BSI PD CEN/TR 17603-32-02:2022
$215.11
Space engineering. Structural materials handbook – Design calculation methods and general design aspects
Published By | Publication Date | Number of Pages |
BSI | 2022 | 436 |
The structural materials handbook, SMH, combines materials and design information on established polymer matrix composites with provisional information on the emerging groups of newer advanced materials and their composites. Design aspects are described, along with factors associated with joining and manufacturing. Where possible, these are illustrated by examples or case studies. The Structural materials handbook contains 8 Parts. A glossary of terms, definitions and abbreviated terms for these handbooks is contained in Part 8. The parts are as follows: Part 1 Overview and material properties and applications Clauses 1 ‐ 9 Part 2 Design calculation methods and general design aspects Clauses 10 ‐ 22 Part 3 Load transfer and design of joints and design of structures Clauses 23 ‐ 32 Part 4 Integrity control, verification guidelines and manufacturing Clauses 33 ‐ 45 Part 5 New advanced materials, advanced metallic materials, general design aspects and load transfer and design of joints Clauses 46 ‐ 63 Part 6 Fracture and material modelling, case studies and design and integrity control and inspection Clauses 64 ‐ 81 Part 7 Thermal and environmental integrity, manufacturing aspects, in‐orbit and health monitoring, soft materials, hybrid materials and nanotechnoligies Clauses 82 ‐ 107 Part 8 Glossary NOTE: The 8 parts will be numbered TR17603-32-01 to TR 17603-32-08
PDF Catalog
PDF Pages | PDF Title |
---|---|
2 | undefined |
29 | 10 Stress-strain relationships 10.1 Introduction 10.2 Elastic property prediction for UD ply from constituent properties |
31 | 10.3 Analytical notation for elastic constant methods 10.4 Calculation methods for elastic constants of UD ply |
33 | 10.5 Longitudinal modulus |
35 | 10.6 Longitudinal Poisson’s ratio |
36 | 10.7 Transverse modulus 10.7.1 General 10.7.2 Jones method 10.7.3 Förster/Knappe method |
37 | 10.7.4 Schneider method 10.7.5 Puck method 10.7.6 Tsai method |
38 | 10.7.7 HSB method 10.7.8 Graphs |
41 | 10.8 Transverse Poisson’s ratio 10.9 Transverse shear modulus 10.9.1 General 10.9.2 Jones method 10.9.3 Förster/Knappe method 10.9.4 Schneider method |
42 | 10.9.5 Puck method 10.9.6 Tsai method 10.9.7 HSB method |
43 | 10.9.8 Graphs |
45 | 10.10 In-plane stress calculation methods 10.11 Analytical notation for in-plane methods |
47 | 10.12 Stress-strain relations for unidirectional plies 10.12.1 Fibre-oriented co-ordinate system 10.13 On axis stress strain relations 10.13.1 General |
48 | 10.13.2 Compliance matrix 10.13.3 Modulus matrix 10.13.4 Symmetry of compliance and modulus matrices 10.14 Stress-strain relations for a ply of arbitrary orientation 10.14.1 General |
50 | 10.14.2 Off axis stiffness of a unidirectional ply |
51 | 10.15 Stiffness matrix for a laminate 10.15.1 General laminates |
53 | 10.15.2 Symmetric laminates |
54 | 10.15.3 Flow chart |
55 | 10.16 Calculation methods with interlaminar stresses and strains 10.16.1 Calculation with free-edge stresses |
57 | 10.17 Qualitative evaluation of interlaminar strength for design purposes 10.17.1 General |
59 | 10.17.2 Variation of fibre direction within a [± , 0 , ± ] laminate 10.17.3 Variation of the thickness of the 0 layer within the [± 30 , 0n , ± 30 ] laminate |
60 | 10.17.4 Variation of the sequence of layers 10.18 References 10.18.1 General |
62 | 11 Strength prediction and failure criteria 11.1 Introduction 11.1.1 Micro-mechanical strength models 11.1.1.1 Fibres 11.1.1.2 UD composites 11.1.1.3 Laminate 11.1.2 Lamina failure models 11.1.2.1 Complex stressing |
63 | 11.1.2.2 Failure theories 11.1.3 Failure criteria studies 11.1.3.1 ESA failure criteria study 11.1.3.2 WWFE worldwide failure exercise |
64 | 11.1.4 Summary of World Wide Failure Exercise (WWFE) 11.1.4.1 WWFE I 11.1.4.2 WWFE II |
65 | 11.1.4.3 WWFE III |
66 | 11.2 Tensile strength of UD composites in fibre direction 11.2.1 General 11.2.2 Weakest-link failure model 11.2.3 Cumulative weakening failure model |
68 | 11.2.4 Fibre break propagation model 11.2.5 Cumulative group mode failure model 11.2.6 Status of models 11.3 Compressive strength of UD composites in fibre direction 11.3.1 General |
69 | 11.3.2 Extension mode buckling 11.3.3 Shear mode buckling |
70 | 11.3.4 Analysis of compression failure 11.3.4.1 General 11.3.4.2 Extension mode buckling 11.3.4.3 Shear mode buckling |
72 | 11.3.4.4 Debonding 11.4 Transverse tensile strength of UD composites 11.4.1 General |
73 | 11.4.2 Prediction of transverse tensile strength 11.4.3 Empirical analysis |
74 | 11.5 Static strength criteria for composites 11.6 Analytical notation for static strength criteria for composites 11.6.1 Co-ordinate system |
75 | 11.6.2 Formulae |
76 | 11.7 Different types of failure criteria 11.7.1 General |
77 | 11.7.2 Evaluation studies 11.8 Overview – Failure criteria 11.8.1 Introduction |
78 | 11.8.2 Independent conditions 11.8.2.1 Maximum stress 11.8.2.2 Maximum strain |
79 | 11.8.3 Interactive conditions – Pure interpolative conditions 11.8.3.1 General 11.8.3.2 Tensor criteria |
80 | 11.8.3.3 Consideration of maximum strength in fibre direction 11.8.4 Interactive conditions – Physical considerations 11.8.4.1 Hashin’s failure criterion |
81 | 11.8.4.2 Puck’s action plane failure criterion |
83 | 11.8.4.3 Simplified parabolic model 11.8.4.4 Cuntze FMC-based UD failure criterion |
88 | 11.8.4.5 Other failure criterion |
89 | 11.9 Comparison between test data and various failure criteria 11.9.1 Effects on failure mode |
93 | 11.10 Description of failure modes 11.10.1 Laminates 11.10.1.1 General 11.10.1.2 Role of fibres 11.10.1.3 Role of matrix 11.10.1.4 Loading 11.10.1.5 Fibre orientation 11.10.2 Failure |
98 | 11.11 Fatigue strength of composites 11.11.1 Background 11.11.1.1 General 11.11.1.2 Factors influencing residual strength 11.11.1.3 Analysis |
99 | 11.11.2 Analytical notation 11.11.3 Approximation of fatigue life |
101 | 11.12 References 11.12.1 General |
105 | 12 Calculation of thermal stress and displacement 12.1 Introduction 12.1.1 General 12.1.2 Longitudinal CTE 12.1.3 Transverse CTE |
106 | 12.2 Analytical notation for thermal stress calculations |
107 | 12.3 Calculation of CTE from constituents 12.3.1 CTE in fibre direction 12.3.2 CTE perpendicular to fibre direction 12.3.2.1 Calculation Methods |
108 | 12.4 CTE for a laminate |
110 | 12.5 Thermal stresses within laminate layers 12.5.1 General 12.5.2 Residual curing stresses |
111 | 12.6 Stress strain temperature relation 12.6.1 General 12.6.2 Mechanical strains 12.6.3 Incremental strain theory |
113 | 12.7 Microstress analysis 12.7.1 General 12.7.2 Microstresses on fibre axis 12.7.3 Microstresses normal to fibre axis 12.8 References 12.8.1 General |
115 | 13 Moisture effects on composite properties 13.1 Introduction 13.1.1 General 13.1.2 Moisture penetration 13.1.3 Moisture effects 13.1.3.1 Swelling |
116 | 13.1.3.2 Mechanical properties 13.1.3.3 Prediction of moisture effects 13.2 Analytical notation for moisture effects |
117 | 13.3 Typical effects of moisture 13.3.1 General 13.3.2 Sample data: Effects of moisture 13.3.2.1 General |
118 | 13.3.2.2 Matrix plasticising |
119 | 13.3.2.3 Matrix swelling 13.3.2.4 Temperature-time dependence of moisture absorption |
120 | 13.3.2.5 Changes in strength |
121 | 13.3.2.6 Changes in moduli 13.3.2.7 Changes in fatigue behaviour |
122 | 13.4 Approximate method for calculation of strength and modulus retention of [0 /90 ] laminates 13.4.1 General 13.4.2 Modulus retention |
124 | 13.4.3 Strength retention |
125 | 13.5 Moisture content 13.5.1 Fick’s law |
126 | 13.5.2 Determination of moisture content |
127 | 13.5.3 Maximum moisture content |
128 | 13.5.4 Experimental determination of the diffusion coefficient |
130 | 13.6 Calculation of swelling coefficient from constituents 13.6.1 General 13.6.2 Swelling coefficient 1 in fibre direction 13.6.3 Swelling coefficient 2 transverse to fibres |
131 | 13.6.4 Swelling coefficient for a laminate |
133 | 13.7 Coefficient of moisture expansion (CME) 13.7.1 Resin behaviour 13.7.1.1 General 13.7.1.2 In-plane 13.7.1.3 Through-thickness (transverse) 13.7.1.4 Measurement of CME |
134 | 13.7.2 Composite behaviour 13.7.2.1 General |
135 | 13.7.2.2 CFRP composites 13.8 References 13.8.1 General |
137 | 14 Stress concentrations and fracture 14.1 Introduction 14.1.1 General 14.1.2 Fracture mechanics models |
138 | 14.2 Analytical notation for stress concentrations 14.3 Summary of fracture models |
139 | 14.4 Evaluation of fracture models |
140 | 14.5 WEK fracture model 14.5.1 General 14.5.2 Circular holes |
143 | 14.5.3 Straight crack |
146 | 14.6 WN fracture model 14.6.1 General 14.6.2 Failure criteria 14.6.2.1 Point stress criterion |
147 | 14.6.2.2 Average stress criterion |
148 | 14.6.3 Characteristics of WN fracture model |
149 | 14.6.4 Circular holes |
153 | 14.6.5 Straight cracks |
154 | 14.6.6 Point stress criteria |
155 | 14.6.7 Average stress criterion |
159 | 14.7 Finite plate models 14.8 Finite width correction (FWC) 14.8.1 General |
161 | 14.8.2 Circular holes |
162 | 14.8.3 Centre crack 14.9 Calculated stress concentration factor at circular holes 14.9.1 NASA results |
164 | 14.9.2 Finite width correction (FWC) 14.9.3 MBB/ERNO study |
169 | 14.10 Stress distribution around circular holes 14.10.1 General 14.10.2 Stress concentration due to tensile load |
170 | 14.10.3 Stress concentration due to shear load |
172 | 14.11 Interlaminar fracture mechanics 14.11.1 Nomenclature 14.11.2 Delamination and fracture mechanics overview 14.11.2.1 Delamination initiation and growth |
173 | 14.11.2.2 Linear elastic fracture mechanics and the strain energy release rate approach |
174 | 14.11.2.3 Using fracture mechanics to identify the critical delamination location |
175 | 14.11.2.4 Fracture mechanics prediction procedure |
176 | 14.11.3 Standard test methods (static and fatigue) 14.11.3.1 General 14.11.3.2 Interlaminar fracture toughness testing |
177 | 14.11.3.3 Types of test methods |
178 | 14.11.3.4 Fatigue delamination characterisation |
180 | 14.11.4 Calculation of strain energy release rate in structural analysis 14.11.4.1 Global energy comparisons |
181 | 14.11.4.2 Virtual crack closure technique (VCCT) 14.11.4.3 2D VCCT |
182 | 14.11.4.4 3D VCCT |
184 | 14.11.4.5 Using interlaminar fracture mechanics in design |
186 | 14.12 References 14.12.1 General |
190 | 15 Prediction of dynamic characteristics 15.1 Introduction 15.2 Definition of damping terms 15.2.1 General terms 15.2.1.1 Specific energy |
191 | 15.2.1.2 Loss factors |
192 | 15.2.2 Complex modulus model 15.2.2.1 General 15.2.2.2 Energy dissipation under steady state sinusoidal excitation 15.2.2.3 Bandwidth of half power points in steady state sinusoidal excitation 15.2.2.4 Quality factor 15.2.2.5 Loss tangent under sinusoidal excitation |
193 | 15.2.2.6 Decay of free vibration 15.2.2.7 Interrelationships 15.3 Prediction methods for damping |
194 | 15.4 Determination of damping characteristics 15.4.1 Unidirectional characteristics 15.4.2 Off axis characteristics |
195 | 15.4.3 Laminate characteristics 15.5 Approximate data on damping |
196 | 15.6 References 15.6.1 General |
197 | 16 Computer analysis of composites 16.1 Introduction 16.2 Computer programs: Analysis of composites 16.2.1 General |
199 | 16.2.2 Finite element programs |
200 | 16.2.3 Laminate analysis programs |
202 | 16.2.4 Special applications programs |
204 | 16.3 ESDU data for composite analysis 16.3.1 General 16.3.2 ESDU data items |
206 | 16.3.3 ESDUpac 16.4 Buckling of orthotropic plates 16.4.1 Title 16.4.2 Usage and scope 16.4.3 Analysis 16.4.4 ESDUpac A7303 16.4.4.1 General 16.4.4.2 Input |
207 | 16.4.4.3 Output 16.4.5 Notes 16.5 Flexural stiffness of flat strips 16.5.1 Title 16.5.2 Usage and scope 16.5.3 Analysis |
208 | 16.6 Metallic skin stiffeners reinforced by composite – local buckling 16.6.1 Title 16.6.2 Usage and scope 16.6.3 Analysis and data |
209 | 16.7 Laminate stress analysis 16.7.1 Title 16.7.2 Usage and scope 16.7.3 Analysis |
210 | 16.8 Plate stiffnesses (In-plane) 16.8.1 Title 16.8.2 Usage and scope 16.8.3 Analysis and methods |
211 | 16.9 Bonded joints – 1 16.9.1 Title 16.9.2 Usage and scope 16.9.3 Analysis and data |
212 | 16.10 Bonded joints – 2 16.10.1 Title 16.10.2 Usage and scope 16.10.3 Analysis and data |
213 | 16.10.4 ESDUpac A7916 16.10.4.1 General 16.10.4.2 Input 16.10.4.3 Output 16.11 Bonded joints – 3 16.11.1 Title 16.11.2 Usage and scope |
214 | 16.11.3 Analysis and data 16.12 Buckling of rectangular specially orthotropic plates 16.12.1 Title 16.12.2 Usage and scope 16.12.3 Analysis and data |
215 | 16.13 Bonded joints – 4 16.13.1 Title 16.13.2 Usage and scope 16.13.3 Analysis and data |
216 | 16.13.4 ESDUpac A8039 16.13.4.1 General 16.13.4.2 Input 16.13.4.3 Output 16.14 Bonded joints – 5 16.14.1 Title 16.14.2 Usage and scope 16.14.3 Information and guidance |
217 | 16.15 Buckling of orthotropic plates 16.15.1 Title 16.15.2 Usage and scope 16.15.3 Analysis and data 16.15.4 ESDUpac A8147 16.15.4.1 General 16.15.4.2 Plate materials |
218 | 16.15.4.3 Plate loadings 16.15.4.4 Plate boundary conditions 16.16 Lay-up arrangements for special orthotropy 16.16.1 Title 16.16.2 Usage and scope 16.16.3 Analysis and data |
219 | 16.17 Failure modes of laminated composites 16.17.1 Title 16.17.2 Usage and scope 16.17.3 Analysis and failure modes |
220 | 16.18 Failure criteria for layers of a laminated composite 16.18.1 Title 16.18.2 Usage and scope 16.18.3 Analysis and data 16.19 Plate stiffnesses and apparent elastic properties 16.19.1 Title 16.19.2 Usage and scope |
221 | 16.19.3 Analysis for stiffnesses and elastic properties 16.19.4 ESDUpac A8335 16.19.4.1 General 16.19.4.2 Input 16.19.4.3 Output 16.19.4.4 Limitations 16.20 Natural frequencies of laminated flat plates 16.20.1 Title |
222 | 16.20.2 Usage and scope 16.20.3 Calculation of natural frequencies 16.20.4 ESDUpac A8336 16.20.4.1 General 16.20.4.2 Input 16.20.4.3 Output 16.20.4.4 Limitations |
223 | 16.21 Strain in skin panels under acoustic loading 16.21.1 Title 16.21.2 Usage and scope 16.21.3 Calculation of surface strains 16.21.4 ESDUpac A8408 16.21.4.1 General 16.21.4.2 Input 16.21.4.3 Output |
224 | 16.21.4.4 Limitations 16.22 Failure analysis 16.22.1 Title 16.22.2 Usage and scope 16.22.3 Analysis |
225 | 16.22.4 ESDUpac A8418 16.22.4.1 General 16.22.4.2 Input 16.22.4.3 Output options 16.22.4.4 Output |
226 | 16.23 Endurance under acoustic loading 16.23.1 Title 16.23.2 Usage and scope 16.24 Stress and strain around circular holes 16.24.1 Title |
227 | 16.24.2 Usage and scope 16.24.3 Analysis 16.24.4 ESDUpac A8501 16.24.4.1 General 16.24.4.2 Input 16.24.4.3 Output |
228 | 16.25 Damping in composite plates 16.25.1 Title 16.25.2 Usage and scope 16.25.3 Calculation of damping 16.25.4 ESDUpac 8512 16.25.4.1 General 16.25.4.2 Input |
229 | 16.25.4.3 Output 16.25.4.4 Limitations 16.26 Sandwich panel natural frequencies 16.26.1 Title 16.26.2 Usage and scope 16.26.3 Calculation of natural frequencies |
230 | 16.26.4 ESDUpac A8537 16.26.4.1 General 16.26.4.2 Input 16.26.4.3 Output 16.26.4.4 Limitations 16.27 Selection of reinforcement around circular holes 16.27.1.1 Title 16.27.1.2 Usage and scope 16.27.1.3 Analysis and data |
231 | 16.28 Buckling of unbalanced composite plates 16.28.1 Title 16.28.2 Usage and scope 16.28.3 Analysis and data |
232 | 16.28.4 ESDUpac A8620 16.28.4.1 General 16.28.4.2 Input 16.28.4.3 Output 16.29 Sandwich panel response to acoustic loading 16.29.1 Title 16.29.2 Usage and scope |
233 | 16.29.3 Calculation of natural frequencies and surface strains 16.29.4 ESDUpac A8624 16.29.4.1 General 16.29.4.2 Input 16.29.4.3 Output 16.29.4.4 Limitations 16.30 Sandwich column and beam face plate wrinkling 16.30.1 Title 16.30.2 Usage and scope |
234 | 16.30.3 Analysis 16.30.4 ESDUpac A8713 16.30.4.1 General 16.30.4.2 Input 16.30.4.3 Output |
235 | 16.31 Buckling of curved composite panels 16.31.1 Title 16.31.2 Usage and scope 16.31.3 Analysis and data 16.31.4 ESDUpac A8725 16.31.4.1 General 16.31.4.2 Input |
236 | 16.31.4.3 Output 16.32 Sandwich panel face plate wrinkling 16.32.1 Title 16.32.2 Usage and scope 16.32.3 Analysis |
237 | 16.32.4 ESDUpac A8815 16.32.4.1 General 16.32.4.2 Input 16.32.4.3 Output 16.33 Vibration of singly-curved laminated plates 16.33.1 Title 16.33.2 Usage and scope |
238 | 16.33.3 Calculation of natural frequencies 16.33.4 ESDUpac A8911 16.33.4.1 General 16.33.4.2 Input 16.33.4.3 Output 16.33.4.4 Limitations 16.34 Plate through-the-thickness shear stiffnesses 16.34.1 Title |
239 | 16.34.2 Usage and scope 16.34.3 Analysis 16.34.4 ESDUpac A8913 16.34.4.1 Input 16.34.4.2 Output 16.34.4.3 Limitations 16.34.5 Notes |
240 | 16.35 Vibration of plates with in-plane loading 16.35.1 Title 16.35.2 Usage and scope 16.35.3 Calculation of natural frequencies 16.35.4 ESDUpac A9016 16.35.4.1 General 16.35.4.2 Input |
241 | 16.35.4.3 Output 16.35.4.4 Limitations 16.36 Delamination and free edge stresses 16.36.1 Title 16.36.2 Usage and scope 16.36.3 Analysis |
242 | 16.36.4 ESDUpac A9021 16.36.4.1 Input 16.36.4.2 Output 16.36.4.3 Limitations 16.36.5 Notes 16.37 Delamination at termination of plies 16.37.1 Title |
243 | 16.37.2 Usage and scope 16.37.3 Analysis 16.37.4 ESDUpac A9103 16.37.4.1 General 16.37.4.2 Input 16.37.4.3 Output |
244 | 16.38 Thickness selection to meet a loading combination 16.38.1 Title 16.38.2 Usage and scope 16.38.3 Analysis 16.38.4 ESDUpac A9233 16.38.4.1 Input |
245 | 16.38.4.2 Output 16.39 ESAComp |
246 | 17 Composite adequate design 17.1 Introduction 17.2 Anisotropy of composites |
248 | 17.3 Stress-strain relationships 17.3.1 Reinforcing fibres 17.3.2 Stress concentrations |
250 | 17.4 Fibre strength and stiffness 17.4.1 General |
251 | 17.4.2 High stiffness applications 17.4.2.1 Glass fibres 17.4.2.2 Carbon fibres 17.4.2.3 Boron fibres |
252 | 17.4.2.4 Aramid fibres 17.5 Basic design rules 17.5.1 General 17.5.2 Aspects of construction 17.5.2.1 Changes in thickness |
253 | 17.5.2.2 Radii, curves and sharp corners |
254 | 17.5.2.3 Openings 17.5.2.4 Other design considerations |
255 | 17.5.3 Aspects of laminate lay up 17.5.3.1 Fibre forms |
256 | 17.5.3.2 Lay up |
258 | 17.5.4 Fabrication aspects 17.5.4.1 Cost effectiveness |
260 | 17.5.4.2 Criteria for cost effectiveness 17.5.4.3 Processing technique |
261 | 17.6 First steps in designing a composite 17.6.1 General 17.6.2 Carpet plots |
263 | 17.6.3 Use of carpet plots 17.6.3.1 General 17.6.3.2 Method 1 |
264 | 17.6.3.3 Method 2 17.6.3.4 Other parameters 17.7 References 17.7.1 General |
266 | 18 Curing stresses: Effects and prediction 18.1 Introduction 18.2 Cure process 18.2.1 Composite materials 18.2.1.1 Thermosetting resin 18.2.1.2 Thermoplastic composites |
267 | 18.2.2 Cure parameters 18.2.2.1 General 18.2.2.2 Temperature 18.2.2.3 Pressure |
268 | 18.3 Analytical notation for residual stress 18.4 Residual stresses 18.4.1 General 18.4.2 Types of residual stresses 18.4.2.1 Micro-residual stresses |
269 | 18.4.2.2 Macro-residual stresses 18.5 Calculation of curing stresses 18.5.1 Residual stresses after curing 18.5.1.1 General 18.5.1.2 Symmetric laminates |
270 | 18.6 Reduction of thermal stresses and distortions 18.6.1 General |
272 | 18.6.2 Stress relieving 18.6.2.1 Annealing 18.6.2.2 Low temperature thermal cycling 18.7 References 18.7.1 General |
274 | 19 Manufacturing faults and service damage 19.1 Introduction |
276 | 19.2 Manufacturing defects in composite materials 19.2.1 General |
277 | 19.2.2 Description of manufacturing defects 19.2.2.1 Porosity 19.2.2.2 Prepreg gaps |
278 | 19.2.2.3 Contamination 19.2.2.4 Fibre alignment 19.2.2.5 Lay up order 19.2.2.6 State of cure |
279 | 19.2.2.7 Local fibre/resin ratio variations 19.2.2.8 Prepreg joints 19.2.2.9 Inter-ply delaminations |
280 | 19.2.2.10 Skin to core debonding 19.2.2.11 Resin microcracks 19.2.2.12 Damaged honeycomb core 19.2.2.13 Misplaced potting compound |
281 | 19.2.2.14 Edge member debond 19.2.3 Detection of defects 19.3 Service threats for composite structures |
282 | 19.4 Impact behaviour of laminates and sandwich constructions 19.4.1 General |
283 | 19.4.2 Laminates 19.4.2.1 General |
284 | 19.4.2.2 Fibre breakage 19.4.2.3 Matrix damage 19.4.2.4 Delamination and debonds |
285 | 19.4.2.5 Combinations of damage |
286 | 19.4.3 Sandwich panels 19.5 Impact behaviour 19.5.1 General |
287 | 19.5.2 BVID |
288 | 19.5.3 Impact tests |
290 | 19.5.4 Compression after impact (CAI) 19.6 Detection of defects 19.6.1 Damage detection techniques 19.6.2 Laboratory and production based NDT 19.6.3 Other techniques |
291 | 19.7 References 19.7.1 General 19.7.2 ASTM standards |
292 | 20 Environmental aspects of design 20.1 Introduction 20.2 Description of environments 20.2.1 Earth environment |
293 | 20.2.2 Space environment |
297 | 20.2.3 Composite structures 20.2.3.1 General 20.2.3.2 Temperature range 20.2.3.3 Elevated temperature and vacuum 20.2.3.4 Ultraviolet radiation |
298 | 20.2.3.5 Penetrating radiation 20.2.3.6 Meteoroids and debris 20.3 Low earth orbit (LEO) |
299 | 20.4 Geostationary orbit (GEO) 20.5 Deep space exploration |
300 | 20.6 Galvanic corrosion 20.6.1 General 20.6.2 Physical basis of galvanic corrosion |
301 | 20.6.2.1 Carbon fibre to metal connections |
302 | 20.6.3 Prevention of galvanic corrosion in space structures 20.6.3.1 General 20.6.3.2 Guidelines 20.7 Effects of moisture on composites 20.7.1 General 20.7.2 Modification of CTE by outgassing |
303 | 20.7.3 Low coefficient of moisture expansion (CME) resins 20.7.4 Hot/wet performance 20.7.4.1 Epoxy resins 20.7.4.2 Cyanate ester resins 20.7.4.3 Others |
304 | 20.8 LDEF in LEO 20.8.1 Mission 20.8.2 Materials and experiments 20.8.2.1 General 20.8.2.2 Material performance |
305 | 20.8.3 Variations in exposure conditions |
307 | 20.8.4 Composite materials aboard LDEF |
309 | 20.8.5 LDEF experiments M0003-9/10 20.8.5.1 General 20.8.5.2 The Aerospace Corporation |
310 | 20.8.5.3 General Dynamics Space Systems Division 20.8.5.4 Lockheed Missiles and Space Company 20.8.5.5 Boeing Defence and Space Group |
311 | 20.8.6 LDEF experiment AO 171 20.8.6.1 NASA Marshall Space Flight Center |
313 | 20.8.7 LDEF experiment AO 180 20.8.7.1 University of Toronto Institute for Aerospace Studies 20.8.8 Surface characterisation of eroded composites |
314 | 20.8.9 Overall conclusions on LDEF 20.8.10 Non-polymeric composites on LDEF 20.8.11 Polymer films on LDEF 20.8.11.1 Silvered Teflon (Ag/FEP) 20.8.11.2 Kapton 20.8.12 Lubricants, adhesives and seals on LDEF 20.8.12.1 General |
315 | 20.8.12.2 Lubricants 20.8.12.3 Adhesives 20.8.12.4 Seals 20.9 Thermal cycling 20.9.1 Conditions |
316 | 20.9.2 Damage mechanisms 20.9.2.1 General |
319 | 20.9.2.2 Microcracking 20.9.2.3 ECSS requirements 20.10 Vacuum 20.10.1 Effects of vacuum 20.10.1.1 General 20.10.1.2 Outgassing 20.10.1.3 Resin matrix characteristics |
320 | 20.10.1.4 Offgassing 20.10.1.5 ECSS requirements 20.11 Radiation 20.11.1 Radiation spectra 20.11.1.1 General |
321 | 20.11.1.2 UV radiation 20.11.1.3 Particle radiation |
323 | 20.11.2 T300/934 in GEO 20.11.2.1 General |
324 | 20.11.2.2 ST- requirements 20.12 Damage by combined environmental factors 20.12.1 General 20.12.2 P75/930 in GEO |
328 | 20.12.3 UHM CFRP in GEO and LEO |
331 | 20.12.4 PEI CFRP in LEO and GEO |
333 | 20.13 Atomic oxygen 20.13.1 Effects of atomic oxygen 20.13.1.1 Typical exposure levels |
334 | 20.13.1.2 Material sensitivity 20.13.1.3 Damage to composites |
335 | 20.13.1.4 Property loss 20.13.1.5 Protection against ATOX 20.13.1.6 ECSS requirements 20.14 Siloxanes and silicon polymers 20.14.1 Protection methods against ATOX |
336 | 20.14.2 Protection of polymer films 20.14.3 Protection of composites 20.14.3.1 General 20.14.3.2 Siloxane modified cyanate ester resin |
337 | 20.14.3.3 Anoxic siloxane molecular composites |
338 | 20.15 Protective coatings 20.15.1 Surface coatings 20.15.1.1 General 20.15.1.2 Atomic oxygen protection methods for CFRP |
339 | 20.16 Debris 20.16.1 Classification of debris 20.16.1.1 General 20.16.1.2 Micrometeoroids 20.16.1.3 Orbital debris |
340 | 20.16.2 Damage to LDEF 20.16.3 Damage to composites |
341 | 20.16.4 Damage to aluminium alloys 20.16.5 Damage to thermal control materials 20.16.5.1 General |
342 | 20.16.5.2 Thermal blankets 20.16.5.3 Thermal control painted materials 20.16.6 Significance of impact events 20.16.7 Protective shielding 20.16.7.1 General |
343 | 20.16.7.2 Columbus bumper shield concepts 20.17 References 20.17.1 General |
347 | 20.17.2 ECSS documents |
349 | 21 Bonded joints 21.1 Introduction 21.2 Adhesives 21.2.1 General 21.2.2 Types of adhesives 21.2.2.1 General |
352 | 21.2.2.2 Epoxy 21.2.2.3 Polyimides 21.2.2.4 Fluorocarbon (Viton) 21.2.2.5 Polyamides 21.2.2.6 Silicones 21.2.2.7 Phenolic 21.2.3 Adhesives for joining different materials |
354 | 21.3 Design of bonded joints 21.3.1 Basic considerations 21.3.1.1 Adherends 21.3.1.2 Loading 21.3.1.3 Environment 21.3.2 Basic guidelines 21.3.3 Failure modes |
355 | 21.3.4 Features 21.3.4.1 Polymer composites |
356 | 21.3.4.2 Advantages 21.3.4.3 Disadvantages 21.3.4.4 Non-polymer composites |
357 | 21.4 Joint configuration 21.4.1 Basic configurations 21.4.1.1 General 21.4.1.2 Single lap joints 21.4.1.3 Double lap joints 21.4.1.4 Strap joints 21.4.1.5 Stepped-lap joints |
358 | 21.4.1.6 Scarf joints 21.4.1.7 Shim insert joints 21.4.1.8 Other configurations |
360 | 21.4.2 Orientation of surface fibres |
361 | 21.5 Environmental factors for bonded joints 21.5.1 General 21.5.2 Effect of moisture |
364 | 21.5.3 Effect of temperature 21.5.4 Combined moisture and temperature |
365 | 21.6 Bonding defects 21.6.1 General 21.6.2 Description of bonding defects 21.6.2.1 Flaws and porosity |
370 | 21.6.2.2 Variation in thickness |
372 | 21.6.2.3 Undercuring 21.6.2.4 Variation in resin fraction 21.6.2.5 Variation in density 21.6.3 Inspection of bonded joints |
374 | 21.7 Bonded joint failure modes 21.7.1 Typical failure modes 21.7.2 Loading modes |
375 | 21.8 Calculation of bonded joint strength |
376 | 21.9 Analysis of joint configurations 21.9.1 Analytical notation 21.9.2 Single lap shear joint 21.9.2.1 Symmetrical |
378 | 21.9.2.2 Analysis of R-degree peeling |
380 | 21.9.3 Double lap shear joint |
382 | 21.9.4 Double-lap shear joint under mechanical and temperature loads 21.9.4.1 Joint with standard overlap length |
385 | 21.9.4.2 Large overlap length and adherends of the same materials and thicknesses |
386 | 21.9.4.3 Shear stresses in the adhesive due to temperature |
390 | 21.9.5 Single taper scarf joint |
391 | 21.9.6 Double taper scarf joint 21.9.6.1 Symmetrical |
392 | 21.9.7 Stepped lap joint 21.9.7.1 Recessed and simple 21.9.7.2 Three or fewer steps |
393 | 21.9.7.3 Four or more steps |
394 | 21.10 Bonded joint design curves and test data 21.10.1 General 21.10.1.1 Design curves |
405 | 21.11 Acoustic fatigue of bonded configurations |
407 | 21.12 References 21.12.1 General |
408 | 21.12.2 ECSS documents |
409 | 22 Mechanically fastened joints 22.1 Introduction 22.2 Basic considerations for design 22.2.1 Advantages 22.2.2 Disadvantages |
410 | 22.3 Factors affecting design 22.3.1 General |
411 | 22.3.2 Material parameters |
413 | 22.3.3 Fastener parameters 22.3.4 Design parameters 22.3.4.1 Joint types |
414 | 22.3.4.2 End-distance effects 22.3.4.3 Width effects 22.3.4.4 Row and pitch distance |
416 | 22.3.4.5 Diameter thickness effect 22.3.4.6 Failure criteria and modes |
418 | 22.4 Bolted joints 22.4.1 Material parameters 22.4.2 Fastener parameters |
420 | 22.4.3 Design parameters 22.5 Bolted joint: Analysis 22.5.1 General 22.5.2 Analytical methods 22.5.2.1 Two-dimensional analysis 22.5.2.2 Three-dimensional analysis 22.5.3 Stress distribution 22.5.3.1 Infinite isotropic plate containing a circular unloaded hole |
421 | 22.5.3.2 Infinite orthotropic plate containing a circular unloaded hole |
422 | 22.5.3.3 Finite width isotropic plate containing a circular loaded hole |
423 | 22.5.4 Failure prediction 22.5.4.1 General 22.5.4.2 Yamada failure criterion |
424 | 22.5.4.3 Whitney/Nuismer failure hypothesis |
425 | 22.5.5 Experimental data 22.5.5.1 Shear load carrying capabilities of bolts in CFRP facings |
429 | 22.6 Riveted joints 22.6.1 General 22.6.2 Installation damage of riveted joints 22.6.2.1 Interference 22.6.2.2 Impact forces 22.6.2.3 Preload |
430 | 22.6.3 Pull through strength 22.6.3.1 General 22.6.3.2 Footprint |
431 | 22.6.3.3 Flush head configuration 22.6.4 Fasteners used in composite structures |
432 | 22.6.4.1 Types of rivets |
433 | 22.7 References 22.7.1 General |
434 | 22.7.2 ECSS standards |