Shopping Cart

No products in the cart.

BSI 24/30456154 DC:2024 Edition

$13.70

BS EN IEC 63450 Testing of Artificial Intelligence / Machine Learning-enabled Medical Devices

Published By Publication Date Number of Pages
BSI 2024 39
Guaranteed Safe Checkout
Category:

If you have any questions, feel free to reach out to our online customer service team by clicking on the bottom right corner. We’re here to assist you 24/7.
Email:[email protected]

PDF Catalog

PDF Pages PDF Title
6 FOREWORD
8 INTRODUCTION
9 1 Scope
2 Normative references
3 Terms and definitions
12 3.22 Terms specific to Annex A
4 Test planning
4.1 Test plan
13 4.2 Test objectives
4.3 Test scope
4.4 Responsibilities and roles
14 4.5 Test environment
4.5.1 General
4.5.2 Test tools
4.5.3 Test data
4.6 Deliverables
4.7 Re-testing after changes
15 4.8 Test methods
4.8.1 General
4.8.2 Test oracle
4.8.3 Cross-Validation testing
4.8.3.1 Test method description
4.8.3.2 General
4.8.3.3 Holdout Cross-Validation
16 4.8.3.4 k-Fold Cross-Validation
17 4.8.3.5 Repeated k-folds Cross-Validation
18 4.8.3.6 Stratified k-fold Cross-Validation
19 4.8.3.7 Time Series Cross-Validation
20 4.8.3.8 Test method use cases
4.8.3.9 Test method specific requirements
21 4.8.4 Black-box test methods
4.8.4.1 Combinatorial testing
4.8.4.2 Test method description
22 4.8.4.3 Test method use cases
4.8.4.4 Test method specific requirements
4.8.4.5 Back-to-back testing
4.8.4.6 Test method description
4.8.4.7 Test method use cases
23 4.8.4.8 Test method specific requirements
4.8.4.9 Extended back-to-back testing
4.8.4.10 Test method description
4.8.4.11 Test method use cases
4.8.4.12 Test method specific requirements
4.8.4.13 A/B testing
4.8.4.14 Test method description
24 4.8.4.15 Test method use cases
4.8.4.16 Test method specific requirements
4.8.4.17 Metamorphic testing
4.8.4.18 Test method description
4.8.4.19 Test method use cases
4.8.4.20 Test method specific requirements
25 4.8.4.21 Exploratory testing
4.8.4.22 Test method description
4.8.4.23 Test method use cases
4.8.4.24 Test method specific requirements
4.8.5 White-box test methods
26 4.8.6 AI explainability/transparency
4.8.6.1 Explainability
4.8.6.2 LIME
27 4.8.6.3 SHAP
4.8.6.4 Transparency
28 4.9 Statistics
4.9.1 General
4.9.2 Classification metrics
4.9.3 Regression metrics
29 4.10 Test phases / stages
5 Test specification
5.1 Test identification
5.2 Test conditions
30 5.3 Acceptance criteria
5.4 Test data
5.4.1 Test data selection
5.4.2 Data relevance
5.4.3 Data representativeness
5.4.4 Test data quantification
5.4.5 Test data preparation
31 5.4.6 DOUP (Data Of Unknown Provenance)
5.4.7 Artificial data
5.4.8 Test data labelling
32 5.4.9 Use of unlabelled data
5.4.10 Traceability
5.4.10.1 Test data identification
5.4.10.2 Test data usage logging
6 Test results
6.1 Test results documentation
6.2 Test deviations
33 Annex A (normative) Continuous learning
A.1 Scope
A.2 General concepts and requirements
34 A.3 Control mechanisms
A.3.1 Pre-testing by the manufacturer
A.3.2 Evaluation of training algorithm responsiveness
35 A.3.3 Limited learning
A.3.4 Evaluation of change
A.3.5 Utilization of back-to-back testing
A.3.6 Released model as a test oracle
A.4 New data samples
A.4.1 Training data
A.4.2 Test data
37 Annex B (informative) Data/information leakage
B.1 Risks of data/information leakage and impact on resulting AI systems
B.2 Sources of data/information leakage
B.3 The ideal test set
B.4 How to avoid data/information leakage
39 Bibliography
BSI 24/30456154 DC
$13.70