BS EN ISO 19905-1:2023
$215.11
Oil and gas industries including lower carbon energy. Site-specific assessment of mobile offshore units – Jack-ups: elevated at a site
Published By | Publication Date | Number of Pages |
BSI | 2023 | 384 |
This document specifies requirements and provides recommendation and guidance for the elevated site-specific assessment (SSA-E) of independent leg jack?up units for use in the petroleum and natural gas industries. It addresses: a) occupied non-evacuated, occupied evacuated and unoccupied jack?ups; b) the installed (or elevated) phase at a specific site. It also addresses the requirement that the as-installed condition matches the assumptions used in the assessment. This document does not address the site-specific assessment of installation and removal (SSA-I). To ensure acceptable reliability, the provisions of this document form an integrated approach, which is used in its entirety for the site-specific assessment of a jack?up. When assessing a jack-up operating in regions subject to sea ice and icebergs, it is intended that the assessor supplements the provisions of this document with the relevant provisions relating to ice actions contained in ISO 19906 and procedures for ice management contained in ISO 35104. This document does not address design, transit to and from site, or installation and removal from site. This document is applicable only to independent leg mobile jack-up units that are structurally sound and adequately maintained, which is normally demonstrated through holding a valid recognized classification society, classification certificate. Jack?ups that do not hold a valid recognized classification society certificate are assessed according to the provisions of ISO 19902, supplemented by methodologies from this document, where applicable. NOTE 1 Well conductors can be a safety-critical element for jack?up operations. However, the integrity of well conductors is not part of the site-specific assessment process for jack?ups and is, therefore, not addressed in this document. See A.1 for guidance on this topic. NOTE 2 RCS rules and the IMO MODU code (International Maritime Organisation Mobile Offshore Drilling Unit code) provide guidance for the design of jack-ups.
PDF Catalog
PDF Pages | PDF Title |
---|---|
2 | undefined |
29 | 4.1 Symbols 4.1.1 General |
31 | 4.1.2 Symbols used in A.6 |
33 | 4.1.3 Symbols used in A.7 |
35 | 4.1.4 Symbols used in A.8 |
36 | 4.1.5 Symbols used in A.9 and Annex E |
39 | 4.1.6 Symbols used in A.10 |
40 | 4.1.7 Symbols used in A.11 |
41 | 4.1.8 Symbols used in A.12 |
45 | 4.2 Abbreviated terms |
46 | 5.1 General 5.1.1 Interaction with SSA-I |
47 | 5.1.2 Competency 5.1.3 Planning 5.1.4 Assessment situations and associated criteria 5.1.5 Reporting 5.1.6 Regulations |
48 | 5.1.7 Classification of unit 5.2 Assessment approach |
50 | 5.3 Selection of assessment situations |
51 | 5.4 Determination of assessment situations 5.4.1 General 5.4.2 Reaction point and foundation fixity 5.4.3 Extreme storm event approach angle 5.4.4 Weights and centre of gravity 5.4.5 Hull elevation |
52 | 5.4.6 Leg length reserve 5.4.7 Adjacent structures 5.4.8 Other 5.5 Exposure levels 5.5.1 Determination of exposure level 5.5.2 Exposure level L1 5.5.3 Exposure level L2 |
53 | 5.5.4 Exposure level L3 5.5.5 Exposure level for earthquake 5.6 Analytical tools 6.1 Applicability 6.2 Jack-up data |
54 | 6.3 Site and operational data 6.4 Metocean data |
55 | 6.5 Geophysical and geotechnical data |
56 | 6.6 Earthquake data 6.7 Ice data 7.1 Applicability 7.2 General |
57 | 7.3 Metocean actions 7.3.1 General 7.3.2 Hydrodynamic model 7.3.3 Wave and current actions 7.3.4 Wind actions |
58 | 7.4 Functional actions 7.5 Displacement dependent effects 7.6 Dynamic effects 7.7 Earthquakes 7.8 Ice actions 7.9 Other actions 8.1 Applicability |
59 | 8.2 Overall considerations 8.2.1 General 8.2.2 Modelling philosophy 8.2.3 Levels of FE modelling |
60 | 8.3 Modelling the leg 8.3.1 General 8.3.2 Detailed leg 8.3.3 Equivalent leg (stick model) 8.3.4 Combination of detailed and equivalent leg 8.3.5 Stiffness adjustment 8.3.6 Leg inclination 8.4 Modelling the hull 8.4.1 General 8.4.2 Detailed hull model 8.4.3 Equivalent hull model |
61 | 8.5 Modelling the leg-to-hull connection 8.5.1 General 8.5.2 Guide systems 8.5.3 Elevating system 8.5.4 Fixation system 8.5.5 Shock pad ( floating jacking systems 8.5.6 Jackcase and associated bracing 8.5.7 Equivalent leg-to-hull stiffness 8.6 Modelling the spudcan and foundation 8.6.1 Spudcan structure 8.6.2 Seabed reaction point |
62 | 8.6.3 Foundation modelling 8.7 Mass modelling |
63 | 8.8 Application of actions 8.8.1 Assessment actions 8.8.1.1 General 8.8.1.2 Two-stage deterministic storm analysis |
64 | 8.8.1.3 Stochastic storm analysis 8.8.1.4 Earthquake analysis 8.8.2 Functional actions due to fixed load and variable load |
65 | 8.8.3 Hull sagging 8.8.4 Metocean actions 8.8.5 Inertial actions 8.8.6 Large displacement effects 8.8.7 Conductor actions 8.8.8 Earthquake actions 8.8.9 Ice actions |
66 | 9.1 Applicability 9.2 General 9.3 Geotechnical analysis of independent leg foundations 9.3.1 Foundation modelling and assessment |
67 | 9.3.2 Leg penetration during preloading |
68 | 9.3.3 Yield interaction 9.3.4 Foundation stiffnesses 9.3.5 Vertical-horizontal foundation capacity envelopes |
69 | 9.3.6 Acceptance checks |
70 | 9.4 Other considerations 9.4.1 Skirted spudcans |
71 | 9.4.2 Hard sloping strata 9.4.3 Footprint considerations 9.4.4 Leaning instability 9.4.5 Leg extraction difficulties 9.4.6 Cyclic mobility, liquefaction and liquefaction-induced lateral flow |
72 | 9.4.7 Scour 9.4.8 Spudcan interaction with adjacent infrastructure 9.4.9 Geohazards 9.4.10 Carbonate material 10.1 Applicability |
73 | 10.2 General considerations 10.3 Types of analyses and associated methods |
74 | 10.4 Common parameters 10.4.1 General 10.4.2 Natural periods and related considerations 10.4.2.1 General 10.4.2.2 Stiffness 10.4.2.3 Mass 10.4.2.4 Variability in natural period 10.4.2.5 Cancellation and reinforcement |
75 | 10.4.3 Damping 10.4.4 Foundations 10.4.5 Storm excitation 10.5 Storm analysis 10.5.1 General |
76 | 10.5.2 Two-stage deterministic storm analysis |
77 | 10.5.3 Stochastic storm analysis |
78 | 10.5.4 Initial leg inclination 10.5.5 Limit state checks 10.6 Fatigue analysis 10.7 Earthquake analysis |
80 | 10.8 Ice 10.8.1 General 10.8.2 ULS 10.8.3 ALS |
81 | 10.8.4 Assessments in the area types 10.8.5 Additional factors for arctic and cold regions 10.9 Accidental situations 10.10 Alternative analysis methods 10.10.1 Ultimate strength analysis 10.10.2 Methodology |
82 | 11.1 Applicability 11.2 Assessment data 11.3 Special requirements 11.3.1 Fatigue assessment 11.3.2 Weight control |
83 | 11.3.3 Corrosion protection 11.3.4 Marine growth 11.3.5 Foundations 11.4 Survey requirements 12.1 Applicability 12.1.1 General |
84 | 12.1.2 Truss type legs 12.1.3 Other leg types 12.1.4 Fixation system and/or elevating system 12.1.5 Spudcan strength including connection to the leg |
85 | 12.1.6 Overview of the assessment procedure 12.2 Classification of member cross-sections 12.2.1 Member types 12.2.2 Material yield strength 12.2.3 Classification definitions |
86 | 12.3 Section properties of non-circular prismatic members 12.3.1 General 12.3.2 Plastic and compact sections 12.3.3 Semi-compact sections 12.3.4 Slender sections 12.3.5 Cross-section properties for the assessment |
87 | 12.4 Effects of axial force on bending moment 12.5 Strength of tubular members 12.6 Strength of non-circular prismatic members 12.7 Assessment of joints 13.1 Applicability 13.1.1 General |
88 | 13.1.2 Ultimate limit states 13.1.3 Serviceability and accidental limit states 13.1.4 Fatigue limit states 13.2 General formulation of the assessment check |
89 | 13.3 Leg strength assessment |
90 | 13.4 Holding system strength assessment 13.5 Spudcan strength assessment 13.6 Hull elevation assessment 13.7 Leg length reserve assessment |
91 | 13.8 Overturning stability assessment |
92 | 13.9 Foundation integrity assessment 13.9.1 Foundation capacity check |
93 | 13.10 Displacement check 13.11 Interaction with adjacent infrastructure 13.12 Temperatures |
94 | A.1 Guidance on scope A.2 Guidance on normative references A.3 Guidance on terms and definitions A.4 Guidance on symbols A.4.1 Symbols used in A.1 A.4.2 Symbols used in A.2 A.4.3 Symbols used in A.3 A.4.4 Symbols used in A.4 A.4.5 Symbols used in A.5 A.4.6 Symbols used in A.6 A.4.7 Symbols used in A.7 |
95 | A.4.8 Symbols used in A.8 A.4.9 Symbols used in A.9 A.4.10 Symbols used in A.10 A.4.11 Symbols used in A.11 A.4.12 Symbols used in A.12 A.5 Guidance on overall considerations A.6 Guidance on data assembled for each site A.6.1 Scope A.6.2 Jack-up data A.6.3 Site data A.6.4 Metocean data A.6.4.1 General |
96 | A.6.4.2 Waves A.6.4.2.1 General A.6.4.2.2 Extreme wave height A.6.4.2.3 Deterministic waves |
98 | A.6.4.2.4 Wave crest elevation A.6.4.2.5 Wave spectrum |
99 | A.6.4.2.6 Airy wave height correction for stochastic analysis A.6.4.2.7 Peak and mean zero-upcrossing periods |
100 | A.6.4.2.8 Short-crested stochastic waves |
101 | A.6.4.2.9 Maximizing the wave/current response A.6.4.2.10 Long-term wave data A.6.4.3 Current |
103 | A.6.4.4 Water depths A.6.4.5 Marine growth A.6.4.6 Wind A.6.4.6.1 General A.6.4.6.2 Wind profile |
104 | A.6.5 Geophysical and geotechnical data A.6.5.1 Geoscience data A.6.5.1.1 General A.6.5.1.2 Bathymetric survey A.6.5.1.3 Sea floor survey |
107 | A.6.5.1.4 Shallow seismic survey A.6.5.1.5 Geotechnical investigation A.6.5.1.5.1 General A.6.5.1.5.2 Geotechnical investigation scope |
108 | A.6.5.1.5.3 Geotechnical report |
109 | A.6.5.2 Data integration A.6.6 Earthquake data A.6.7 Ice data A.7 Guidance on actions A.7.1 Applicability A.7.2 General A.7.3 Metocean actions A.7.3.1 General A.7.3.1.1 Load cases |
110 | A.7.3.1.2 Methods for the determination of actions |
111 | A.7.3.2 Hydrodynamic model A.7.3.2.1 General |
113 | A.7.3.2.2 “Detailed” leg model A.7.3.2.3 “Equivalent” leg model |
115 | A.7.3.2.4 Drag and inertia coefficients |
118 | A.7.3.2.5 Marine growth |
119 | A.7.3.2.6 Hydrodynamic models for appurtenances A.7.3.3 Wave and current actions A.7.3.3.1 General A.7.3.3.2 Hydrodynamic actions |
121 | A.7.3.3.3 Wave models A.7.3.3.3.1 Deterministic waves |
122 | A.7.3.3.3.2 Stochastic waves |
124 | A.7.3.3.3.3 The effect of directionality and spreading on dynamic response |
125 | A.7.3.3.4 Current A.7.3.3.5 Intrinsic and apparent wave periods |
127 | A.7.3.4 Wind actions A.7.3.4.1 Wind action A.7.3.4.2 Shape coefficient |
128 | A.7.3.4.3 Wind tunnel data A.7.4 Functional actions |
129 | A.7.5 Displacement dependent actions A.7.6 Dynamic effects A.7.7 Earthquakes A.7.8 Ice actions A.7.9 Other actions A.8 Guidance on structural modelling A.8.1 Applicability A.8.2 Overall considerations A.8.2.1 General A.8.2.2 Modelling philosophy |
130 | A.8.2.3 Levels of FE modelling |
132 | A.8.3 Modelling the leg A.8.3.1 General A.8.3.2 Detailed leg A.8.3.3 Equivalent leg (stick model) |
135 | A.8.3.4 Combination of detailed and equivalent leg |
136 | A.8.3.5 Stiffness adjustment A.8.3.6 Leg inclination A.8.4 Modelling the hull A.8.4.1 General A.8.4.2 Detailed hull model A.8.4.3 Equivalent hull model A.8.5 Modelling the leg-to-hull connection A.8.5.1 General |
143 | A.8.5.2 Guide systems |
144 | A.8.5.3 Elevating system A.8.5.3.1 Jacking (or elevating) pinions |
145 | A.8.5.3.2 Other elevating systems A.8.5.4 Fixation system A.8.5.5 Shock pad — Floating jacking systems A.8.5.6 Jackcase and associated bracing A.8.5.7 Equivalent leg-to-hull stiffness |
146 | A.8.6 Modelling the spudcan and foundation A.8.6.1 Spudcan structure A.8.6.2 Seabed reaction point A.8.6.3 Foundation modelling |
147 | A.8.7 Mass modelling A.8.8 Application of actions A.8.8.1 Assessment actions A.8.8.2 Functional actions due to fixed load and variable load |
148 | A.8.8.3 Hull sagging A.8.8.4 Metocean actions A.8.8.4.1 Wind actions |
149 | A.8.8.4.2 Wave/current actions A.8.8.5 Inertial actions A.8.8.6 Large displacement effects |
151 | A.8.8.7 Conductor actions A.8.8.8 Earthquake actions A.8.8.9 Ice actions A.9 Guidance on foundations A.9.1 Applicability A.9.2 General A.9.3 Geotechnical analysis of independent leg foundations A.9.3.1 Foundation modelling and assessment A.9.3.1.1 General |
154 | A.9.3.1.2 Approaches to foundation assessment |
155 | A.9.3.1.3 Simple pinned foundation A.9.3.1.4 Linear vertical, linear horizontal and secant rotational stiffness A.9.3.1.5 Non-linear vertical, horizontal and rotational stiffness A.9.3.1.6 Non-linear continuum foundation model |
156 | A.9.3.2 Leg penetration during preloading A.9.3.2.1 Analysis method A.9.3.2.1.1 General A.9.3.2.1.2 Modelling the spudcan |
159 | A.9.3.2.1.3 Modelling the soil |
160 | A.9.3.2.1.4 Backfill |
164 | A.9.3.2.1.5 Required bearing capacity A.9.3.2.2 Penetration in clays |
166 | A.9.3.2.3 Penetration in soils with partial drainage A.9.3.2.4 Penetration in silica sands |
167 | A.9.3.2.5 Penetration in carbonate sands A.9.3.2.5.1 General |
168 | A.9.3.2.5.2 Uncemented carbonate materials A.9.3.2.5.3 Cemented carbonate materials A.9.3.2.5.4 Predictive methods |
169 | A.9.3.2.6 Penetration in layered soils A.9.3.2.6.1 General A.9.3.2.6.2 Squeezing of clay |
171 | A.9.3.2.6.3 Punch-through: two clay layers A.9.3.2.6.4 Punch-through — Sand overlying clay |
174 | A.9.3.2.6.5 Punch-through — Cemented crust over weak soil A.9.3.2.6.6 Three layered systems |
175 | A.9.3.3 Yield interaction A.9.3.3.1 General |
177 | A.9.3.3.2 Ultimate vertical/horizontal/rotational capacity interaction function for spudcans in sand and clay |
184 | A.9.3.3.3 Spudcans in clay with FV ( 0,5 QV |
187 | A.9.3.3.4 Modification of the yield surface for partial penetration in sand A.9.3.3.5 Expansion of the yield surface for additional penetration in sand |
188 | A.9.3.3.6 Expansion of the yield surface for additional penetration in clay A.9.3.3.7 Effect of cyclic loading on the yield surface A.9.3.3.7.1 General |
190 | A.9.3.3.7.2 Assumptions |
191 | A.9.3.3.7.3 Simplified conservative calculation of Fa,i A.9.3.4 Foundation stiffness A.9.3.4.1 Vertical, horizontal and rotational stiffness |
192 | A.9.3.4.2 Stiffness modifications A.9.3.4.2.1 Embedment |
194 | A.9.3.4.2.2 Linear vertical, linear horizontal and secant rotational stiffness |
195 | A.9.3.4.2.3 Non-linear vertical, horizontal and rotational stiffness A.9.3.4.2.4 Non-linear continuum foundation model A.9.3.4.3 Selection of shear modulus, Gmax , for clay |
197 | A.9.3.4.4 Selection of shear modulus, Gmax, for sand |
198 | A.9.3.4.5 Selection of shear modulus for layered soils A.9.3.4.6 Soil-leg interaction A.9.3.5 Vertical-horizontal foundation capacity envelopes A.9.3.5.1 General ultimate vertical-horizontal foundation capacity envelope |
199 | A.9.3.5.2 Ultimate vertical-horizontal foundation capacity envelopes for spudcans in sand |
200 | A.9.3.5.3 Ultimate vertical-horizontal foundation capacity envelopes for spudcans in clay A.9.3.5.4 Ultimate vertical-horizontal foundation capacity envelopes for spudcans on layered soils A.9.3.6 Acceptance checks A.9.3.6.1 General |
202 | A.9.3.6.2 Level 1, Step 1a — Ultimate bearing capacity check for vertical loading of the leeward leg–- preload check (pinned spudcan) |
203 | A.9.3.6.3 Level 1, Step 1b — Check of the windward leg — Pinned spudcan A.9.3.6.4 Level 2, Step 2a — Foundation capacity and sliding check — Pinned spudcan A.9.3.6.4.1 Step 2a — Foundation capacity check |
206 | A.9.3.6.4.2 Step 2a — Foundation sliding check |
207 | A.9.3.6.5 Level 2, Steps 2b and 2c — Foundation capacity and sliding check — Spudcan with moment fixity and vertical and horizontal stiffness A.9.3.6.6 Level 3, Steps 3a and 3b — Displacement check — Settlements resulting from exceedance of the foundation capacity |
208 | A.9.3.6.7 Foundation settlement not specifically addressed elsewhere |
209 | A.9.4 Other considerations A.9.4.1 Skirted spudcans |
210 | A.9.4.2 Hard sloping strata A.9.4.3 Footprint considerations A.9.4.4 Leaning instability |
211 | A.9.4.5 Leg extraction difficulties A.9.4.6 Cyclic mobility, liquefaction and liquefaction-induced lateral flow A.9.4.6.1 General |
212 | A.9.4.6.2 Glossary A.9.4.6.2.1 Cyclic mobility A.9.4.6.2.2 Liquefaction A.9.4.6.2.3 Liquefaction potential A.9.4.6.2.4 Free-field A.9.4.6.2.5 Liquefiable A.9.4.6.2.6 Liquefaction-induced lateral flow A.9.4.6.3 Assessment of earthquake-induced liquefaction |
213 | A.9.4.6.4 Assessment of site susceptibility to liquefaction |
214 | A.9.4.6.5 Simplified free-field assessment of liquefaction A.9.4.6.5.1 General A.9.4.6.5.2 Cyclic shear stress ratio and cyclic resistance ratio |
215 | A.9.4.6.5.3 Site response analysis A.9.4.6.6 Detailed analysis A.9.4.6.7 Liquefaction-induced lateral flows A.9.4.7 Scour |
217 | A.9.4.8 Spudcan interaction with adjacent infrastructure A.9.4.9 Geohazards A.9.4.10 Carbonate material A.10 Guidance on structural response A.10.1 Applicability A.10.2 General considerations A.10.3 Types of analyses and associated methods |
219 | A.10.4 Common parameters A.10.4.1 General |
220 | A.10.4.2 Natural periods and affecting factors A.10.4.2.1 General A.10.4.2.2 Stiffness |
221 | A.10.4.2.3 Mass A.10.4.2.4 Variability in natural period A.10.4.2.5 Cancellation and reinforcement A.10.4.2.5.1 General A.10.4.2.5.2 Quasi-static deterministic waves A.10.4.2.5.3 Stochastic dynamic wave response |
225 | A.10.4.3 Damping A.10.4.3.1 General A.10.4.3.2 Linear system damping A.10.4.3.3 Hysteretic damping A.10.4.3.4 Vertical radiation damping in earthquake analysis |
226 | A.10.4.4 Foundations A.10.4.4.1 Foundations for extreme storm assessment A.10.4.4.1.1 General |
227 | A.10.4.4.1.2 Option 1 — Deterministic two-stage approach |
228 | A.10.4.4.1.3 Option 2 — Stochastic one-stage approach |
229 | A.10.4.4.2 Foundations for earthquake assessment A.10.4.5 Storm excitation A.10.5 Storm analysis A.10.5.1 General A.10.5.2 Two-stage deterministic storm analysis A.10.5.2.1 General |
230 | A.10.5.2.2 Dynamic amplification factors (DAFs) and inertial loadsets A.10.5.2.2.1 General |
232 | A.10.5.2.2.2 The classical SDOF analogy (K DAF,SDOF) |
233 | A.10.5.2.2.3 Inertial loadset based on random dynamic analysis (K DAF,RANDOM) |
238 | A.10.5.3 Stochastic storm analysis A.10.5.3.1 General A.10.5.3.2 Application of partial factors to metocean parameters |
239 | A.10.5.3.3 Random wave dynamic analysis method |
240 | A.10.5.3.4 Methods for determining the MPME A.10.5.4 Initial leg Inclination |
241 | A.10.5.5 Limit state checks |
243 | A.10.6 Fatigue analysis A.10.7 Earthquake analysis A.10.7.1 General A.10.7.2 Earthquake assessment procedure |
244 | A.10.7.3 ELE assessment A.10.7.3.1 Partial action factors A.10.7.3.2 Structural and foundation modelling |
245 | A.10.7.4 ALE assessment |
246 | A.10.7.5 Near-source excitation A.10.8 Ice A.10.8.1 General A.10.8.1.1 Operating area types A.10.8.2 ULS A.10.8.3 ALS A.10.8.4 Assessments in the area types A.10.8.4.1 Area type 1 |
247 | A.10.8.4.2 Area type 2 A.10.8.4.3 Area type 3 |
248 | A.10.8.5 Additional factors to be considered for arctic and cold regions A.10.8.5.1 General A.10.8.5.2 Geotechnical and geophysical considerations A.10.8.5.3 Dynamic ice actions A.10.8.5.4 Factors to consider for moving a jack-up off site in arctic and cold regions |
249 | A.10.9 Accidental situations A.10.10 Alternative analysis methods A.10.10.1 Ultimate strength analysis A.10.10.2 Methodology A.11 Guidance on long-term applications A.11.1 Applicability |
250 | A.11.2 Assessment data A.11.2.1 Jack-up data A.11.2.2 Metocean data A.11.2.3 Geotechnical data A.11.2.4 Other data A.11.3 Special requirements A.11.3.1 Fatigue assessment A.11.3.1.1 Historical damage |
251 | A.11.3.1.2 Fatigue sensitive areas A.11.3.1.3 Special considerations for fatigue assessment |
252 | A.11.3.1.4 Fatigue analysis methodology A.11.3.1.5 Fatigue acceptance criteria |
253 | A.11.3.2 Weight control |
254 | A.11.3.3 Corrosion protection A.11.3.4 Marine growth A.11.3.5 Foundations A.11.4 Survey requirements A.11.4.1 Pre-deployment inspection plan A.11.4.2 Project specific in-service inspection programme |
255 | A.11.4.3 Alternative project specific in-service inspection programme (PSIIP) A.12 Guidance on structural strength A.12.1 Applicability A.12.1.1 General |
256 | A.12.1.2 Truss type legs A.12.1.3 Other leg types A.12.1.4 Fixation system and/or elevating system A.12.1.5 Spudcan strength including connection to the leg |
257 | A.12.1.6 Overview of the assessment procedure A.12.2 Classification of member cross-sections A.12.2.1 Member type A.12.2.2 Material yield strength A.12.2.3 Classification definitions A.12.2.3.1 Tubular member classification A.12.2.3.2 Non-circular prismatic member classification |
259 | A.12.2.3.3 Reinforced components |
264 | A.12.3 Section properties of non-circular prismatic members A.12.3.1 General |
265 | A.12.3.2 Plastic and compact sections A.12.3.2.1 Axial properties — Class 1 and class 2 sections A.12.3.2.2 Flexural properties — Class 1 and class 2 sections A.12.3.3 Semi-compact sections |
266 | A.12.3.4 Slender sections A.12.3.4.1 General |
267 | A.12.3.4.2 Effective areas for compressive loading A.12.3.4.3 Effective moduli for flexural loading |
269 | A.12.3.5 Cross-sectional properties for the assessment A.12.3.5.1 Tension |
270 | A.12.3.5.2 Compression A.12.3.5.3 Flexure |
271 | A.12.4 Effects of axial force on bending moment A.12.4.1 General A.12.4.2 Member moment correction due to eccentricity of axial force |
272 | A.12.4.3 Member moment amplification and effective lengths |
274 | A.12.5 Strength of tubular members A.12.5.1 Applicability |
275 | A.12.5.2 Tension, compression and bending strength of tubular members A.12.5.2.1 Yield strength to be used in calculating capacities |
276 | A.12.5.2.2 Axial tensile strength check A.12.5.2.3 Axial compressive strength check A.12.5.2.4 Local buckling strength |
277 | A.12.5.2.5 Column buckling strength A.12.5.2.6 Bending strength check |
278 | A.12.5.2.7 Torsional shear strength check A.12.5.2.8 Beam shear strength check |
279 | A.12.5.3 Tubular member combined strength checks A.12.5.3.1 Axial tension and bending strength check A.12.5.3.2 Axial compression and bending strength check |
280 | A.12.5.3.3 Combined axial tension or compression, bending, shear and torsion strength check |
281 | A.12.6 Strength of non-circular prismatic members A.12.6.1 General |
282 | A.12.6.2 Non-circular prismatic members subjected to tension, compression, bending or shear A.12.6.2.1 General A.12.6.2.2 Axial tensile strength check |
283 | A.12.6.2.3 Axial compressive local strength check |
284 | A.12.6.2.4 Axial compressive column buckling strength |
285 | A.12.6.2.5 Bending moment strength A.12.6.2.5.1 General A.12.6.2.5.2 Class 1 plastic and class 2 compact section bending moment strength |
286 | A.12.6.2.5.3 Class 3 semi-compact section bending moment strength |
288 | A.12.6.2.5.4 Class 4 slender-section bending moment strength A.12.6.2.6 Bending moment strength affected by lateral torsional buckling A.12.6.2.7 Bending strength check |
289 | A.12.6.3 Non-circular prismatic member combined strength checks A.12.6.3.1 General A.12.6.3.2 Interaction formula approach |
291 | A.12.6.3.3 Interaction surface approach |
292 | A.12.6.3.4 Beam shear |
295 | A.12.6.3.5 Torsional shear A.12.7 Assessment of joints |
296 | A.13 Guidance on acceptance checks |
299 | C.1 Guidance on 8.5 — Modelling the leg-to-hull connections |
300 | C.2 Guidance on A.10.5.3.4 — Methods for determining the MPME C.2.1 Guidance on the first method of Table A.10.5-1 — Fitting Weibull distributions to the results of a number of time domain simulations to determine responses at the required probability level and average the results |
302 | C.2.2 Guidance on the second method of Table A.10.5-1: Fitting Gumbel distribution to histogram of absolute maximum responses from a number of time domain simulations to determine responses at required probability level |
304 | C.2.3 Guidance on the third method of Table A.10.5-1 — Application of Winterstein’s Hermite polynomial method to the results of time domain simulation(s) |
306 | C.2.4 Guidance on the fourth method of Table A.10.5-1: Application of drag-inertia method to determine the base shear and overturning moment DAF from time domain simulation |
315 | E.1 Guidance on A.9.3.2.2: Penetration in clays — Bearing capacity factors of Houlsby and Martin |
322 | E.2 Guidance on A.9.3.2.4 — Penetration in silica sands |
325 | E.3 Guidance on A.9.3.2.6.4 — Punch-through — Sand overlying clay — Further details on alternate methods |
329 | E.4 Calculated foundation capacities approach E.4.1 General E.4.2 Background |
330 | E.4.3 Suitable spudcan geometries |
332 | E.4.4 Criterion for use of calculated foundation capacities |
333 | E.4.5 Representative soil strength parameters |
334 | E.4.6 Calculated foundation yield surface and fixity |
335 | E.4.7 Bearing capacity check E.4.8 Sliding capacity check E.4.9 Spudcan-to-leg connection and spudcan structural integrity checks |
336 | E.4.10 Precautions and considerations when adopting calculated foundation capacities E.4.10.1 General E.4.10.2 Quality and quantity of soil data E.4.10.3 Hydraulic stability E.4.10.4 Filling of voids within skirted spudcans |
337 | E.4.10.5 Seabed unevenness, spudcan-footprint interactions and sloping strata E.4.10.6 Cyclic degradation/effects from cyclic loading E.4.10.7 Effects of soil drainage |
338 | E.4.10.8 Silt and carbonate soils E.4.10.9 Foundation damping E.5 Example of simplified free-field liquefaction assessment calculation method E.5.1 General E.5.2 Calculation of cyclic resistance ratio (λCRR) based on shear wave velocity |
339 | E.5.3 Calculation of the cyclic resistance ratio(λCRR) based on CPT data |
340 | E.5.4 Cyclic stress ratio (λCSR) calculation |
341 | E.5.5 Ratio of cyclic resistance ratio to cyclic shear stress ratio |
342 | F.1 Guidance on A.12.6.2.4 — Axial compressive column buckling strength |
343 | F.2 Guidance on A.12.6.3.2 — Interaction formula approach — Determination of ( |
344 | F.3 Guidance on A.12.6.3.3 — Interaction surface approach |
363 | H.1 General H.2 Norway H.2.1 Description of region H.2.2 Technical requirements |
365 | H.2.3 Technical requirements for jack-up rigs operating close to a permanent occupied installation H.2.3.1 Introduction H.2.3.2 Dynamic response and structural analyses H.2.3.3 Advanced geotechnical analyses |
366 | H.2.3.4 Documentation H.2.4 Additional national requirements |
367 | H.3 US Gulf of Mexico H.3.1 Description of region H.3.2 Regulatory framework |
368 | H.3.3 Metocean conditions H.3.3.1 General H.3.3.2 Metocean conditions and their assessment H.3.3.2.1 General |
369 | H.3.3.2.2 Hull elevation during hurricane season H.3.3.2.3 Sudden hurricane case |
370 | H.3.3.2.4 Unoccupied post-evacuation case H.3.3.3 Other requirements H.3.3.3.1 Preloading |
371 | H.3.3.3.2 Storm preparation |