Shopping Cart

No products in the cart.

BS EN ISO 19905-1:2023

$215.11

Oil and gas industries including lower carbon energy. Site-specific assessment of mobile offshore units – Jack-ups: elevated at a site

Published By Publication Date Number of Pages
BSI 2023 384
Guaranteed Safe Checkout
Categories: ,

If you have any questions, feel free to reach out to our online customer service team by clicking on the bottom right corner. We’re here to assist you 24/7.
Email:[email protected]

This document specifies requirements and provides recommendation and guidance for the elevated site-specific assessment (SSA-E) of independent leg jack?up units for use in the petroleum and natural gas industries. It addresses: a)       occupied non-evacuated, occupied evacuated and unoccupied jack?ups; b)       the installed (or elevated) phase at a specific site. It also addresses the requirement that the as-installed condition matches the assumptions used in the assessment. This document does not address the site-specific assessment of installation and removal (SSA-I). To ensure acceptable reliability, the provisions of this document form an integrated approach, which is used in its entirety for the site-specific assessment of a jack?up. When assessing a jack-up operating in regions subject to sea ice and icebergs, it is intended that the assessor supplements the provisions of this document with the relevant provisions relating to ice actions contained in ISO 19906 and procedures for ice management contained in ISO 35104. This document does not address design, transit to and from site, or installation and removal from site. This document is applicable only to independent leg mobile jack-up units that are structurally sound and adequately maintained, which is normally demonstrated through holding a valid recognized classification society, classification certificate. Jack?ups that do not hold a valid recognized classification society certificate are assessed according to the provisions of ISO 19902, supplemented by methodologies from this document, where applicable. NOTE 1        Well conductors can be a safety-critical element for jack?up operations. However, the integrity of well conductors is not part of the site-specific assessment process for jack?ups and is, therefore, not addressed in this document. See A.1 for guidance on this topic. NOTE 2        RCS rules and the IMO MODU code (International Maritime Organisation Mobile Offshore Drilling Unit code) provide guidance for the design of jack-ups.

PDF Catalog

PDF Pages PDF Title
2 undefined
29 4.1 Symbols
4.1.1 General
31 4.1.2 Symbols used in A.6
33 4.1.3 Symbols used in A.7
35 4.1.4 Symbols used in A.8
36 4.1.5 Symbols used in A.9 and Annex E
39 4.1.6 Symbols used in A.10
40 4.1.7 Symbols used in A.11
41 4.1.8 Symbols used in A.12
45 4.2 Abbreviated terms
46 5.1 General
5.1.1 Interaction with SSA-I
47 5.1.2 Competency
5.1.3 Planning
5.1.4 Assessment situations and associated criteria
5.1.5 Reporting
5.1.6 Regulations
48 5.1.7 Classification of unit
5.2 Assessment approach
50 5.3 Selection of assessment situations
51 5.4 Determination of assessment situations
5.4.1 General
5.4.2 Reaction point and foundation fixity
5.4.3 Extreme storm event approach angle
5.4.4 Weights and centre of gravity
5.4.5 Hull elevation
52 5.4.6 Leg length reserve
5.4.7 Adjacent structures
5.4.8 Other
5.5 Exposure levels
5.5.1 Determination of exposure level
5.5.2 Exposure level L1
5.5.3 Exposure level L2
53 5.5.4 Exposure level L3
5.5.5 Exposure level for earthquake
5.6 Analytical tools
6.1 Applicability
6.2 Jack-up data
54 6.3 Site and operational data
6.4 Metocean data
55 6.5 Geophysical and geotechnical data
56 6.6 Earthquake data
6.7 Ice data
7.1 Applicability
7.2 General
57 7.3 Metocean actions
7.3.1 General
7.3.2 Hydrodynamic model
7.3.3 Wave and current actions
7.3.4 Wind actions
58 7.4 Functional actions
7.5 Displacement dependent effects
7.6 Dynamic effects
7.7 Earthquakes
7.8 Ice actions
7.9 Other actions
8.1 Applicability
59 8.2 Overall considerations
8.2.1 General
8.2.2 Modelling philosophy
8.2.3 Levels of FE modelling
60 8.3 Modelling the leg
8.3.1 General
8.3.2 Detailed leg
8.3.3 Equivalent leg (stick model)
8.3.4 Combination of detailed and equivalent leg
8.3.5 Stiffness adjustment
8.3.6 Leg inclination
8.4 Modelling the hull
8.4.1 General
8.4.2 Detailed hull model
8.4.3 Equivalent hull model
61 8.5 Modelling the leg-to-hull connection
8.5.1 General
8.5.2 Guide systems
8.5.3 Elevating system
8.5.4 Fixation system
8.5.5 Shock pad ( floating jacking systems
8.5.6 Jackcase and associated bracing
8.5.7 Equivalent leg-to-hull stiffness
8.6 Modelling the spudcan and foundation
8.6.1 Spudcan structure
8.6.2 Seabed reaction point
62 8.6.3 Foundation modelling
8.7 Mass modelling
63 8.8 Application of actions
8.8.1 Assessment actions
8.8.1.1 General
8.8.1.2 Two-stage deterministic storm analysis
64 8.8.1.3 Stochastic storm analysis
8.8.1.4 Earthquake analysis
8.8.2 Functional actions due to fixed load and variable load
65 8.8.3 Hull sagging
8.8.4 Metocean actions
8.8.5 Inertial actions
8.8.6 Large displacement effects
8.8.7 Conductor actions
8.8.8 Earthquake actions
8.8.9 Ice actions
66 9.1 Applicability
9.2 General
9.3 Geotechnical analysis of independent leg foundations
9.3.1 Foundation modelling and assessment
67 9.3.2 Leg penetration during preloading
68 9.3.3 Yield interaction
9.3.4 Foundation stiffnesses
9.3.5 Vertical-horizontal foundation capacity envelopes
69 9.3.6 Acceptance checks
70 9.4 Other considerations
9.4.1 Skirted spudcans
71 9.4.2 Hard sloping strata
9.4.3 Footprint considerations
9.4.4 Leaning instability
9.4.5 Leg extraction difficulties
9.4.6 Cyclic mobility, liquefaction and liquefaction-induced lateral flow
72 9.4.7 Scour
9.4.8 Spudcan interaction with adjacent infrastructure
9.4.9 Geohazards
9.4.10 Carbonate material
10.1 Applicability
73 10.2 General considerations
10.3 Types of analyses and associated methods
74 10.4 Common parameters
10.4.1 General
10.4.2 Natural periods and related considerations
10.4.2.1 General
10.4.2.2 Stiffness
10.4.2.3 Mass
10.4.2.4 Variability in natural period
10.4.2.5 Cancellation and reinforcement
75 10.4.3 Damping
10.4.4 Foundations
10.4.5 Storm excitation
10.5 Storm analysis
10.5.1 General
76 10.5.2 Two-stage deterministic storm analysis
77 10.5.3 Stochastic storm analysis
78 10.5.4 Initial leg inclination
10.5.5 Limit state checks
10.6 Fatigue analysis
10.7 Earthquake analysis
80 10.8 Ice
10.8.1 General
10.8.2 ULS
10.8.3 ALS
81 10.8.4 Assessments in the area types
10.8.5 Additional factors for arctic and cold regions
10.9 Accidental situations
10.10 Alternative analysis methods
10.10.1 Ultimate strength analysis
10.10.2 Methodology
82 11.1 Applicability
11.2 Assessment data
11.3 Special requirements
11.3.1 Fatigue assessment
11.3.2 Weight control
83 11.3.3 Corrosion protection
11.3.4 Marine growth
11.3.5 Foundations
11.4 Survey requirements
12.1 Applicability
12.1.1 General
84 12.1.2 Truss type legs
12.1.3 Other leg types
12.1.4 Fixation system and/or elevating system
12.1.5 Spudcan strength including connection to the leg
85 12.1.6 Overview of the assessment procedure
12.2 Classification of member cross-sections
12.2.1 Member types
12.2.2 Material yield strength
12.2.3 Classification definitions
86 12.3 Section properties of non-circular prismatic members
12.3.1 General
12.3.2 Plastic and compact sections
12.3.3 Semi-compact sections
12.3.4 Slender sections
12.3.5 Cross-section properties for the assessment
87 12.4 Effects of axial force on bending moment
12.5 Strength of tubular members
12.6 Strength of non-circular prismatic members
12.7 Assessment of joints
13.1 Applicability
13.1.1 General
88 13.1.2 Ultimate limit states
13.1.3 Serviceability and accidental limit states
13.1.4 Fatigue limit states
13.2 General formulation of the assessment check
89 13.3 Leg strength assessment
90 13.4 Holding system strength assessment
13.5 Spudcan strength assessment
13.6 Hull elevation assessment
13.7 Leg length reserve assessment
91 13.8 Overturning stability assessment
92 13.9 Foundation integrity assessment
13.9.1 Foundation capacity check
93 13.10 Displacement check
13.11 Interaction with adjacent infrastructure
13.12 Temperatures
94 A.1 Guidance on scope
A.2 Guidance on normative references
A.3 Guidance on terms and definitions
A.4 Guidance on symbols
A.4.1 Symbols used in A.1
A.4.2 Symbols used in A.2
A.4.3 Symbols used in A.3
A.4.4 Symbols used in A.4
A.4.5 Symbols used in A.5
A.4.6 Symbols used in A.6
A.4.7 Symbols used in A.7
95 A.4.8 Symbols used in A.8
A.4.9 Symbols used in A.9
A.4.10 Symbols used in A.10
A.4.11 Symbols used in A.11
A.4.12 Symbols used in A.12
A.5 Guidance on overall considerations
A.6 Guidance on data assembled for each site
A.6.1 Scope
A.6.2 Jack-up data
A.6.3 Site data
A.6.4 Metocean data
A.6.4.1 General
96 A.6.4.2 Waves
A.6.4.2.1 General
A.6.4.2.2 Extreme wave height
A.6.4.2.3 Deterministic waves
98 A.6.4.2.4 Wave crest elevation
A.6.4.2.5 Wave spectrum
99 A.6.4.2.6 Airy wave height correction for stochastic analysis
A.6.4.2.7 Peak and mean zero-upcrossing periods
100 A.6.4.2.8 Short-crested stochastic waves
101 A.6.4.2.9 Maximizing the wave/current response
A.6.4.2.10 Long-term wave data
A.6.4.3 Current
103 A.6.4.4 Water depths
A.6.4.5 Marine growth
A.6.4.6 Wind
A.6.4.6.1 General
A.6.4.6.2 Wind profile
104 A.6.5 Geophysical and geotechnical data
A.6.5.1 Geoscience data
A.6.5.1.1 General
A.6.5.1.2 Bathymetric survey
A.6.5.1.3 Sea floor survey
107 A.6.5.1.4 Shallow seismic survey
A.6.5.1.5 Geotechnical investigation
A.6.5.1.5.1 General
A.6.5.1.5.2 Geotechnical investigation scope
108 A.6.5.1.5.3 Geotechnical report
109 A.6.5.2 Data integration
A.6.6 Earthquake data
A.6.7 Ice data
A.7 Guidance on actions
A.7.1 Applicability
A.7.2 General
A.7.3 Metocean actions
A.7.3.1 General
A.7.3.1.1 Load cases
110 A.7.3.1.2 Methods for the determination of actions
111 A.7.3.2 Hydrodynamic model
A.7.3.2.1 General
113 A.7.3.2.2 “Detailed” leg model
A.7.3.2.3 “Equivalent” leg model
115 A.7.3.2.4 Drag and inertia coefficients
118 A.7.3.2.5 Marine growth
119 A.7.3.2.6 Hydrodynamic models for appurtenances
A.7.3.3 Wave and current actions
A.7.3.3.1 General
A.7.3.3.2 Hydrodynamic actions
121 A.7.3.3.3 Wave models
A.7.3.3.3.1 Deterministic waves
122 A.7.3.3.3.2 Stochastic waves
124 A.7.3.3.3.3 The effect of directionality and spreading on dynamic response
125 A.7.3.3.4 Current
A.7.3.3.5 Intrinsic and apparent wave periods
127 A.7.3.4 Wind actions
A.7.3.4.1 Wind action
A.7.3.4.2 Shape coefficient
128 A.7.3.4.3 Wind tunnel data
A.7.4 Functional actions
129 A.7.5 Displacement dependent actions
A.7.6 Dynamic effects
A.7.7 Earthquakes
A.7.8 Ice actions
A.7.9 Other actions
A.8 Guidance on structural modelling
A.8.1 Applicability
A.8.2 Overall considerations
A.8.2.1 General
A.8.2.2 Modelling philosophy
130 A.8.2.3 Levels of FE modelling
132 A.8.3 Modelling the leg
A.8.3.1 General
A.8.3.2 Detailed leg
A.8.3.3 Equivalent leg (stick model)
135 A.8.3.4 Combination of detailed and equivalent leg
136 A.8.3.5 Stiffness adjustment
A.8.3.6 Leg inclination
A.8.4 Modelling the hull
A.8.4.1 General
A.8.4.2 Detailed hull model
A.8.4.3 Equivalent hull model
A.8.5 Modelling the leg-to-hull connection
A.8.5.1 General
143 A.8.5.2 Guide systems
144 A.8.5.3 Elevating system
A.8.5.3.1 Jacking (or elevating) pinions
145 A.8.5.3.2 Other elevating systems
A.8.5.4 Fixation system
A.8.5.5 Shock pad — Floating jacking systems
A.8.5.6 Jackcase and associated bracing
A.8.5.7 Equivalent leg-to-hull stiffness
146 A.8.6 Modelling the spudcan and foundation
A.8.6.1 Spudcan structure
A.8.6.2 Seabed reaction point
A.8.6.3 Foundation modelling
147 A.8.7 Mass modelling
A.8.8 Application of actions
A.8.8.1 Assessment actions
A.8.8.2 Functional actions due to fixed load and variable load
148 A.8.8.3 Hull sagging
A.8.8.4 Metocean actions
A.8.8.4.1 Wind actions
149 A.8.8.4.2 Wave/current actions
A.8.8.5 Inertial actions
A.8.8.6 Large displacement effects
151 A.8.8.7 Conductor actions
A.8.8.8 Earthquake actions
A.8.8.9 Ice actions
A.9 Guidance on foundations
A.9.1 Applicability
A.9.2 General
A.9.3 Geotechnical analysis of independent leg foundations
A.9.3.1 Foundation modelling and assessment
A.9.3.1.1 General
154 A.9.3.1.2 Approaches to foundation assessment
155 A.9.3.1.3 Simple pinned foundation
A.9.3.1.4 Linear vertical, linear horizontal and secant rotational stiffness
A.9.3.1.5 Non-linear vertical, horizontal and rotational stiffness
A.9.3.1.6 Non-linear continuum foundation model
156 A.9.3.2 Leg penetration during preloading
A.9.3.2.1 Analysis method
A.9.3.2.1.1 General
A.9.3.2.1.2 Modelling the spudcan
159 A.9.3.2.1.3 Modelling the soil
160 A.9.3.2.1.4 Backfill
164 A.9.3.2.1.5 Required bearing capacity
A.9.3.2.2 Penetration in clays
166 A.9.3.2.3 Penetration in soils with partial drainage
A.9.3.2.4 Penetration in silica sands
167 A.9.3.2.5 Penetration in carbonate sands
A.9.3.2.5.1 General
168 A.9.3.2.5.2 Uncemented carbonate materials
A.9.3.2.5.3 Cemented carbonate materials
A.9.3.2.5.4 Predictive methods
169 A.9.3.2.6 Penetration in layered soils
A.9.3.2.6.1 General
A.9.3.2.6.2 Squeezing of clay
171 A.9.3.2.6.3 Punch-through: two clay layers
A.9.3.2.6.4 Punch-through — Sand overlying clay
174 A.9.3.2.6.5 Punch-through — Cemented crust over weak soil
A.9.3.2.6.6 Three layered systems
175 A.9.3.3 Yield interaction
A.9.3.3.1 General
177 A.9.3.3.2 Ultimate vertical/horizontal/rotational capacity interaction function for spudcans in sand and clay
184 A.9.3.3.3 Spudcans in clay with FV ( 0,5 QV
187 A.9.3.3.4 Modification of the yield surface for partial penetration in sand
A.9.3.3.5 Expansion of the yield surface for additional penetration in sand
188 A.9.3.3.6 Expansion of the yield surface for additional penetration in clay
A.9.3.3.7 Effect of cyclic loading on the yield surface
A.9.3.3.7.1 General
190 A.9.3.3.7.2 Assumptions
191 A.9.3.3.7.3 Simplified conservative calculation of Fa,i
A.9.3.4 Foundation stiffness
A.9.3.4.1 Vertical, horizontal and rotational stiffness
192 A.9.3.4.2 Stiffness modifications
A.9.3.4.2.1 Embedment
194 A.9.3.4.2.2 Linear vertical, linear horizontal and secant rotational stiffness
195 A.9.3.4.2.3 Non-linear vertical, horizontal and rotational stiffness
A.9.3.4.2.4 Non-linear continuum foundation model
A.9.3.4.3 Selection of shear modulus, Gmax , for clay
197 A.9.3.4.4 Selection of shear modulus, Gmax, for sand
198 A.9.3.4.5 Selection of shear modulus for layered soils
A.9.3.4.6 Soil-leg interaction
A.9.3.5 Vertical-horizontal foundation capacity envelopes
A.9.3.5.1 General ultimate vertical-horizontal foundation capacity envelope
199 A.9.3.5.2 Ultimate vertical-horizontal foundation capacity envelopes for spudcans in sand
200 A.9.3.5.3 Ultimate vertical-horizontal foundation capacity envelopes for spudcans in clay
A.9.3.5.4 Ultimate vertical-horizontal foundation capacity envelopes for spudcans on layered soils
A.9.3.6 Acceptance checks
A.9.3.6.1 General
202 A.9.3.6.2 Level 1, Step 1a — Ultimate bearing capacity check for vertical loading of the leeward leg–- preload check (pinned spudcan)
203 A.9.3.6.3 Level 1, Step 1b — Check of the windward leg — Pinned spudcan
A.9.3.6.4 Level 2, Step 2a — Foundation capacity and sliding check — Pinned spudcan
A.9.3.6.4.1 Step 2a — Foundation capacity check
206 A.9.3.6.4.2 Step 2a — Foundation sliding check
207 A.9.3.6.5 Level 2, Steps 2b and 2c — Foundation capacity and sliding check — Spudcan with moment fixity and vertical and horizontal stiffness
A.9.3.6.6 Level 3, Steps 3a and 3b — Displacement check — Settlements resulting from exceedance of the foundation capacity
208 A.9.3.6.7 Foundation settlement not specifically addressed elsewhere
209 A.9.4 Other considerations
A.9.4.1 Skirted spudcans
210 A.9.4.2 Hard sloping strata
A.9.4.3 Footprint considerations
A.9.4.4 Leaning instability
211 A.9.4.5 Leg extraction difficulties
A.9.4.6 Cyclic mobility, liquefaction and liquefaction-induced lateral flow
A.9.4.6.1 General
212 A.9.4.6.2 Glossary
A.9.4.6.2.1 Cyclic mobility
A.9.4.6.2.2 Liquefaction
A.9.4.6.2.3 Liquefaction potential
A.9.4.6.2.4 Free-field
A.9.4.6.2.5 Liquefiable
A.9.4.6.2.6 Liquefaction-induced lateral flow
A.9.4.6.3 Assessment of earthquake-induced liquefaction
213 A.9.4.6.4 Assessment of site susceptibility to liquefaction
214 A.9.4.6.5 Simplified free-field assessment of liquefaction
A.9.4.6.5.1 General
A.9.4.6.5.2 Cyclic shear stress ratio and cyclic resistance ratio
215 A.9.4.6.5.3 Site response analysis
A.9.4.6.6 Detailed analysis
A.9.4.6.7 Liquefaction-induced lateral flows
A.9.4.7 Scour
217 A.9.4.8 Spudcan interaction with adjacent infrastructure
A.9.4.9 Geohazards
A.9.4.10 Carbonate material
A.10 Guidance on structural response
A.10.1 Applicability
A.10.2 General considerations
A.10.3 Types of analyses and associated methods
219 A.10.4 Common parameters
A.10.4.1 General
220 A.10.4.2 Natural periods and affecting factors
A.10.4.2.1 General
A.10.4.2.2 Stiffness
221 A.10.4.2.3 Mass
A.10.4.2.4 Variability in natural period
A.10.4.2.5 Cancellation and reinforcement
A.10.4.2.5.1 General
A.10.4.2.5.2 Quasi-static deterministic waves
A.10.4.2.5.3 Stochastic dynamic wave response
225 A.10.4.3 Damping
A.10.4.3.1 General
A.10.4.3.2 Linear system damping
A.10.4.3.3 Hysteretic damping
A.10.4.3.4 Vertical radiation damping in earthquake analysis
226 A.10.4.4 Foundations
A.10.4.4.1 Foundations for extreme storm assessment
A.10.4.4.1.1 General
227 A.10.4.4.1.2 Option 1 — Deterministic two-stage approach
228 A.10.4.4.1.3 Option 2 — Stochastic one-stage approach
229 A.10.4.4.2 Foundations for earthquake assessment
A.10.4.5 Storm excitation
A.10.5 Storm analysis
A.10.5.1 General
A.10.5.2 Two-stage deterministic storm analysis
A.10.5.2.1 General
230 A.10.5.2.2 Dynamic amplification factors (DAFs) and inertial loadsets
A.10.5.2.2.1 General
232 A.10.5.2.2.2 The classical SDOF analogy (K DAF,SDOF)
233 A.10.5.2.2.3 Inertial loadset based on random dynamic analysis (K DAF,RANDOM)
238 A.10.5.3 Stochastic storm analysis
A.10.5.3.1 General
A.10.5.3.2 Application of partial factors to metocean parameters
239 A.10.5.3.3 Random wave dynamic analysis method
240 A.10.5.3.4 Methods for determining the MPME
A.10.5.4 Initial leg Inclination
241 A.10.5.5 Limit state checks
243 A.10.6 Fatigue analysis
A.10.7 Earthquake analysis
A.10.7.1 General
A.10.7.2 Earthquake assessment procedure
244 A.10.7.3 ELE assessment
A.10.7.3.1 Partial action factors
A.10.7.3.2 Structural and foundation modelling
245 A.10.7.4 ALE assessment
246 A.10.7.5 Near-source excitation
A.10.8 Ice
A.10.8.1 General
A.10.8.1.1 Operating area types
A.10.8.2 ULS
A.10.8.3 ALS
A.10.8.4 Assessments in the area types
A.10.8.4.1 Area type 1
247 A.10.8.4.2 Area type 2
A.10.8.4.3 Area type 3
248 A.10.8.5 Additional factors to be considered for arctic and cold regions
A.10.8.5.1 General
A.10.8.5.2 Geotechnical and geophysical considerations
A.10.8.5.3 Dynamic ice actions
A.10.8.5.4 Factors to consider for moving a jack-up off site in arctic and cold regions
249 A.10.9 Accidental situations
A.10.10 Alternative analysis methods
A.10.10.1 Ultimate strength analysis
A.10.10.2 Methodology
A.11 Guidance on long-term applications
A.11.1 Applicability
250 A.11.2 Assessment data
A.11.2.1 Jack-up data
A.11.2.2 Metocean data
A.11.2.3 Geotechnical data
A.11.2.4 Other data
A.11.3 Special requirements
A.11.3.1 Fatigue assessment
A.11.3.1.1 Historical damage
251 A.11.3.1.2 Fatigue sensitive areas
A.11.3.1.3 Special considerations for fatigue assessment
252 A.11.3.1.4 Fatigue analysis methodology
A.11.3.1.5 Fatigue acceptance criteria
253 A.11.3.2 Weight control
254 A.11.3.3 Corrosion protection
A.11.3.4 Marine growth
A.11.3.5 Foundations
A.11.4 Survey requirements
A.11.4.1 Pre-deployment inspection plan
A.11.4.2 Project specific in-service inspection programme
255 A.11.4.3 Alternative project specific in-service inspection programme (PSIIP)
A.12 Guidance on structural strength
A.12.1 Applicability
A.12.1.1 General
256 A.12.1.2 Truss type legs
A.12.1.3 Other leg types
A.12.1.4 Fixation system and/or elevating system
A.12.1.5 Spudcan strength including connection to the leg
257 A.12.1.6 Overview of the assessment procedure
A.12.2 Classification of member cross-sections
A.12.2.1 Member type
A.12.2.2 Material yield strength
A.12.2.3 Classification definitions
A.12.2.3.1 Tubular member classification
A.12.2.3.2 Non-circular prismatic member classification
259 A.12.2.3.3 Reinforced components
264 A.12.3 Section properties of non-circular prismatic members
A.12.3.1 General
265 A.12.3.2 Plastic and compact sections
A.12.3.2.1 Axial properties — Class 1 and class 2 sections
A.12.3.2.2 Flexural properties — Class 1 and class 2 sections
A.12.3.3 Semi-compact sections
266 A.12.3.4 Slender sections
A.12.3.4.1 General
267 A.12.3.4.2 Effective areas for compressive loading
A.12.3.4.3 Effective moduli for flexural loading
269 A.12.3.5 Cross-sectional properties for the assessment
A.12.3.5.1 Tension
270 A.12.3.5.2 Compression
A.12.3.5.3 Flexure
271 A.12.4 Effects of axial force on bending moment
A.12.4.1 General
A.12.4.2 Member moment correction due to eccentricity of axial force
272 A.12.4.3 Member moment amplification and effective lengths
274 A.12.5 Strength of tubular members
A.12.5.1 Applicability
275 A.12.5.2 Tension, compression and bending strength of tubular members
A.12.5.2.1 Yield strength to be used in calculating capacities
276 A.12.5.2.2 Axial tensile strength check
A.12.5.2.3 Axial compressive strength check
A.12.5.2.4 Local buckling strength
277 A.12.5.2.5 Column buckling strength
A.12.5.2.6 Bending strength check
278 A.12.5.2.7 Torsional shear strength check
A.12.5.2.8 Beam shear strength check
279 A.12.5.3 Tubular member combined strength checks
A.12.5.3.1 Axial tension and bending strength check
A.12.5.3.2 Axial compression and bending strength check
280 A.12.5.3.3 Combined axial tension or compression, bending, shear and torsion strength check
281 A.12.6 Strength of non-circular prismatic members
A.12.6.1 General
282 A.12.6.2 Non-circular prismatic members subjected to tension, compression, bending or shear
A.12.6.2.1 General
A.12.6.2.2 Axial tensile strength check
283 A.12.6.2.3 Axial compressive local strength check
284 A.12.6.2.4 Axial compressive column buckling strength
285 A.12.6.2.5 Bending moment strength
A.12.6.2.5.1 General
A.12.6.2.5.2 Class 1 plastic and class 2 compact section bending moment strength
286 A.12.6.2.5.3 Class 3 semi-compact section bending moment strength
288 A.12.6.2.5.4 Class 4 slender-section bending moment strength
A.12.6.2.6 Bending moment strength affected by lateral torsional buckling
A.12.6.2.7 Bending strength check
289 A.12.6.3 Non-circular prismatic member combined strength checks
A.12.6.3.1 General
A.12.6.3.2 Interaction formula approach
291 A.12.6.3.3 Interaction surface approach
292 A.12.6.3.4 Beam shear
295 A.12.6.3.5 Torsional shear
A.12.7 Assessment of joints
296 A.13 Guidance on acceptance checks
299 C.1 Guidance on 8.5 — Modelling the leg-to-hull connections
300 C.2 Guidance on A.10.5.3.4 — Methods for determining the MPME
C.2.1 Guidance on the first method of Table A.10.5-1 — Fitting Weibull distributions to the results of a number of time domain simulations to determine responses at the required probability level and average the results
302 C.2.2 Guidance on the second method of Table A.10.5-1: Fitting Gumbel distribution to histogram of absolute maximum responses from a number of time domain simulations to determine responses at required probability level
304 C.2.3 Guidance on the third method of Table A.10.5-1 — Application of Winterstein’s Hermite polynomial method to the results of time domain simulation(s)
306 C.2.4 Guidance on the fourth method of Table A.10.5-1: Application of drag-inertia method to determine the base shear and overturning moment DAF from time domain simulation
315 E.1 Guidance on A.9.3.2.2: Penetration in clays — Bearing capacity factors of Houlsby and Martin
322 E.2 Guidance on A.9.3.2.4 — Penetration in silica sands
325 E.3 Guidance on A.9.3.2.6.4 — Punch-through — Sand overlying clay — Further details on alternate methods
329 E.4 Calculated foundation capacities approach
E.4.1 General
E.4.2 Background
330 E.4.3 Suitable spudcan geometries
332 E.4.4 Criterion for use of calculated foundation capacities
333 E.4.5 Representative soil strength parameters
334 E.4.6 Calculated foundation yield surface and fixity
335 E.4.7 Bearing capacity check
E.4.8 Sliding capacity check
E.4.9 Spudcan-to-leg connection and spudcan structural integrity checks
336 E.4.10 Precautions and considerations when adopting calculated foundation capacities
E.4.10.1 General
E.4.10.2 Quality and quantity of soil data
E.4.10.3 Hydraulic stability
E.4.10.4 Filling of voids within skirted spudcans
337 E.4.10.5 Seabed unevenness, spudcan-footprint interactions and sloping strata
E.4.10.6 Cyclic degradation/effects from cyclic loading
E.4.10.7 Effects of soil drainage
338 E.4.10.8 Silt and carbonate soils
E.4.10.9 Foundation damping
E.5 Example of simplified free-field liquefaction assessment calculation method
E.5.1 General
E.5.2 Calculation of cyclic resistance ratio (λCRR) based on shear wave velocity
339 E.5.3 Calculation of the cyclic resistance ratio(λCRR) based on CPT data
340 E.5.4 Cyclic stress ratio (λCSR) calculation
341 E.5.5 Ratio of cyclic resistance ratio to cyclic shear stress ratio
342 F.1 Guidance on A.12.6.2.4 — Axial compressive column buckling strength
343 F.2 Guidance on A.12.6.3.2 — Interaction formula approach — Determination of (
344 F.3 Guidance on A.12.6.3.3 — Interaction surface approach
363 H.1 General
H.2 Norway
H.2.1 Description of region
H.2.2 Technical requirements
365 H.2.3 Technical requirements for jack-up rigs operating close to a permanent occupied installation
H.2.3.1 Introduction
H.2.3.2 Dynamic response and structural analyses
H.2.3.3 Advanced geotechnical analyses
366 H.2.3.4 Documentation
H.2.4 Additional national requirements
367 H.3 US Gulf of Mexico
H.3.1 Description of region
H.3.2 Regulatory framework
368 H.3.3 Metocean conditions
H.3.3.1 General
H.3.3.2 Metocean conditions and their assessment
H.3.3.2.1 General
369 H.3.3.2.2 Hull elevation during hurricane season
H.3.3.2.3 Sudden hurricane case
370 H.3.3.2.4 Unoccupied post-evacuation case
H.3.3.3 Other requirements
H.3.3.3.1 Preloading
371 H.3.3.3.2 Storm preparation
BS EN ISO 19905-1:2023
$215.11