions Figure 95 – A simplified diagram for a repeater |
130 | 7.2 Conditions during transport and storage 7.3 Mounting 8 Constructional and performance requirements 8.1 Indicators and configuration switches |
131 | Table 113 – Module status indicator Table 114 – CDI status indicator |
132 | Table 115 – Data rate switch encoding Table 116 – Addresses switches |
133 | Table 117 – Indicator marking Table 118 – Node address switch and device type marking |
134 | 8.2 CompoNet cable Table 119 – Connector marking |
135 | Table 120 – Cable profile: data pair specification Table 121 – Cable profile: d.c. power pair specification |
136 | Table 122 – Cable profile: general specification |
137 | Table 123 – Round cable I: data pair specification Table 124 – Round cable I: d.c. power pair specification |
138 | Table 125 – Round cable I: general specification |
139 | Table 126 – Round cable II: data pair specification Table 127 – Round cable II: d.c. power pair specification |
140 | Figure 96 – Outline of round cable II Table 128 – Round cable II: general specification |
141 | Table 129 – Flat cable I: data pair specification Table 130 – Flat cable I: d.c. power pair specification |
142 | Figure 97 – Outline of flat cable I Table 131 – Flat cable I: general specification |
143 | Figure 98 – Dimension of flat cable I Table 132 – Flat cable II: data pair specification |
144 | Figure 99 – Outline of flat cable II Table 133 – Flat cable II: d.c. power pair specification Table 134 – Flat cable II: general specification |
145 | 8.3 Terminator 8.4 Connectors Figure 100 – Dimension of flat cable II |
146 | Table 135 – Connector profile template |
147 | Figure 101 – Engaging dimensions of plug connector |
148 | Figure 102 – Contact space for plug connector |
149 | Figure 103 – Engaging dimensions of jack connector |
150 | Figure 104 – Connector hook |
151 | Table 136 – Specification of open connector |
152 | Figure 105 – Open connecter plug (informative) |
153 | Figure 106 – Open connecter jack (informative) |
154 | Figure 107 – Method to measure contact resistance (open connectors) Figure 108 – De-rating current for connectors |
155 | Table 137 – Specification of flat connector I |
157 | Figure 109 – Flat connector I plug |
158 | Figure 110 – Flat connector I jack (informative) |
159 | Figure 111 – Method to measure contact resistance (flat I, II connectors) Table 138 – Specification of flat connector II |
161 | Figure 112 – Flat connector II plug (informative) Figure 113 – Flat connector II jack (informative) |
162 | Figure 114 – Marking connector for trunk lines Table 139 – Specification of sealed M12 connector |
163 | 8.5 Node power supply implementation Figure 115 – M12 connecter pinout |
164 | Figure 116 – Link power circuits Figure 117 – Power-drop along a cable |
165 | 8.6 Miswiring protection 8.7 Electromagnetic compatibility (EMC) Figure 118 – Power design for a node (informative) |
166 | 9 Tests 9.1 General |
167 | 9.2 Electrical testing Figure 119 – Operating voltage test circuit |
168 | Figure 120 – Reverse connected power supply line |
169 | Figure 121 – Isolation Figure 122 – Input impedance |
170 | Figure 123 – Output slave test circuit for slave port Table 140 – Input impedance for master Table 141 – Input impedance for slave |
171 | Figure 124 – Minimum input waveform test circuit Figure 125 – Minimum input waveform test system |
172 | 9.3 Mechanical test 9.4 Logical test |
173 | Figure 126 – Data link test for slave and repeater DUT |
176 | Figure 127 – Test configuration for minimum traffic of master DUT |
177 | Figure 128 – Test configuration for proxy of master DUT |
178 | Annex A (normative) CompoNet common services |
179 | Annex B (normative) CompoNet error codes Table B.1 – Newly defined CompoNet error codes |
180 | Annex C (normative) Connection path attribute definition |
181 | Annex D (normative) Data type specification and encoding |
184 | Figure D.1 – An example to generate CRC |
185 | Annex E (normative) Communication objects library |
186 | Annex F (normative) Value ranges Table F.1 – MAC ID and node address ranges |
187 | Annex G (normative) CN default time domain Table G.1 – CN default time domain table for 4 Mbit/s data rate |
188 | Table G.2 – CN default time domain table for 3 Mbit/s data rate |
189 | Table G.3 – CN default time domain table for 1,5 Mbit/s data rate |
190 | Table G.4 – CN default time domain table for 93,75 kbit/s data rate |
191 | Bibliography |