Shopping Cart

No products in the cart.

BSI PD CEN/TR 17603-32-25:2022

$215.11

Space engineering. Mechanical shock design and verification handbook

Published By Publication Date Number of Pages
BSI 2022 544
Guaranteed Safe Checkout
Category:

If you have any questions, feel free to reach out to our online customer service team by clicking on the bottom right corner. We’re here to assist you 24/7.
Email:[email protected]

The intended users of the “Mechanical shock design and verification handbook” are engineers involved in design, analysis and verification in relation to shock environment in spacecraft. The current know-how relevant to mechanical shock design and verification is documented in this handbook in order to make this expertise available to all European spacecraft and payload developers. The handbook provides adequate guidelines for shock design and verification; therefore it includes advisory information, recommendations and good practices, rather than requirements. The handbook covers the shock in its globally, from the derivation of shock input to equipment and sub-systems inside a satellite structure, until its verification to ensure a successful qualification, and including its consequences on equipment and sub-systems. However the following aspects are not treated herein: – No internal launcher shock is treated in the frame of this handbook even if some aspects are common to those presented hereafter. They are just considered as a shock source (after propagation in the launcher structure) at launcher/spacecraft interface. – Shocks due to fall of structure or equipment are not taken into account as they are not in the frame of normal development of a spacecraft.

PDF Catalog

PDF Pages PDF Title
2 undefined
4 2.4 24BReferences of Part 4
3.1 25BTerms and definitions from other documents
3.2 26BTerms and definitions specific to the present document
3.3 27BAbbreviated terms
4 6BBackground – Shock environment description
4.1 28BShock definition and main characteristics
4.1.4 92BShock response spectra (SRS)
5 7BShock events
5.1 29BShock occurrence
5.2 30BShock environmental categories
6 8BIntroduction to shock design and verification process
6.1 31BPresentation of the global process
6.2 32BMeans to conduct an evaluation of shock environment and criticality
7 9BShocks in spacecraft
7.1 33BOverview
7.2 34BPotential shock sources for spacecraft
7.3 35BShocks devices description
7.4 36BDetailed information on specific shock events
7.4.1 93BOverview
7.4.2 94BLauncher induced shocks
7.4.3 95BClampband release
7.5 37BConclusion
8 10BShock inputs derivation by similarityheritageextrapolation
8.1 38BOverview
9 11BShock inputs derivation by numerical analysis
10 12BDeriving a specification from a shock environment
5 7.4.4 96BOther S/C separation systems
7.4.5 97BInternal shock sources
7.4.6 98BLanding and splashdown
8.2 39BSimilarity-heritage-extrapolation methods principle
8.2.1 99BOverview
8.2.2 100BUse of database
8.2.3 101BZoning procedure
8.2.4 102BSRS ratio as approximation of transfer functions
8.2.5 103BDifference between structural model and flight model
8.2.6 104BStatistical methods to derive maximum expected environment
8.3 40BSimilarity-heritage-extrapolation methods in practice
8.3.1 105BMethod A – Point source excitation
8.3.2 106BMethod B – Clampband excitation
8.3.3 107BMethod C – Launcher induced shock
8.3.4 108BMethod D – Unified approach and practical implementation of attenuation rules for typical spacecraft shock generated environments
8.3.5 109BAdditional attenuation factors
8.3.6 110BMethod E – Shock responses in instruments
9.1 41BNumerical simulation principles
9.1.1 111BRationale and limitations
9.2 42BFinite Element Analysis (FEA) Numerical methods
9.2.1 112BComparison of explicit and implicit methods
9.2.2 113BExplicit and implicit integration schemes
9.2.3 114BExample of simulation codes (implicit and explicit)
9.2.4 115BModelling aspects
9.3 43BStatistical Energy Analysis (SEA) Numerical Methods
9.3.1 116BThe classical SEA approach
9.3.2 117BThe Transient SEA formulation
9.3.3 118BPrediction of shock response by Local Modal Phase Reconstruction (LMPR)
9.3.4 119BVirtual SEA modelling for robust SEA modelling in the mid-frequency
9.4 44BBest practices for shock derivation by simulation
9.5 45BExamples of methodology for numerical simulation
9.5.1 120BNumerical simulation for clampband release
9.5.2 121BNumerical simulation for Shogun
10.1 46BSpecification tool
11 13BShock attenuation
12 14BGeneral approach to shock verification
6 9.5.3 122BNumerical simulation for launcher induced shock
9.5.4 123BImplicit vs. explicit method: Example of a shock prediction on a complex structure
9.5.5 124BShock prediction analysis examples using SEA-Shock module of SEA+ software
10.2 47BDeriving the qualification environment – MEE and qualification margin
10.3 48BFrom level derivation/Measure to specification
11.1 49BDefinitions
11.1.1 125BHistory of shock attenuation
11.1.2 126BImpedance breakdown
11.1.3 127BShock and vibration Isolator
11.1.4 128BDamper
11.1.5 129BShock absorber
11.2 50BTheoretical background
11.2.1 130BShock attenuation problematic approach
11.2.2 131BShock isolator device features
11.2.3 132BRubber and damping effect
11.2.4 133BElastomer type selection
11.3 51BAttenuator device development
11.3.1 134BOverview
11.3.2 135BAttenuator requirement definition
11.3.3 136BAttenuator device development logic
11.4 52BAttenuator device manufacturing
11.4.1 137BOverview
11.4.2 138BManufacturing process
11.4.3 139BMoulding technology
11.4.4 140BManufacturing limitations
11.5 53BProduct assurance logic
11.6 54BExisting attenuator products
11.6.1 141BOverview
11.6.2 142BCompact shock attenuators for electronic equipment
11.6.3 143BSASSA (shock attenuator system for spacecraft and adaptor)
11.6.4 144BShock isolators for EXPERT on-board equipment
12.1 55BRationale for shock verification
12.2 56BTest rationale and model philosophy
12.3 57BEnvironmental test categories
13 15BShock testing
14 16BData analysis tools for shock
7 12.2.1 145BQualification test
12.2.2 146BAcceptance test
12.2.3 147BSystem / subsystem distinction
12.2.4 148BModel philosophy
12.3.1 149BCombination or separation of sources
12.3.2 150BPyroshock environmental categories
12.4 58BShock sensitive equipment and severity criteria
12.4.1 151BIdentification of shock sensitive equipment
12.4.2 152BSeverity criteria
12.4.3 153BSynthesis
12.5 59BEquivalence between shock and other mechanical environment
12.5.1 154BQuasi static equivalence – effective mass method
12.5.2 155BUse of sine vibration test data
12.5.3 156BUse of random vibration test data
12.6 60BSimilarity between equipment – Verification by similarity
12.6.1 157BIntroduction
12.6.2 158BSimilarity criteria for shock
12.6.3 159BExample of process for verification by similarity
12.7 61BSpecific guidelines for shock verification
12.7.1 160BOptical instrument
12.7.2 161BPropulsion sub system
13.1 62BShock test specifications
13.1.1 162BTest levels and forcing function
13.1.2 163BNumber of applications
13.1.3 164BMounting conditions
13.1.4 165BTest article operation
13.1.5 166BSafety and cleanliness
13.1.6 167BInstrumentation
13.1.7 168BTest tolerances
13.1.8 169BTest success criteria
13.2 63BCriteria for test facility selection
13.3 64BTest methods and facilities
13.3.1 170BBasis
13.3.2 171BProcedure I – System level shock test
13.4 65BTest monitoring
15 17BShock data validation
16 18BIntroduction to shock damage risk assessment and objective
8 13.3.3 172BProcedure II – Equipment shock test by pyrotechnic device (explosive detonation)
13.3.4 173BProcedure III – Equipment shock test by mechanical impact (metal-metal impact)
13.3.5 174BProcedure IV – Equipment shock test with an electrodynamic shaker
13.4.1 175BAccelerometers
13.4.2 176BStrain gauges
13.4.3 177BLoad cells
13.4.4 178BLaser vibrometer
13.4.5 179BAcquisition systems
13.5 66BIn-flight shock monitoring
13.5.1 180BOverview
13.5.2 181BVEGA in-flight acquisition systems
14.1 67BIntroduction
14.2 68BShock Response Spectra (SRS)
14.2.1 182BBasis
14.2.2 183BDefinition
14.2.3 184BSRS properties
14.2.4 185BSRS algorithm
14.2.5 186BRecommendations on SRS computation
14.2.6 187BQ-factor
14.2.7 188BSRS limitations
14.3 69BFast Fourier Transform (FFT)
14.3.1 189BFFT definition
14.3.2 190BPrecautions
14.4 70BTime-Frequency Analysis (TFA)
14.4.1 191BGeneral
14.4.2 192BLinear Time-Frequency Transform (TFT)
14.4.3 193BQuadratic Time-Frequency Transform
14.4.4 194BInterpretation and precautions
14.5 71BProny decomposition
14.5.1 195BDefinition
14.5.2 196BBasic scheme
14.5.3 197BAdvanced scheme
14.6 72BDigital filters
15.1 73BOverview
15.2 74BVisual inspection
17 19BUnit susceptibility with respect to shock
9 2.1 21BReferences of Part 1
2.2 22BReferences of Part 2
14.5.4 198BUse and limitation
14.6.1 199BBasis
14.6.2 200BDefinition and parameters
14.6.3 201BFIR filters
14.6.4 202BIIR filters
14.6.5 203BPrecautions
15.3 75BData analysis – simplified criteria
15.3.1 204BDuration analysis
15.3.2 205BValidity frequency range
15.3.3 206BFinal validity criteria – Positive versus negative SRS
15.4 76BData analysis – refined criteria – Velocity validation
15.5 77BCorrections for anomalies
15.5.1 207BOverview
15.5.2 208BCorrection for zeroshift
15.5.3 209BCorrection for power line pickup
16.1 78BOverview
16.2 79BAssessment context
16.3 80BOutputs of SDRA and associated limitations
17.1 81BOverview
17.2 82BDerivation of qualification shock levels at unit interface
17.3 83BIdentification of critical frequency ranges
17.4 84BConsiderations related to life duration and mission
17.5 85BList of shock sensitive components/units
17.5.1 210BOverview
17.5.2 211BElectronic components and associated degradation modes
17.5.3 212BFunctional mechanical assemblies
17.5.4 213BMechanisms and associated degradation modes
18 20BShock damage risk analysis
18.1 86BRequired inputs for detailed SDRA
18.2 87BEvaluation of transmissibility between equipment and sensitive components interfaces
18.2.1 214BOverview
18.2.2 215BDerivation by extrapolation from test data
18.2.3 216BShock response prediction based on transmissibility
18.3 88BVerification method per type of components and/or units
10 2.3 23BReferences of Part 3
4.1.1 89BShock definition
4.1.2 90BPhysical aspects of shocks
4.1.3 91BMain shock effects
4.1.4.1 222BOverview
4.1.4.2 223BShock response spectra definition
4.1.4.3 224BSRS properties
18.2.4 217BGuideline for equipment shock analysis
18.3.1 218BElectronic equipment
18.3.2 219BMechanisms – Ball bearings
18.3.3 220BValves
18.3.4 221BOptical components
13 1 3BScope
14 2 4BReferences
21 3 5BTerms, definitions and abbreviated terms
28 4.1.4.4 225BRecommendations on SRS calculation
4.1.4.5 226BSRS limitations
29 7.4.2.1 227BExample of spacecraft/LV shock compatibility test – SHOGUN
32 7.4.2.2 228BExample of spacecraft/LV shock compatibility test – VESTA
7.4.3.1 229BOverview
48 7.4.3.2 230BStandard clampband device
49 7.4.3.3 231BLow shock clampband device
51 7.4.4.1 232BMechanical lock systems by EUROCKOT
7.4.4.2 233BPSLV separation system
57 7.4.4.3 234BDnepr explosive bolts
58 7.4.4.4 235BAriane 5 micro satellite separation system
60 7.4.4.5 236BSoyouz Dispenser
61 8.2.2.1 237BCharacterization database
62 8.2.2.2 238BSpacecraft test results databases
65 8.2.6.1 239BOverview
76 8.2.6.2 240BNormal Tolerance Limit method
77 8.2.6.3 241BBootstrap method
85 8.2.6.4 242BComparison between P99/90 and P95/50+3 dB levels
86 8.2.6.5 243BConclusions
90 8.3.1.1 244BPresentation of the used method
92 8.3.1.2 245BExample 1 – Shock mapping of the EXPERT re-entry vehicle due to separation from LV
93 8.3.1.3 246BExample 2 – Internal shock induced by appendages deployment
95 8.3.2.1 247BPresentation of the used method
96 8.3.2.2 248BGeneral observations for a better understanding of Clampband release shock propagation
97 8.3.3.1 249BPresentation of the used method
101 8.3.3.2 250BGeneral observations for a better understanding of launcher induced shock propagation
105 8.3.3.3 251BDifferences between clampband and launcher induced shock
107 8.3.4.1 252BJunction attenuation factors
110 8.3.4.2 253BDistance attenuation factors
113 8.3.4.3 254BCalculation of total shock attenuation factors and derivation of shock output
116 8.3.4.4 255BCorrection factors
118 8.3.4.5 256BMethodology correlation with test results
119 8.3.4.6 257BExample of implementation of the methodology
120 8.3.6.1 258BMethod E-1: Transmissibility approach – transfer function scaled to input shock specification
121 8.3.6.2 259BMethod E-2: Transient analysis approach – coupled analysis with platform
122 9.2.4.1 260BMeshing size
126 9.2.4.2 261BTime step
127 9.2.4.3 262BElements type
133 9.2.4.4 263BModelling of equipment
141 9.2.4.5 264BRestitution point
142 9.2.4.6 265BModelling of junctions
143 9.2.4.7 266BDamping modelling
144 9.2.4.8 267BSource modelling and boundary conditions
146 9.5.3.1 268BOverview
148 9.5.3.2 269BA5 / MSG coupled shock analyses
152 9.5.3.3 270BAriane5 Low Shock Recovery Plan Analyses
167 9.5.3.4 271BSynthesis
11.2.4.1 272BOverview
172 11.2.4.2 273BNatural rubber
175 11.2.4.3 274BBlack Synthetic rubbers
201 11.2.4.4 275BSilicon rubbers
11.3.2.1 276BIntroduction
202 11.3.2.2 277BPerformance specification
203 11.3.2.3 278BEnvironment definition
204 11.3.2.4 279BImportant factors affecting isolator selection / definition
11.3.2.5 280BModel specification
205 11.3.3.1 281BIntroduction
206 11.3.3.2 282BAttenuator pre-dimensioning
207 11.3.3.3 283BMaterial characterization
11.3.3.4 284BDesign preliminaries
11.3.3.5 285BPrototyping
208 11.3.3.6 286BAttenuator design development
211 11.6.2.1 287BPurpose of shock isolation device
11.6.2.2 288BShock isolation device principle
11.6.2.3 289BPerformance achieved with the isolator device
216 11.6.3.1 290BRequirement specification analysis
11.6.3.2 291BBaseline design presentation (QM for pre-qualification)
217 11.6.3.3 292BSASSA system qualification with Eurostar3000 STM
218 11.6.3.4 293BSASSA lessons learnt
219 11.6.4.1 294BOverview
220 11.6.4.2 295BMain Technical specifications and assessments
222 11.6.4.3 296BPresentation of the design
223 11.6.4.4 297BPerformances
12.2.1.1 298BQualification shock test on QM unit
12.2.1.2 299BCase of re-test on QM unit
225 12.2.1.3 300BCase of qualification shock test on PFM unit
231 12.4.2.1 301BOverview
12.4.2.2 302BElectronic units
232 12.4.2.3 303BStructural and non-sensitive equipment
237 12.4.2.4 304BOther sensitive units
12.5.1.1 305BDefinition
241 12.5.1.2 306BExample of application
249 12.5.1.3 307BApplicability and limitations:
250 12.5.3.1 308BIntroduction
251 12.5.3.2 309BSignal processing tools to convert random PSD into Response Spectrum
252 12.5.3.3 310BApplicability of random equivalence w.r.t. shock
254 12.6.3.1 311BAt complete unit level
12.6.3.2 312BAt Sub-equipment level (module, PCB,…)
258 12.6.3.3 313BAt component level (module, PCB,…)
261 12.6.3.4 314BComplementary activities to support a verification by similarity
262 12.7.1.1 315BOverview
263 12.7.1.2 316BOptical instrument definition and sensitive components
264 12.7.1.3 317BTypical instrument architecture and accommodation on the spacecraft
265 12.7.1.4 318BGeneral design rules w.r.t. shock
12.7.1.5 319BVerification logic w.r.t. shock
267 12.7.2.1 320BOverview
268 12.7.2.2 321BPropulsion sub-system description
271 12.7.2.3 322BPropulsion shock source
272 12.7.2.4 323BGeneral design rules
12.7.2.5 324BVerification of the propulsion sub-system w.r.t. shock environment
276 13.3.2.1 325BTest configuration
281 13.3.2.2 326BShock test required by Launcher Authority
282 13.3.2.3 327BShock test required by Spacecraft
290 13.3.2.4 328BTest sequence
291 13.3.2.5 329BSystem test specificities
300 13.3.3.1 330BTest facility presentation
302 13.3.3.2 331BTest sequence
13.3.4.1 332BTest facility presentation
304 13.3.4.2 333BTest sequence
309 13.3.5.1 334BIntroduction
310 13.3.5.2 335BTest facility presentation
320 13.3.5.3 336BShaker test specificities
322 13.4.1.1 337BPiezoelectric accelerometers (PE)
324 13.4.1.2 338BPiezoelectric accelerometers with integrated electronics (IEPE)
331 13.4.1.3 339BPiezoresistive accelerometers (PR)
338 13.4.1.4 340BShock sensor selection criteria
340 13.4.1.5 341BCharge amplifiers
342 13.4.1.6 342BAccelerometer mounting
343 13.4.1.7 343BAccelerometer cabling
349 13.4.2.1 344BOverview
351 13.4.2.2 345BType of resistance elements
353 13.4.2.3 346BGauge size
13.4.2.4 347BConditions of bonding (gluing or adhesion) of the strain gauge to the structure
13.4.2.5 348BSensitivity
354 13.4.2.6 349BFactors affecting optimum excitation
355 13.4.2.7 350BThermal Considerations
356 13.4.2.8 351BPotential Error Sources
357 13.4.5.1 352BOverview
13.4.5.2 353BFar field and mid field measurements
13.4.5.3 354BNear field measurements
368 13.4.5.4 355BConcerns with acceleration measurement with transducers: zero shift during shock, or dynamic offset
13.4.5.5 356BConcerns with strain measurement via cables glued to the structure
13.4.5.6 357BAnalog versus digital
369 13.4.5.7 358BPreventive techniques for clean measurement
373 14.4.2.1 359BOverview
374 14.4.2.2 360BShort-time Fourier transform
376 14.4.2.3 361BWavelet Transform (WT)
396 14.4.3.1 362BOverview
14.4.3.2 363BSpectrogram
398 14.4.3.3 364BWigner-Ville Distribution (WVD)
399 14.4.3.4 365BPseudo Wigner-Ville Distribution (PWVD)
14.4.3.5 366BSmoothed-Pseudo Wigner-Ville Distribution
400 15.3.2.1 367BOverview
401 15.3.2.2 368BSignal duration
402 15.3.2.3 369BBackground noise
415 15.3.2.4 370BData sampling
15.5.3.1 371BOverview
15.5.3.2 372BPower line pick-up cleaning principle
416 15.5.3.3 373BPower line pick-up cleaning steps
422 15.5.3.4 374BPrecautions
17.5.2.1 375BRelay
17.5.2.2 376BQuartz
423 17.5.2.3 377BMagnetic component (RM), transformer and self
435 17.5.2.4 378BHybrid
439 17.5.2.5 379BTantalum capacitor
445 17.5.2.6 380BHeavy or large component
449 17.5.2.7 381BOptical components and connectors
450 17.5.2.8 382BComponents mounted on low insertion force DIP socket
451 17.5.2.9 383BMobile Particles in the cavities of electronic components
453 17.5.2.10 384BSynthesis on threshold levels
17.5.3.1 385BOverview
454 17.5.3.2 386BRF channel filters (IMUX, OMUX,…)
456 17.5.3.3 387BIso-static mount and bonding
458 18.2.4.1 388BOverview
18.2.4.2 389BMethod 1 – Transient excitation of unit-plate coupled system
18.2.4.3 390BMethod 2 – Base transient excitation of the unit
468 18.2.4.4 391BMethod 3 – Modal solutions
18.2.4.5 392BExample of advanced transient (method 2) and spectrum response analyses (method 3B)
472 18.3.1.1 393BVerification methodology
473 18.3.1.2 394BValidation for structural parts
478 18.3.1.3 395BValidation for component mounting technologies
482 18.3.1.4 396BValidation for acceleration sensitive components
483 18.3.1.5 397BGeneral considerations on equipment design and verification w.r.t. shock
18.3.1.6 398BImportant considerations for robust equipment design w.r.t. shock
487 18.3.1.7 399BSDRA example 1 – Damage assessment of a large hybrid on PCB
488 18.3.1.8 400BSDRA example 2 – Damage assessment of relay mounted on a PCB
495 18.3.2.1 401BVerification methodology
502 18.3.2.2 402BBearing applications
503 18.3.2.3 403BMethods of Bearing Preloading
504 18.3.2.4 404BBearing Damage
18.3.2.5 405BAnalysis of Bearing Loads, Deflections and Stresses
507 18.3.2.6 406BConsequences of dynamic behaviour
508 18.3.2.7 407BLogic for Allowable Stresses Resulting from Shock
511 18.3.2.8 408BDerivation of guidelines for SDRA of bearings
513 18.3.2.9 409BGuidelines for calculating allowable shock-induced peak Hertzian contact stress levels and bearing gapping
516 18.3.2.10 410BRole of the Lubricant
517 18.3.2.11 411BExamples and Application of Method
520 18.3.2.12 412BSDRA example 1 – MSG Scan Mirror Bearing
521 18.3.2.13 413BSDRA example 2 – MSG Scan Mirror Bearing – Higher loads inducing gapping
523 18.3.3.1 414BVerification methodology
524 18.3.3.2 415BSDRA Example 1 – Valve with mechanical “stop-end”
527 18.3.3.3 416BSDRA Example 2 – Valve without mechanical “stop-end”
528 18.3.4.1 417BVerification methodology
530 18.3.4.2 418BEvaluation of stress induced by the shock transient
531 18.3.4.3 419BStructural brittle materials
535 18.3.4.4 420BSDRA example – Mirror mounted on “mirror cell” and ISM
BSI PD CEN/TR 17603-32-25:2022
$215.11