BSI PD CEN/TR 17603-32-25:2022
$215.11
Space engineering. Mechanical shock design and verification handbook
Published By | Publication Date | Number of Pages |
BSI | 2022 | 544 |
The intended users of the “Mechanical shock design and verification handbook” are engineers involved in design, analysis and verification in relation to shock environment in spacecraft. The current know-how relevant to mechanical shock design and verification is documented in this handbook in order to make this expertise available to all European spacecraft and payload developers. The handbook provides adequate guidelines for shock design and verification; therefore it includes advisory information, recommendations and good practices, rather than requirements. The handbook covers the shock in its globally, from the derivation of shock input to equipment and sub-systems inside a satellite structure, until its verification to ensure a successful qualification, and including its consequences on equipment and sub-systems. However the following aspects are not treated herein: – No internal launcher shock is treated in the frame of this handbook even if some aspects are common to those presented hereafter. They are just considered as a shock source (after propagation in the launcher structure) at launcher/spacecraft interface. – Shocks due to fall of structure or equipment are not taken into account as they are not in the frame of normal development of a spacecraft.
PDF Catalog
PDF Pages | PDF Title |
---|---|
2 | undefined |
4 | 2.4 24BReferences of Part 4 3.1 25BTerms and definitions from other documents 3.2 26BTerms and definitions specific to the present document 3.3 27BAbbreviated terms 4 6BBackground – Shock environment description 4.1 28BShock definition and main characteristics 4.1.4 92BShock response spectra (SRS) 5 7BShock events 5.1 29BShock occurrence 5.2 30BShock environmental categories 6 8BIntroduction to shock design and verification process 6.1 31BPresentation of the global process 6.2 32BMeans to conduct an evaluation of shock environment and criticality 7 9BShocks in spacecraft 7.1 33BOverview 7.2 34BPotential shock sources for spacecraft 7.3 35BShocks devices description 7.4 36BDetailed information on specific shock events 7.4.1 93BOverview 7.4.2 94BLauncher induced shocks 7.4.3 95BClampband release 7.5 37BConclusion 8 10BShock inputs derivation by similarityheritageextrapolation 8.1 38BOverview 9 11BShock inputs derivation by numerical analysis 10 12BDeriving a specification from a shock environment |
5 | 7.4.4 96BOther S/C separation systems 7.4.5 97BInternal shock sources 7.4.6 98BLanding and splashdown 8.2 39BSimilarity-heritage-extrapolation methods principle 8.2.1 99BOverview 8.2.2 100BUse of database 8.2.3 101BZoning procedure 8.2.4 102BSRS ratio as approximation of transfer functions 8.2.5 103BDifference between structural model and flight model 8.2.6 104BStatistical methods to derive maximum expected environment 8.3 40BSimilarity-heritage-extrapolation methods in practice 8.3.1 105BMethod A – Point source excitation 8.3.2 106BMethod B – Clampband excitation 8.3.3 107BMethod C – Launcher induced shock 8.3.4 108BMethod D – Unified approach and practical implementation of attenuation rules for typical spacecraft shock generated environments 8.3.5 109BAdditional attenuation factors 8.3.6 110BMethod E – Shock responses in instruments 9.1 41BNumerical simulation principles 9.1.1 111BRationale and limitations 9.2 42BFinite Element Analysis (FEA) Numerical methods 9.2.1 112BComparison of explicit and implicit methods 9.2.2 113BExplicit and implicit integration schemes 9.2.3 114BExample of simulation codes (implicit and explicit) 9.2.4 115BModelling aspects 9.3 43BStatistical Energy Analysis (SEA) Numerical Methods 9.3.1 116BThe classical SEA approach 9.3.2 117BThe Transient SEA formulation 9.3.3 118BPrediction of shock response by Local Modal Phase Reconstruction (LMPR) 9.3.4 119BVirtual SEA modelling for robust SEA modelling in the mid-frequency 9.4 44BBest practices for shock derivation by simulation 9.5 45BExamples of methodology for numerical simulation 9.5.1 120BNumerical simulation for clampband release 9.5.2 121BNumerical simulation for Shogun 10.1 46BSpecification tool 11 13BShock attenuation 12 14BGeneral approach to shock verification |
6 | 9.5.3 122BNumerical simulation for launcher induced shock 9.5.4 123BImplicit vs. explicit method: Example of a shock prediction on a complex structure 9.5.5 124BShock prediction analysis examples using SEA-Shock module of SEA+ software 10.2 47BDeriving the qualification environment – MEE and qualification margin 10.3 48BFrom level derivation/Measure to specification 11.1 49BDefinitions 11.1.1 125BHistory of shock attenuation 11.1.2 126BImpedance breakdown 11.1.3 127BShock and vibration Isolator 11.1.4 128BDamper 11.1.5 129BShock absorber 11.2 50BTheoretical background 11.2.1 130BShock attenuation problematic approach 11.2.2 131BShock isolator device features 11.2.3 132BRubber and damping effect 11.2.4 133BElastomer type selection 11.3 51BAttenuator device development 11.3.1 134BOverview 11.3.2 135BAttenuator requirement definition 11.3.3 136BAttenuator device development logic 11.4 52BAttenuator device manufacturing 11.4.1 137BOverview 11.4.2 138BManufacturing process 11.4.3 139BMoulding technology 11.4.4 140BManufacturing limitations 11.5 53BProduct assurance logic 11.6 54BExisting attenuator products 11.6.1 141BOverview 11.6.2 142BCompact shock attenuators for electronic equipment 11.6.3 143BSASSA (shock attenuator system for spacecraft and adaptor) 11.6.4 144BShock isolators for EXPERT on-board equipment 12.1 55BRationale for shock verification 12.2 56BTest rationale and model philosophy 12.3 57BEnvironmental test categories 13 15BShock testing 14 16BData analysis tools for shock |
7 | 12.2.1 145BQualification test 12.2.2 146BAcceptance test 12.2.3 147BSystem / subsystem distinction 12.2.4 148BModel philosophy 12.3.1 149BCombination or separation of sources 12.3.2 150BPyroshock environmental categories 12.4 58BShock sensitive equipment and severity criteria 12.4.1 151BIdentification of shock sensitive equipment 12.4.2 152BSeverity criteria 12.4.3 153BSynthesis 12.5 59BEquivalence between shock and other mechanical environment 12.5.1 154BQuasi static equivalence – effective mass method 12.5.2 155BUse of sine vibration test data 12.5.3 156BUse of random vibration test data 12.6 60BSimilarity between equipment – Verification by similarity 12.6.1 157BIntroduction 12.6.2 158BSimilarity criteria for shock 12.6.3 159BExample of process for verification by similarity 12.7 61BSpecific guidelines for shock verification 12.7.1 160BOptical instrument 12.7.2 161BPropulsion sub system 13.1 62BShock test specifications 13.1.1 162BTest levels and forcing function 13.1.2 163BNumber of applications 13.1.3 164BMounting conditions 13.1.4 165BTest article operation 13.1.5 166BSafety and cleanliness 13.1.6 167BInstrumentation 13.1.7 168BTest tolerances 13.1.8 169BTest success criteria 13.2 63BCriteria for test facility selection 13.3 64BTest methods and facilities 13.3.1 170BBasis 13.3.2 171BProcedure I – System level shock test 13.4 65BTest monitoring 15 17BShock data validation 16 18BIntroduction to shock damage risk assessment and objective |
8 | 13.3.3 172BProcedure II – Equipment shock test by pyrotechnic device (explosive detonation) 13.3.4 173BProcedure III – Equipment shock test by mechanical impact (metal-metal impact) 13.3.5 174BProcedure IV – Equipment shock test with an electrodynamic shaker 13.4.1 175BAccelerometers 13.4.2 176BStrain gauges 13.4.3 177BLoad cells 13.4.4 178BLaser vibrometer 13.4.5 179BAcquisition systems 13.5 66BIn-flight shock monitoring 13.5.1 180BOverview 13.5.2 181BVEGA in-flight acquisition systems 14.1 67BIntroduction 14.2 68BShock Response Spectra (SRS) 14.2.1 182BBasis 14.2.2 183BDefinition 14.2.3 184BSRS properties 14.2.4 185BSRS algorithm 14.2.5 186BRecommendations on SRS computation 14.2.6 187BQ-factor 14.2.7 188BSRS limitations 14.3 69BFast Fourier Transform (FFT) 14.3.1 189BFFT definition 14.3.2 190BPrecautions 14.4 70BTime-Frequency Analysis (TFA) 14.4.1 191BGeneral 14.4.2 192BLinear Time-Frequency Transform (TFT) 14.4.3 193BQuadratic Time-Frequency Transform 14.4.4 194BInterpretation and precautions 14.5 71BProny decomposition 14.5.1 195BDefinition 14.5.2 196BBasic scheme 14.5.3 197BAdvanced scheme 14.6 72BDigital filters 15.1 73BOverview 15.2 74BVisual inspection 17 19BUnit susceptibility with respect to shock |
9 | 2.1 21BReferences of Part 1 2.2 22BReferences of Part 2 14.5.4 198BUse and limitation 14.6.1 199BBasis 14.6.2 200BDefinition and parameters 14.6.3 201BFIR filters 14.6.4 202BIIR filters 14.6.5 203BPrecautions 15.3 75BData analysis – simplified criteria 15.3.1 204BDuration analysis 15.3.2 205BValidity frequency range 15.3.3 206BFinal validity criteria – Positive versus negative SRS 15.4 76BData analysis – refined criteria – Velocity validation 15.5 77BCorrections for anomalies 15.5.1 207BOverview 15.5.2 208BCorrection for zeroshift 15.5.3 209BCorrection for power line pickup 16.1 78BOverview 16.2 79BAssessment context 16.3 80BOutputs of SDRA and associated limitations 17.1 81BOverview 17.2 82BDerivation of qualification shock levels at unit interface 17.3 83BIdentification of critical frequency ranges 17.4 84BConsiderations related to life duration and mission 17.5 85BList of shock sensitive components/units 17.5.1 210BOverview 17.5.2 211BElectronic components and associated degradation modes 17.5.3 212BFunctional mechanical assemblies 17.5.4 213BMechanisms and associated degradation modes 18 20BShock damage risk analysis 18.1 86BRequired inputs for detailed SDRA 18.2 87BEvaluation of transmissibility between equipment and sensitive components interfaces 18.2.1 214BOverview 18.2.2 215BDerivation by extrapolation from test data 18.2.3 216BShock response prediction based on transmissibility 18.3 88BVerification method per type of components and/or units |
10 | 2.3 23BReferences of Part 3 4.1.1 89BShock definition 4.1.2 90BPhysical aspects of shocks 4.1.3 91BMain shock effects 4.1.4.1 222BOverview 4.1.4.2 223BShock response spectra definition 4.1.4.3 224BSRS properties 18.2.4 217BGuideline for equipment shock analysis 18.3.1 218BElectronic equipment 18.3.2 219BMechanisms – Ball bearings 18.3.3 220BValves 18.3.4 221BOptical components |
13 | 1 3BScope |
14 | 2 4BReferences |
21 | 3 5BTerms, definitions and abbreviated terms |
28 | 4.1.4.4 225BRecommendations on SRS calculation 4.1.4.5 226BSRS limitations |
29 | 7.4.2.1 227BExample of spacecraft/LV shock compatibility test – SHOGUN |
32 | 7.4.2.2 228BExample of spacecraft/LV shock compatibility test – VESTA 7.4.3.1 229BOverview |
48 | 7.4.3.2 230BStandard clampband device |
49 | 7.4.3.3 231BLow shock clampband device |
51 | 7.4.4.1 232BMechanical lock systems by EUROCKOT 7.4.4.2 233BPSLV separation system |
57 | 7.4.4.3 234BDnepr explosive bolts |
58 | 7.4.4.4 235BAriane 5 micro satellite separation system |
60 | 7.4.4.5 236BSoyouz Dispenser |
61 | 8.2.2.1 237BCharacterization database |
62 | 8.2.2.2 238BSpacecraft test results databases |
65 | 8.2.6.1 239BOverview |
76 | 8.2.6.2 240BNormal Tolerance Limit method |
77 | 8.2.6.3 241BBootstrap method |
85 | 8.2.6.4 242BComparison between P99/90 and P95/50+3 dB levels |
86 | 8.2.6.5 243BConclusions |
90 | 8.3.1.1 244BPresentation of the used method |
92 | 8.3.1.2 245BExample 1 – Shock mapping of the EXPERT re-entry vehicle due to separation from LV |
93 | 8.3.1.3 246BExample 2 – Internal shock induced by appendages deployment |
95 | 8.3.2.1 247BPresentation of the used method |
96 | 8.3.2.2 248BGeneral observations for a better understanding of Clampband release shock propagation |
97 | 8.3.3.1 249BPresentation of the used method |
101 | 8.3.3.2 250BGeneral observations for a better understanding of launcher induced shock propagation |
105 | 8.3.3.3 251BDifferences between clampband and launcher induced shock |
107 | 8.3.4.1 252BJunction attenuation factors |
110 | 8.3.4.2 253BDistance attenuation factors |
113 | 8.3.4.3 254BCalculation of total shock attenuation factors and derivation of shock output |
116 | 8.3.4.4 255BCorrection factors |
118 | 8.3.4.5 256BMethodology correlation with test results |
119 | 8.3.4.6 257BExample of implementation of the methodology |
120 | 8.3.6.1 258BMethod E-1: Transmissibility approach – transfer function scaled to input shock specification |
121 | 8.3.6.2 259BMethod E-2: Transient analysis approach – coupled analysis with platform |
122 | 9.2.4.1 260BMeshing size |
126 | 9.2.4.2 261BTime step |
127 | 9.2.4.3 262BElements type |
133 | 9.2.4.4 263BModelling of equipment |
141 | 9.2.4.5 264BRestitution point |
142 | 9.2.4.6 265BModelling of junctions |
143 | 9.2.4.7 266BDamping modelling |
144 | 9.2.4.8 267BSource modelling and boundary conditions |
146 | 9.5.3.1 268BOverview |
148 | 9.5.3.2 269BA5 / MSG coupled shock analyses |
152 | 9.5.3.3 270BAriane5 Low Shock Recovery Plan Analyses |
167 | 9.5.3.4 271BSynthesis 11.2.4.1 272BOverview |
172 | 11.2.4.2 273BNatural rubber |
175 | 11.2.4.3 274BBlack Synthetic rubbers |
201 | 11.2.4.4 275BSilicon rubbers 11.3.2.1 276BIntroduction |
202 | 11.3.2.2 277BPerformance specification |
203 | 11.3.2.3 278BEnvironment definition |
204 | 11.3.2.4 279BImportant factors affecting isolator selection / definition 11.3.2.5 280BModel specification |
205 | 11.3.3.1 281BIntroduction |
206 | 11.3.3.2 282BAttenuator pre-dimensioning |
207 | 11.3.3.3 283BMaterial characterization 11.3.3.4 284BDesign preliminaries 11.3.3.5 285BPrototyping |
208 | 11.3.3.6 286BAttenuator design development |
211 | 11.6.2.1 287BPurpose of shock isolation device 11.6.2.2 288BShock isolation device principle 11.6.2.3 289BPerformance achieved with the isolator device |
216 | 11.6.3.1 290BRequirement specification analysis 11.6.3.2 291BBaseline design presentation (QM for pre-qualification) |
217 | 11.6.3.3 292BSASSA system qualification with Eurostar3000 STM |
218 | 11.6.3.4 293BSASSA lessons learnt |
219 | 11.6.4.1 294BOverview |
220 | 11.6.4.2 295BMain Technical specifications and assessments |
222 | 11.6.4.3 296BPresentation of the design |
223 | 11.6.4.4 297BPerformances 12.2.1.1 298BQualification shock test on QM unit 12.2.1.2 299BCase of re-test on QM unit |
225 | 12.2.1.3 300BCase of qualification shock test on PFM unit |
231 | 12.4.2.1 301BOverview 12.4.2.2 302BElectronic units |
232 | 12.4.2.3 303BStructural and non-sensitive equipment |
237 | 12.4.2.4 304BOther sensitive units 12.5.1.1 305BDefinition |
241 | 12.5.1.2 306BExample of application |
249 | 12.5.1.3 307BApplicability and limitations: |
250 | 12.5.3.1 308BIntroduction |
251 | 12.5.3.2 309BSignal processing tools to convert random PSD into Response Spectrum |
252 | 12.5.3.3 310BApplicability of random equivalence w.r.t. shock |
254 | 12.6.3.1 311BAt complete unit level 12.6.3.2 312BAt Sub-equipment level (module, PCB,…) |
258 | 12.6.3.3 313BAt component level (module, PCB,…) |
261 | 12.6.3.4 314BComplementary activities to support a verification by similarity |
262 | 12.7.1.1 315BOverview |
263 | 12.7.1.2 316BOptical instrument definition and sensitive components |
264 | 12.7.1.3 317BTypical instrument architecture and accommodation on the spacecraft |
265 | 12.7.1.4 318BGeneral design rules w.r.t. shock 12.7.1.5 319BVerification logic w.r.t. shock |
267 | 12.7.2.1 320BOverview |
268 | 12.7.2.2 321BPropulsion sub-system description |
271 | 12.7.2.3 322BPropulsion shock source |
272 | 12.7.2.4 323BGeneral design rules 12.7.2.5 324BVerification of the propulsion sub-system w.r.t. shock environment |
276 | 13.3.2.1 325BTest configuration |
281 | 13.3.2.2 326BShock test required by Launcher Authority |
282 | 13.3.2.3 327BShock test required by Spacecraft |
290 | 13.3.2.4 328BTest sequence |
291 | 13.3.2.5 329BSystem test specificities |
300 | 13.3.3.1 330BTest facility presentation |
302 | 13.3.3.2 331BTest sequence 13.3.4.1 332BTest facility presentation |
304 | 13.3.4.2 333BTest sequence |
309 | 13.3.5.1 334BIntroduction |
310 | 13.3.5.2 335BTest facility presentation |
320 | 13.3.5.3 336BShaker test specificities |
322 | 13.4.1.1 337BPiezoelectric accelerometers (PE) |
324 | 13.4.1.2 338BPiezoelectric accelerometers with integrated electronics (IEPE) |
331 | 13.4.1.3 339BPiezoresistive accelerometers (PR) |
338 | 13.4.1.4 340BShock sensor selection criteria |
340 | 13.4.1.5 341BCharge amplifiers |
342 | 13.4.1.6 342BAccelerometer mounting |
343 | 13.4.1.7 343BAccelerometer cabling |
349 | 13.4.2.1 344BOverview |
351 | 13.4.2.2 345BType of resistance elements |
353 | 13.4.2.3 346BGauge size 13.4.2.4 347BConditions of bonding (gluing or adhesion) of the strain gauge to the structure 13.4.2.5 348BSensitivity |
354 | 13.4.2.6 349BFactors affecting optimum excitation |
355 | 13.4.2.7 350BThermal Considerations |
356 | 13.4.2.8 351BPotential Error Sources |
357 | 13.4.5.1 352BOverview 13.4.5.2 353BFar field and mid field measurements 13.4.5.3 354BNear field measurements |
368 | 13.4.5.4 355BConcerns with acceleration measurement with transducers: zero shift during shock, or dynamic offset 13.4.5.5 356BConcerns with strain measurement via cables glued to the structure 13.4.5.6 357BAnalog versus digital |
369 | 13.4.5.7 358BPreventive techniques for clean measurement |
373 | 14.4.2.1 359BOverview |
374 | 14.4.2.2 360BShort-time Fourier transform |
376 | 14.4.2.3 361BWavelet Transform (WT) |
396 | 14.4.3.1 362BOverview 14.4.3.2 363BSpectrogram |
398 | 14.4.3.3 364BWigner-Ville Distribution (WVD) |
399 | 14.4.3.4 365BPseudo Wigner-Ville Distribution (PWVD) 14.4.3.5 366BSmoothed-Pseudo Wigner-Ville Distribution |
400 | 15.3.2.1 367BOverview |
401 | 15.3.2.2 368BSignal duration |
402 | 15.3.2.3 369BBackground noise |
415 | 15.3.2.4 370BData sampling 15.5.3.1 371BOverview 15.5.3.2 372BPower line pick-up cleaning principle |
416 | 15.5.3.3 373BPower line pick-up cleaning steps |
422 | 15.5.3.4 374BPrecautions 17.5.2.1 375BRelay 17.5.2.2 376BQuartz |
423 | 17.5.2.3 377BMagnetic component (RM), transformer and self |
435 | 17.5.2.4 378BHybrid |
439 | 17.5.2.5 379BTantalum capacitor |
445 | 17.5.2.6 380BHeavy or large component |
449 | 17.5.2.7 381BOptical components and connectors |
450 | 17.5.2.8 382BComponents mounted on low insertion force DIP socket |
451 | 17.5.2.9 383BMobile Particles in the cavities of electronic components |
453 | 17.5.2.10 384BSynthesis on threshold levels 17.5.3.1 385BOverview |
454 | 17.5.3.2 386BRF channel filters (IMUX, OMUX,…) |
456 | 17.5.3.3 387BIso-static mount and bonding |
458 | 18.2.4.1 388BOverview 18.2.4.2 389BMethod 1 – Transient excitation of unit-plate coupled system 18.2.4.3 390BMethod 2 – Base transient excitation of the unit |
468 | 18.2.4.4 391BMethod 3 – Modal solutions 18.2.4.5 392BExample of advanced transient (method 2) and spectrum response analyses (method 3B) |
472 | 18.3.1.1 393BVerification methodology |
473 | 18.3.1.2 394BValidation for structural parts |
478 | 18.3.1.3 395BValidation for component mounting technologies |
482 | 18.3.1.4 396BValidation for acceleration sensitive components |
483 | 18.3.1.5 397BGeneral considerations on equipment design and verification w.r.t. shock 18.3.1.6 398BImportant considerations for robust equipment design w.r.t. shock |
487 | 18.3.1.7 399BSDRA example 1 – Damage assessment of a large hybrid on PCB |
488 | 18.3.1.8 400BSDRA example 2 – Damage assessment of relay mounted on a PCB |
495 | 18.3.2.1 401BVerification methodology |
502 | 18.3.2.2 402BBearing applications |
503 | 18.3.2.3 403BMethods of Bearing Preloading |
504 | 18.3.2.4 404BBearing Damage 18.3.2.5 405BAnalysis of Bearing Loads, Deflections and Stresses |
507 | 18.3.2.6 406BConsequences of dynamic behaviour |
508 | 18.3.2.7 407BLogic for Allowable Stresses Resulting from Shock |
511 | 18.3.2.8 408BDerivation of guidelines for SDRA of bearings |
513 | 18.3.2.9 409BGuidelines for calculating allowable shock-induced peak Hertzian contact stress levels and bearing gapping |
516 | 18.3.2.10 410BRole of the Lubricant |
517 | 18.3.2.11 411BExamples and Application of Method |
520 | 18.3.2.12 412BSDRA example 1 – MSG Scan Mirror Bearing |
521 | 18.3.2.13 413BSDRA example 2 – MSG Scan Mirror Bearing – Higher loads inducing gapping |
523 | 18.3.3.1 414BVerification methodology |
524 | 18.3.3.2 415BSDRA Example 1 – Valve with mechanical “stop-end” |
527 | 18.3.3.3 416BSDRA Example 2 – Valve without mechanical “stop-end” |
528 | 18.3.4.1 417BVerification methodology |
530 | 18.3.4.2 418BEvaluation of stress induced by the shock transient |
531 | 18.3.4.3 419BStructural brittle materials |
535 | 18.3.4.4 420BSDRA example – Mirror mounted on “mirror cell” and ISM |