Shopping Cart

No products in the cart.

BSI PD CEN/TR 17603-32-02:2022

$215.11

Space engineering. Structural materials handbook – Design calculation methods and general design aspects

Published By Publication Date Number of Pages
BSI 2022 436
Guaranteed Safe Checkout
Category:

If you have any questions, feel free to reach out to our online customer service team by clicking on the bottom right corner. We’re here to assist you 24/7.
Email:[email protected]

The structural materials handbook, SMH, combines materials and design information on established polymer matrix composites with provisional information on the emerging groups of newer advanced materials and their composites. Design aspects are described, along with factors associated with joining and manufacturing. Where possible, these are illustrated by examples or case studies. The Structural materials handbook contains 8 Parts. A glossary of terms, definitions and abbreviated terms for these handbooks is contained in Part 8. The parts are as follows: Part 1 Overview and material properties and applications Clauses 1 ‐ 9 Part 2 Design calculation methods and general design aspects Clauses 10 ‐ 22 Part 3 Load transfer and design of joints and design of structures Clauses 23 ‐ 32 Part 4 Integrity control, verification guidelines and manufacturing Clauses 33 ‐ 45 Part 5 New advanced materials, advanced metallic materials, general design aspects and load transfer and design of joints Clauses 46 ‐ 63 Part 6 Fracture and material modelling, case studies and design and integrity control and inspection Clauses 64 ‐ 81 Part 7 Thermal and environmental integrity, manufacturing aspects, in‐orbit and health monitoring, soft materials, hybrid materials and nanotechnoligies Clauses 82 ‐ 107 Part 8 Glossary NOTE: The 8 parts will be numbered TR17603-32-01 to TR 17603-32-08

PDF Catalog

PDF Pages PDF Title
2 undefined
29 10 Stress-strain relationships
10.1 Introduction
10.2 Elastic property prediction for UD ply from constituent properties
31 10.3 Analytical notation for elastic constant methods
10.4 Calculation methods for elastic constants of UD ply
33 10.5 Longitudinal modulus
35 10.6 Longitudinal Poisson’s ratio
36 10.7 Transverse modulus
10.7.1 General
10.7.2 Jones method
10.7.3 Förster/Knappe method
37 10.7.4 Schneider method
10.7.5 Puck method
10.7.6 Tsai method
38 10.7.7 HSB method
10.7.8 Graphs
41 10.8 Transverse Poisson’s ratio
10.9 Transverse shear modulus
10.9.1 General
10.9.2 Jones method
10.9.3 Förster/Knappe method
10.9.4 Schneider method
42 10.9.5 Puck method
10.9.6 Tsai method
10.9.7 HSB method
43 10.9.8 Graphs
45 10.10 In-plane stress calculation methods
10.11 Analytical notation for in-plane methods
47 10.12 Stress-strain relations for unidirectional plies
10.12.1 Fibre-oriented co-ordinate system
10.13 On axis stress strain relations
10.13.1 General
48 10.13.2 Compliance matrix
10.13.3 Modulus matrix
10.13.4 Symmetry of compliance and modulus matrices
10.14 Stress-strain relations for a ply of arbitrary orientation
10.14.1 General
50 10.14.2 Off axis stiffness of a unidirectional ply
51 10.15 Stiffness matrix for a laminate
10.15.1 General laminates
53 10.15.2 Symmetric laminates
54 10.15.3 Flow chart
55 10.16 Calculation methods with interlaminar stresses and strains
10.16.1 Calculation with free-edge stresses
57 10.17 Qualitative evaluation of interlaminar strength for design purposes
10.17.1 General
59 10.17.2 Variation of fibre direction within a [± , 0 , ± ] laminate
10.17.3 Variation of the thickness of the 0 layer within the [± 30 , 0n , ± 30 ] laminate
60 10.17.4 Variation of the sequence of layers
10.18 References
10.18.1 General
62 11 Strength prediction and failure criteria
11.1 Introduction
11.1.1 Micro-mechanical strength models
11.1.1.1 Fibres
11.1.1.2 UD composites
11.1.1.3 Laminate
11.1.2 Lamina failure models
11.1.2.1 Complex stressing
63 11.1.2.2 Failure theories
11.1.3 Failure criteria studies
11.1.3.1 ESA failure criteria study
11.1.3.2 WWFE worldwide failure exercise
64 11.1.4 Summary of World Wide Failure Exercise (WWFE)
11.1.4.1 WWFE I
11.1.4.2 WWFE II
65 11.1.4.3 WWFE III
66 11.2 Tensile strength of UD composites in fibre direction
11.2.1 General
11.2.2 Weakest-link failure model
11.2.3 Cumulative weakening failure model
68 11.2.4 Fibre break propagation model
11.2.5 Cumulative group mode failure model
11.2.6 Status of models
11.3 Compressive strength of UD composites in fibre direction
11.3.1 General
69 11.3.2 Extension mode buckling
11.3.3 Shear mode buckling
70 11.3.4 Analysis of compression failure
11.3.4.1 General
11.3.4.2 Extension mode buckling
11.3.4.3 Shear mode buckling
72 11.3.4.4 Debonding
11.4 Transverse tensile strength of UD composites
11.4.1 General
73 11.4.2 Prediction of transverse tensile strength
11.4.3 Empirical analysis
74 11.5 Static strength criteria for composites
11.6 Analytical notation for static strength criteria for composites
11.6.1 Co-ordinate system
75 11.6.2 Formulae
76 11.7 Different types of failure criteria
11.7.1 General
77 11.7.2 Evaluation studies
11.8 Overview – Failure criteria
11.8.1 Introduction
78 11.8.2 Independent conditions
11.8.2.1 Maximum stress
11.8.2.2 Maximum strain
79 11.8.3 Interactive conditions – Pure interpolative conditions
11.8.3.1 General
11.8.3.2 Tensor criteria
80 11.8.3.3 Consideration of maximum strength in fibre direction
11.8.4 Interactive conditions – Physical considerations
11.8.4.1 Hashin’s failure criterion
81 11.8.4.2 Puck’s action plane failure criterion
83 11.8.4.3 Simplified parabolic model
11.8.4.4 Cuntze FMC-based UD failure criterion
88 11.8.4.5 Other failure criterion
89 11.9 Comparison between test data and various failure criteria
11.9.1 Effects on failure mode
93 11.10 Description of failure modes
11.10.1 Laminates
11.10.1.1 General
11.10.1.2 Role of fibres
11.10.1.3 Role of matrix
11.10.1.4 Loading
11.10.1.5 Fibre orientation
11.10.2 Failure
98 11.11 Fatigue strength of composites
11.11.1 Background
11.11.1.1 General
11.11.1.2 Factors influencing residual strength
11.11.1.3 Analysis
99 11.11.2 Analytical notation
11.11.3 Approximation of fatigue life
101 11.12 References
11.12.1 General
105 12 Calculation of thermal stress and displacement
12.1 Introduction
12.1.1 General
12.1.2 Longitudinal CTE
12.1.3 Transverse CTE
106 12.2 Analytical notation for thermal stress calculations
107 12.3 Calculation of CTE from constituents
12.3.1 CTE in fibre direction
12.3.2 CTE perpendicular to fibre direction
12.3.2.1 Calculation Methods
108 12.4 CTE for a laminate
110 12.5 Thermal stresses within laminate layers
12.5.1 General
12.5.2 Residual curing stresses
111 12.6 Stress strain temperature relation
12.6.1 General
12.6.2 Mechanical strains
12.6.3 Incremental strain theory
113 12.7 Microstress analysis
12.7.1 General
12.7.2 Microstresses on fibre axis
12.7.3 Microstresses normal to fibre axis
12.8 References
12.8.1 General
115 13 Moisture effects on composite properties
13.1 Introduction
13.1.1 General
13.1.2 Moisture penetration
13.1.3 Moisture effects
13.1.3.1 Swelling
116 13.1.3.2 Mechanical properties
13.1.3.3 Prediction of moisture effects
13.2 Analytical notation for moisture effects
117 13.3 Typical effects of moisture
13.3.1 General
13.3.2 Sample data: Effects of moisture
13.3.2.1 General
118 13.3.2.2 Matrix plasticising
119 13.3.2.3 Matrix swelling
13.3.2.4 Temperature-time dependence of moisture absorption
120 13.3.2.5 Changes in strength
121 13.3.2.6 Changes in moduli
13.3.2.7 Changes in fatigue behaviour
122 13.4 Approximate method for calculation of strength and modulus retention of [0 /90 ] laminates
13.4.1 General
13.4.2 Modulus retention
124 13.4.3 Strength retention
125 13.5 Moisture content
13.5.1 Fick’s law
126 13.5.2 Determination of moisture content
127 13.5.3 Maximum moisture content
128 13.5.4 Experimental determination of the diffusion coefficient
130 13.6 Calculation of swelling coefficient from constituents
13.6.1 General
13.6.2 Swelling coefficient 1 in fibre direction
13.6.3 Swelling coefficient 2 transverse to fibres
131 13.6.4 Swelling coefficient for a laminate
133 13.7 Coefficient of moisture expansion (CME)
13.7.1 Resin behaviour
13.7.1.1 General
13.7.1.2 In-plane
13.7.1.3 Through-thickness (transverse)
13.7.1.4 Measurement of CME
134 13.7.2 Composite behaviour
13.7.2.1 General
135 13.7.2.2 CFRP composites
13.8 References
13.8.1 General
137 14 Stress concentrations and fracture
14.1 Introduction
14.1.1 General
14.1.2 Fracture mechanics models
138 14.2 Analytical notation for stress concentrations
14.3 Summary of fracture models
139 14.4 Evaluation of fracture models
140 14.5 WEK fracture model
14.5.1 General
14.5.2 Circular holes
143 14.5.3 Straight crack
146 14.6 WN fracture model
14.6.1 General
14.6.2 Failure criteria
14.6.2.1 Point stress criterion
147 14.6.2.2 Average stress criterion
148 14.6.3 Characteristics of WN fracture model
149 14.6.4 Circular holes
153 14.6.5 Straight cracks
154 14.6.6 Point stress criteria
155 14.6.7 Average stress criterion
159 14.7 Finite plate models
14.8 Finite width correction (FWC)
14.8.1 General
161 14.8.2 Circular holes
162 14.8.3 Centre crack
14.9 Calculated stress concentration factor at circular holes
14.9.1 NASA results
164 14.9.2 Finite width correction (FWC)
14.9.3 MBB/ERNO study
169 14.10 Stress distribution around circular holes
14.10.1 General
14.10.2 Stress concentration due to tensile load
170 14.10.3 Stress concentration due to shear load
172 14.11 Interlaminar fracture mechanics
14.11.1 Nomenclature
14.11.2 Delamination and fracture mechanics overview
14.11.2.1 Delamination initiation and growth
173 14.11.2.2 Linear elastic fracture mechanics and the strain energy release rate approach
174 14.11.2.3 Using fracture mechanics to identify the critical delamination location
175 14.11.2.4 Fracture mechanics prediction procedure
176 14.11.3 Standard test methods (static and fatigue)
14.11.3.1 General
14.11.3.2 Interlaminar fracture toughness testing
177 14.11.3.3 Types of test methods
178 14.11.3.4 Fatigue delamination characterisation
180 14.11.4 Calculation of strain energy release rate in structural analysis
14.11.4.1 Global energy comparisons
181 14.11.4.2 Virtual crack closure technique (VCCT)
14.11.4.3 2D VCCT
182 14.11.4.4 3D VCCT
184 14.11.4.5 Using interlaminar fracture mechanics in design
186 14.12 References
14.12.1 General
190 15 Prediction of dynamic characteristics
15.1 Introduction
15.2 Definition of damping terms
15.2.1 General terms
15.2.1.1 Specific energy
191 15.2.1.2 Loss factors
192 15.2.2 Complex modulus model
15.2.2.1 General
15.2.2.2 Energy dissipation under steady state sinusoidal excitation
15.2.2.3 Bandwidth of half power points in steady state sinusoidal excitation
15.2.2.4 Quality factor
15.2.2.5 Loss tangent under sinusoidal excitation
193 15.2.2.6 Decay of free vibration
15.2.2.7 Interrelationships
15.3 Prediction methods for damping
194 15.4 Determination of damping characteristics
15.4.1 Unidirectional characteristics
15.4.2 Off axis characteristics
195 15.4.3 Laminate characteristics
15.5 Approximate data on damping
196 15.6 References
15.6.1 General
197 16 Computer analysis of composites
16.1 Introduction
16.2 Computer programs: Analysis of composites
16.2.1 General
199 16.2.2 Finite element programs
200 16.2.3 Laminate analysis programs
202 16.2.4 Special applications programs
204 16.3 ESDU data for composite analysis
16.3.1 General
16.3.2 ESDU data items
206 16.3.3 ESDUpac
16.4 Buckling of orthotropic plates
16.4.1 Title
16.4.2 Usage and scope
16.4.3 Analysis
16.4.4 ESDUpac A7303
16.4.4.1 General
16.4.4.2 Input
207 16.4.4.3 Output
16.4.5 Notes
16.5 Flexural stiffness of flat strips
16.5.1 Title
16.5.2 Usage and scope
16.5.3 Analysis
208 16.6 Metallic skin stiffeners reinforced by composite – local buckling
16.6.1 Title
16.6.2 Usage and scope
16.6.3 Analysis and data
209 16.7 Laminate stress analysis
16.7.1 Title
16.7.2 Usage and scope
16.7.3 Analysis
210 16.8 Plate stiffnesses (In-plane)
16.8.1 Title
16.8.2 Usage and scope
16.8.3 Analysis and methods
211 16.9 Bonded joints – 1
16.9.1 Title
16.9.2 Usage and scope
16.9.3 Analysis and data
212 16.10 Bonded joints – 2
16.10.1 Title
16.10.2 Usage and scope
16.10.3 Analysis and data
213 16.10.4 ESDUpac A7916
16.10.4.1 General
16.10.4.2 Input
16.10.4.3 Output
16.11 Bonded joints – 3
16.11.1 Title
16.11.2 Usage and scope
214 16.11.3 Analysis and data
16.12 Buckling of rectangular specially orthotropic plates
16.12.1 Title
16.12.2 Usage and scope
16.12.3 Analysis and data
215 16.13 Bonded joints – 4
16.13.1 Title
16.13.2 Usage and scope
16.13.3 Analysis and data
216 16.13.4 ESDUpac A8039
16.13.4.1 General
16.13.4.2 Input
16.13.4.3 Output
16.14 Bonded joints – 5
16.14.1 Title
16.14.2 Usage and scope
16.14.3 Information and guidance
217 16.15 Buckling of orthotropic plates
16.15.1 Title
16.15.2 Usage and scope
16.15.3 Analysis and data
16.15.4 ESDUpac A8147
16.15.4.1 General
16.15.4.2 Plate materials
218 16.15.4.3 Plate loadings
16.15.4.4 Plate boundary conditions
16.16 Lay-up arrangements for special orthotropy
16.16.1 Title
16.16.2 Usage and scope
16.16.3 Analysis and data
219 16.17 Failure modes of laminated composites
16.17.1 Title
16.17.2 Usage and scope
16.17.3 Analysis and failure modes
220 16.18 Failure criteria for layers of a laminated composite
16.18.1 Title
16.18.2 Usage and scope
16.18.3 Analysis and data
16.19 Plate stiffnesses and apparent elastic properties
16.19.1 Title
16.19.2 Usage and scope
221 16.19.3 Analysis for stiffnesses and elastic properties
16.19.4 ESDUpac A8335
16.19.4.1 General
16.19.4.2 Input
16.19.4.3 Output
16.19.4.4 Limitations
16.20 Natural frequencies of laminated flat plates
16.20.1 Title
222 16.20.2 Usage and scope
16.20.3 Calculation of natural frequencies
16.20.4 ESDUpac A8336
16.20.4.1 General
16.20.4.2 Input
16.20.4.3 Output
16.20.4.4 Limitations
223 16.21 Strain in skin panels under acoustic loading
16.21.1 Title
16.21.2 Usage and scope
16.21.3 Calculation of surface strains
16.21.4 ESDUpac A8408
16.21.4.1 General
16.21.4.2 Input
16.21.4.3 Output
224 16.21.4.4 Limitations
16.22 Failure analysis
16.22.1 Title
16.22.2 Usage and scope
16.22.3 Analysis
225 16.22.4 ESDUpac A8418
16.22.4.1 General
16.22.4.2 Input
16.22.4.3 Output options
16.22.4.4 Output
226 16.23 Endurance under acoustic loading
16.23.1 Title
16.23.2 Usage and scope
16.24 Stress and strain around circular holes
16.24.1 Title
227 16.24.2 Usage and scope
16.24.3 Analysis
16.24.4 ESDUpac A8501
16.24.4.1 General
16.24.4.2 Input
16.24.4.3 Output
228 16.25 Damping in composite plates
16.25.1 Title
16.25.2 Usage and scope
16.25.3 Calculation of damping
16.25.4 ESDUpac 8512
16.25.4.1 General
16.25.4.2 Input
229 16.25.4.3 Output
16.25.4.4 Limitations
16.26 Sandwich panel natural frequencies
16.26.1 Title
16.26.2 Usage and scope
16.26.3 Calculation of natural frequencies
230 16.26.4 ESDUpac A8537
16.26.4.1 General
16.26.4.2 Input
16.26.4.3 Output
16.26.4.4 Limitations
16.27 Selection of reinforcement around circular holes
16.27.1.1 Title
16.27.1.2 Usage and scope
16.27.1.3 Analysis and data
231 16.28 Buckling of unbalanced composite plates
16.28.1 Title
16.28.2 Usage and scope
16.28.3 Analysis and data
232 16.28.4 ESDUpac A8620
16.28.4.1 General
16.28.4.2 Input
16.28.4.3 Output
16.29 Sandwich panel response to acoustic loading
16.29.1 Title
16.29.2 Usage and scope
233 16.29.3 Calculation of natural frequencies and surface strains
16.29.4 ESDUpac A8624
16.29.4.1 General
16.29.4.2 Input
16.29.4.3 Output
16.29.4.4 Limitations
16.30 Sandwich column and beam face plate wrinkling
16.30.1 Title
16.30.2 Usage and scope
234 16.30.3 Analysis
16.30.4 ESDUpac A8713
16.30.4.1 General
16.30.4.2 Input
16.30.4.3 Output
235 16.31 Buckling of curved composite panels
16.31.1 Title
16.31.2 Usage and scope
16.31.3 Analysis and data
16.31.4 ESDUpac A8725
16.31.4.1 General
16.31.4.2 Input
236 16.31.4.3 Output
16.32 Sandwich panel face plate wrinkling
16.32.1 Title
16.32.2 Usage and scope
16.32.3 Analysis
237 16.32.4 ESDUpac A8815
16.32.4.1 General
16.32.4.2 Input
16.32.4.3 Output
16.33 Vibration of singly-curved laminated plates
16.33.1 Title
16.33.2 Usage and scope
238 16.33.3 Calculation of natural frequencies
16.33.4 ESDUpac A8911
16.33.4.1 General
16.33.4.2 Input
16.33.4.3 Output
16.33.4.4 Limitations
16.34 Plate through-the-thickness shear stiffnesses
16.34.1 Title
239 16.34.2 Usage and scope
16.34.3 Analysis
16.34.4 ESDUpac A8913
16.34.4.1 Input
16.34.4.2 Output
16.34.4.3 Limitations
16.34.5 Notes
240 16.35 Vibration of plates with in-plane loading
16.35.1 Title
16.35.2 Usage and scope
16.35.3 Calculation of natural frequencies
16.35.4 ESDUpac A9016
16.35.4.1 General
16.35.4.2 Input
241 16.35.4.3 Output
16.35.4.4 Limitations
16.36 Delamination and free edge stresses
16.36.1 Title
16.36.2 Usage and scope
16.36.3 Analysis
242 16.36.4 ESDUpac A9021
16.36.4.1 Input
16.36.4.2 Output
16.36.4.3 Limitations
16.36.5 Notes
16.37 Delamination at termination of plies
16.37.1 Title
243 16.37.2 Usage and scope
16.37.3 Analysis
16.37.4 ESDUpac A9103
16.37.4.1 General
16.37.4.2 Input
16.37.4.3 Output
244 16.38 Thickness selection to meet a loading combination
16.38.1 Title
16.38.2 Usage and scope
16.38.3 Analysis
16.38.4 ESDUpac A9233
16.38.4.1 Input
245 16.38.4.2 Output
16.39 ESAComp
246 17 Composite adequate design
17.1 Introduction
17.2 Anisotropy of composites
248 17.3 Stress-strain relationships
17.3.1 Reinforcing fibres
17.3.2 Stress concentrations
250 17.4 Fibre strength and stiffness
17.4.1 General
251 17.4.2 High stiffness applications
17.4.2.1 Glass fibres
17.4.2.2 Carbon fibres
17.4.2.3 Boron fibres
252 17.4.2.4 Aramid fibres
17.5 Basic design rules
17.5.1 General
17.5.2 Aspects of construction
17.5.2.1 Changes in thickness
253 17.5.2.2 Radii, curves and sharp corners
254 17.5.2.3 Openings
17.5.2.4 Other design considerations
255 17.5.3 Aspects of laminate lay up
17.5.3.1 Fibre forms
256 17.5.3.2 Lay up
258 17.5.4 Fabrication aspects
17.5.4.1 Cost effectiveness
260 17.5.4.2 Criteria for cost effectiveness
17.5.4.3 Processing technique
261 17.6 First steps in designing a composite
17.6.1 General
17.6.2 Carpet plots
263 17.6.3 Use of carpet plots
17.6.3.1 General
17.6.3.2 Method 1
264 17.6.3.3 Method 2
17.6.3.4 Other parameters
17.7 References
17.7.1 General
266 18 Curing stresses: Effects and prediction
18.1 Introduction
18.2 Cure process
18.2.1 Composite materials
18.2.1.1 Thermosetting resin
18.2.1.2 Thermoplastic composites
267 18.2.2 Cure parameters
18.2.2.1 General
18.2.2.2 Temperature
18.2.2.3 Pressure
268 18.3 Analytical notation for residual stress
18.4 Residual stresses
18.4.1 General
18.4.2 Types of residual stresses
18.4.2.1 Micro-residual stresses
269 18.4.2.2 Macro-residual stresses
18.5 Calculation of curing stresses
18.5.1 Residual stresses after curing
18.5.1.1 General
18.5.1.2 Symmetric laminates
270 18.6 Reduction of thermal stresses and distortions
18.6.1 General
272 18.6.2 Stress relieving
18.6.2.1 Annealing
18.6.2.2 Low temperature thermal cycling
18.7 References
18.7.1 General
274 19 Manufacturing faults and service damage
19.1 Introduction
276 19.2 Manufacturing defects in composite materials
19.2.1 General
277 19.2.2 Description of manufacturing defects
19.2.2.1 Porosity
19.2.2.2 Prepreg gaps
278 19.2.2.3 Contamination
19.2.2.4 Fibre alignment
19.2.2.5 Lay up order
19.2.2.6 State of cure
279 19.2.2.7 Local fibre/resin ratio variations
19.2.2.8 Prepreg joints
19.2.2.9 Inter-ply delaminations
280 19.2.2.10 Skin to core debonding
19.2.2.11 Resin microcracks
19.2.2.12 Damaged honeycomb core
19.2.2.13 Misplaced potting compound
281 19.2.2.14 Edge member debond
19.2.3 Detection of defects
19.3 Service threats for composite structures
282 19.4 Impact behaviour of laminates and sandwich constructions
19.4.1 General
283 19.4.2 Laminates
19.4.2.1 General
284 19.4.2.2 Fibre breakage
19.4.2.3 Matrix damage
19.4.2.4 Delamination and debonds
285 19.4.2.5 Combinations of damage
286 19.4.3 Sandwich panels
19.5 Impact behaviour
19.5.1 General
287 19.5.2 BVID
288 19.5.3 Impact tests
290 19.5.4 Compression after impact (CAI)
19.6 Detection of defects
19.6.1 Damage detection techniques
19.6.2 Laboratory and production based NDT
19.6.3 Other techniques
291 19.7 References
19.7.1 General
19.7.2 ASTM standards
292 20 Environmental aspects of design
20.1 Introduction
20.2 Description of environments
20.2.1 Earth environment
293 20.2.2 Space environment
297 20.2.3 Composite structures
20.2.3.1 General
20.2.3.2 Temperature range
20.2.3.3 Elevated temperature and vacuum
20.2.3.4 Ultraviolet radiation
298 20.2.3.5 Penetrating radiation
20.2.3.6 Meteoroids and debris
20.3 Low earth orbit (LEO)
299 20.4 Geostationary orbit (GEO)
20.5 Deep space exploration
300 20.6 Galvanic corrosion
20.6.1 General
20.6.2 Physical basis of galvanic corrosion
301 20.6.2.1 Carbon fibre to metal connections
302 20.6.3 Prevention of galvanic corrosion in space structures
20.6.3.1 General
20.6.3.2 Guidelines
20.7 Effects of moisture on composites
20.7.1 General
20.7.2 Modification of CTE by outgassing
303 20.7.3 Low coefficient of moisture expansion (CME) resins
20.7.4 Hot/wet performance
20.7.4.1 Epoxy resins
20.7.4.2 Cyanate ester resins
20.7.4.3 Others
304 20.8 LDEF in LEO
20.8.1 Mission
20.8.2 Materials and experiments
20.8.2.1 General
20.8.2.2 Material performance
305 20.8.3 Variations in exposure conditions
307 20.8.4 Composite materials aboard LDEF
309 20.8.5 LDEF experiments M0003-9/10
20.8.5.1 General
20.8.5.2 The Aerospace Corporation
310 20.8.5.3 General Dynamics Space Systems Division
20.8.5.4 Lockheed Missiles and Space Company
20.8.5.5 Boeing Defence and Space Group
311 20.8.6 LDEF experiment AO 171
20.8.6.1 NASA Marshall Space Flight Center
313 20.8.7 LDEF experiment AO 180
20.8.7.1 University of Toronto Institute for Aerospace Studies
20.8.8 Surface characterisation of eroded composites
314 20.8.9 Overall conclusions on LDEF
20.8.10 Non-polymeric composites on LDEF
20.8.11 Polymer films on LDEF
20.8.11.1 Silvered Teflon (Ag/FEP)
20.8.11.2 Kapton
20.8.12 Lubricants, adhesives and seals on LDEF
20.8.12.1 General
315 20.8.12.2 Lubricants
20.8.12.3 Adhesives
20.8.12.4 Seals
20.9 Thermal cycling
20.9.1 Conditions
316 20.9.2 Damage mechanisms
20.9.2.1 General
319 20.9.2.2 Microcracking
20.9.2.3 ECSS requirements
20.10 Vacuum
20.10.1 Effects of vacuum
20.10.1.1 General
20.10.1.2 Outgassing
20.10.1.3 Resin matrix characteristics
320 20.10.1.4 Offgassing
20.10.1.5 ECSS requirements
20.11 Radiation
20.11.1 Radiation spectra
20.11.1.1 General
321 20.11.1.2 UV radiation
20.11.1.3 Particle radiation
323 20.11.2 T300/934 in GEO
20.11.2.1 General
324 20.11.2.2 ST- requirements
20.12 Damage by combined environmental factors
20.12.1 General
20.12.2 P75/930 in GEO
328 20.12.3 UHM CFRP in GEO and LEO
331 20.12.4 PEI CFRP in LEO and GEO
333 20.13 Atomic oxygen
20.13.1 Effects of atomic oxygen
20.13.1.1 Typical exposure levels
334 20.13.1.2 Material sensitivity
20.13.1.3 Damage to composites
335 20.13.1.4 Property loss
20.13.1.5 Protection against ATOX
20.13.1.6 ECSS requirements
20.14 Siloxanes and silicon polymers
20.14.1 Protection methods against ATOX
336 20.14.2 Protection of polymer films
20.14.3 Protection of composites
20.14.3.1 General
20.14.3.2 Siloxane modified cyanate ester resin
337 20.14.3.3 Anoxic siloxane molecular composites
338 20.15 Protective coatings
20.15.1 Surface coatings
20.15.1.1 General
20.15.1.2 Atomic oxygen protection methods for CFRP
339 20.16 Debris
20.16.1 Classification of debris
20.16.1.1 General
20.16.1.2 Micrometeoroids
20.16.1.3 Orbital debris
340 20.16.2 Damage to LDEF
20.16.3 Damage to composites
341 20.16.4 Damage to aluminium alloys
20.16.5 Damage to thermal control materials
20.16.5.1 General
342 20.16.5.2 Thermal blankets
20.16.5.3 Thermal control painted materials
20.16.6 Significance of impact events
20.16.7 Protective shielding
20.16.7.1 General
343 20.16.7.2 Columbus bumper shield concepts
20.17 References
20.17.1 General
347 20.17.2 ECSS documents
349 21 Bonded joints
21.1 Introduction
21.2 Adhesives
21.2.1 General
21.2.2 Types of adhesives
21.2.2.1 General
352 21.2.2.2 Epoxy
21.2.2.3 Polyimides
21.2.2.4 Fluorocarbon (Viton)
21.2.2.5 Polyamides
21.2.2.6 Silicones
21.2.2.7 Phenolic
21.2.3 Adhesives for joining different materials
354 21.3 Design of bonded joints
21.3.1 Basic considerations
21.3.1.1 Adherends
21.3.1.2 Loading
21.3.1.3 Environment
21.3.2 Basic guidelines
21.3.3 Failure modes
355 21.3.4 Features
21.3.4.1 Polymer composites
356 21.3.4.2 Advantages
21.3.4.3 Disadvantages
21.3.4.4 Non-polymer composites
357 21.4 Joint configuration
21.4.1 Basic configurations
21.4.1.1 General
21.4.1.2 Single lap joints
21.4.1.3 Double lap joints
21.4.1.4 Strap joints
21.4.1.5 Stepped-lap joints
358 21.4.1.6 Scarf joints
21.4.1.7 Shim insert joints
21.4.1.8 Other configurations
360 21.4.2 Orientation of surface fibres
361 21.5 Environmental factors for bonded joints
21.5.1 General
21.5.2 Effect of moisture
364 21.5.3 Effect of temperature
21.5.4 Combined moisture and temperature
365 21.6 Bonding defects
21.6.1 General
21.6.2 Description of bonding defects
21.6.2.1 Flaws and porosity
370 21.6.2.2 Variation in thickness
372 21.6.2.3 Undercuring
21.6.2.4 Variation in resin fraction
21.6.2.5 Variation in density
21.6.3 Inspection of bonded joints
374 21.7 Bonded joint failure modes
21.7.1 Typical failure modes
21.7.2 Loading modes
375 21.8 Calculation of bonded joint strength
376 21.9 Analysis of joint configurations
21.9.1 Analytical notation
21.9.2 Single lap shear joint
21.9.2.1 Symmetrical
378 21.9.2.2 Analysis of R-degree peeling
380 21.9.3 Double lap shear joint
382 21.9.4 Double-lap shear joint under mechanical and temperature loads
21.9.4.1 Joint with standard overlap length
385 21.9.4.2 Large overlap length and adherends of the same materials and thicknesses
386 21.9.4.3 Shear stresses in the adhesive due to temperature
390 21.9.5 Single taper scarf joint
391 21.9.6 Double taper scarf joint
21.9.6.1 Symmetrical
392 21.9.7 Stepped lap joint
21.9.7.1 Recessed and simple
21.9.7.2 Three or fewer steps
393 21.9.7.3 Four or more steps
394 21.10 Bonded joint design curves and test data
21.10.1 General
21.10.1.1 Design curves
405 21.11 Acoustic fatigue of bonded configurations
407 21.12 References
21.12.1 General
408 21.12.2 ECSS documents
409 22 Mechanically fastened joints
22.1 Introduction
22.2 Basic considerations for design
22.2.1 Advantages
22.2.2 Disadvantages
410 22.3 Factors affecting design
22.3.1 General
411 22.3.2 Material parameters
413 22.3.3 Fastener parameters
22.3.4 Design parameters
22.3.4.1 Joint types
414 22.3.4.2 End-distance effects
22.3.4.3 Width effects
22.3.4.4 Row and pitch distance
416 22.3.4.5 Diameter thickness effect
22.3.4.6 Failure criteria and modes
418 22.4 Bolted joints
22.4.1 Material parameters
22.4.2 Fastener parameters
420 22.4.3 Design parameters
22.5 Bolted joint: Analysis
22.5.1 General
22.5.2 Analytical methods
22.5.2.1 Two-dimensional analysis
22.5.2.2 Three-dimensional analysis
22.5.3 Stress distribution
22.5.3.1 Infinite isotropic plate containing a circular unloaded hole
421 22.5.3.2 Infinite orthotropic plate containing a circular unloaded hole
422 22.5.3.3 Finite width isotropic plate containing a circular loaded hole
423 22.5.4 Failure prediction
22.5.4.1 General
22.5.4.2 Yamada failure criterion
424 22.5.4.3 Whitney/Nuismer failure hypothesis
425 22.5.5 Experimental data
22.5.5.1 Shear load carrying capabilities of bolts in CFRP facings
429 22.6 Riveted joints
22.6.1 General
22.6.2 Installation damage of riveted joints
22.6.2.1 Interference
22.6.2.2 Impact forces
22.6.2.3 Preload
430 22.6.3 Pull through strength
22.6.3.1 General
22.6.3.2 Footprint
431 22.6.3.3 Flush head configuration
22.6.4 Fasteners used in composite structures
432 22.6.4.1 Types of rivets
433 22.7 References
22.7.1 General
434 22.7.2 ECSS standards
BSI PD CEN/TR 17603-32-02:2022
$215.11