Shopping Cart

No products in the cart.

IEEE 1363.3 2013

$86.67

IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Published By Publication Date Number of Pages
IEEE 2013 151
Guaranteed Safe Checkout
Category:

If you have any questions, feel free to reach out to our online customer service team by clicking on the bottom right corner. We’re here to assist you 24/7.
Email:[email protected]

New IEEE Standard – Active. Common identity-based public-key cryptographic techniques that use pairings, including mathematical primitives for secret value (key) derivation, public-key encryption, and digital signatures, as well as cryptographic schemes based on those primitives are specified in this standard. Also, related cryptographic parameters, public keys and private keys, are specified. The purpose of this standard is to provide a reference for specifications of a variety of techniques from which applications may select.

PDF Catalog

PDF Pages PDF Title
1 IEEE Std 1363.3-2013 Front Cover
3 Title Page
4 Abstract/Keywords
5 Important Notices and Disclaimers Concerning IEEE Standards Documents
8 Participants
10 Introduction
11 Contents
13 IMPORTANT NOTICE
1. Overview
1.1 Scope
1.2 Purpose
14 1.3 Organization of the document
1.3.1 Structure of the main document
1.3.2 Structure of the annexes
15 2. Normative references
3. Definitions
19 4. Types of cryptographic techniques
4.1 General model
20 4.2 Primitives
21 4.3 Schemes
22 4.4 Table summary
23 5. Mathematical conventions
5.1 Mathematical notation
25 5.2 Bit strings and octet strings
5.3 Finite fields
26 5.3.1 Prime finite fields
5.3.2 Odd characteristic extension fields
5.3.3 Binary finite fields
27 5.3.4 Ternary finite fields
5.3.5 Unitary extension fields
28 5.4 Elliptic curves and points
5.5 Pairings
5.6 Data type conversion
29 5.6.1 Converting between integers and bit strings: I2BSP and BS2IP
5.6.2 Converting between bit strings and octet strings: BS2OSP and OS2BSP
5.6.3 Converting between integers and octet strings: I2OSP and OS2IP
30 5.6.4 Converting between finite field elements and octet strings: FE2OSP and OS2FEP
5.6.5 Converting between finite field elements and integers: FE2IP and I2FEP
31 5.6.6 Converting between elliptic curve points and octet strings
5.6.6.1 Compressed elliptic curve points
5.6.6.1.1 LSB compressed form
5.6.6.1.2 SORT compressed form
32 5.6.6.2 Two-coordinate point representations
33 5.6.6.2.1 Uncompressed representation: EC2OSPXY and OS2ECPXY
5.6.6.2.2 LSB compressed representation: EC2OSPXL and OS2ECPXL
5.6.6.2.3 SORT compressed representation: EC2OSPXS and OS2ECPXS
5.6.6.2.4 LSB hybrid representation: EC2OSPXYL and OS2ECPXYL
34 5.6.6.2.5 SORT hybrid representation: EC2OSPXYS and OS2ECPXYS
5.6.6.3 X-coordinate-only representation: EC2OSPX and OS2ECPX
5.6.6.4 Summary of representations
35 6. Hashing primitives
6.1 Hashing to an integer
6.1.1 The function of IHF1
36 6.2 Hashing to a string
6.2.1 Function of SHF1
37 6.3 Hashing to a point in a subgroup
6.3.1 General
6.3.2 Function of PHF-SS
38 6.3.3 Function of PHF-GFP
39 6.3.4 Function of PHF-GF2
40 6.3.5 Function of PHF-GF3
41 6.4 Hashing to an element of a finite field
6.4.1 Hashing to an element of a finite field: Function of BS2FQE
42 7. Pairing-based primitives
7.1 General
7.2 SK primitives
43 7.2.1 SK: Generation (P-SK-G)
7.2.2 SK: Verification (P-SK-V)
44 7.2.3 SK: Encryption (P-SK-E)
7.2.4 SK: Decryption (P-SK-D)
45 7.3 BB1 primitives
7.3.1 General
7.3.2 BB1: Generation (P-BB1-G)
46 7.3.3 BB1: Verification (P-BB1-V)
7.3.4 BB1: Encryption (P-BB1-E)
47 7.3.5 BB1: Decryption (P-BB1-D)
48 7.4 BF primitives
7.4.1 General
7.4.2 BF: Generation (P-BF-G)
49 7.4.3 BF: Verification (P-BF-V)
7.4.4 BF: Encryption (P-BF-E)
50 7.4.5 BF: Decryption (P-BF-D)
7.5 SCC key agreement primitives
7.5.1 Pairing-based SCC key agreement: Derive secret value (P-SCC-D1)
51 8. Identity-based encryption schemes
52 8.1 SK KEM scheme
53 8.1.1 SK KEM: Setup (SK-KEM-S)
8.1.2 SK KEM: Extract (SK-KEM-EX)
8.1.3 SK KEM: Encapsulate (SK-KEM-EN)
54 8.1.4 SK KEM: Decapsulate (SK-KEM-DE)
8.2 BB1 KEM scheme
8.2.1 BB1 KEM: Setup (BB1-KEM-S)
55 8.2.2 BB1 KEM: Extract (BB1-KEM-EX)
8.2.3 BB1 KEM: Encapsulate (BB1-KEM-EN)
8.2.4 BB1 KEM: Decapsulate (BB1-KEM-DE)
56 8.3 BB1 IBE scheme
8.3.1 BB1 IBE: Setup (BB1-IBE-S)
57 8.3.2 BB1 IBE: Extract (BB1-IBE-EX)
8.3.3 BB1 IBE: Encrypt (BB1-IBE-EN)
8.3.4 BB1 IBE: Decrypt (BB1-IBE-DE)
58 8.4 BF IBE scheme
8.4.1 BF IBE: Setup (BF-IBE-S)
59 8.4.2 BF IBE: Extract (BF-IBE-EX)
8.4.3 BF IBE: Encrypt (BF-IBE-EN)
8.4.4 BF IBE: Decrypt (BF-IBE-DE)
60 9. Identity-based signature schemes
9.1 BLMQ signature scheme
9.1.1 General
9.1.2 BLMQ signature: Setup (BLMQ-SIG-S)
61 9.1.3 BLMQ signature: Extract (BLMQ-SIG-EX)
9.1.4 BLMQ signature: Create signature (BLMQ-SIG-SI)
62 9.1.5 BLMQ signature: Verify signature (BLMQ-SIG-VE)
10. Identity-based signcryption schemes
10.1 BLMQ signcryption scheme
63 10.1.1 BLMQ signcryption: Setup (BLMQ-SC-S)
10.1.2 BLMQ signcryption: Extract (BLMQ-SC-EX)
10.1.3 BLMQ signcryption: Sign and encrypt (BLMQ-SC-SE)
64 10.1.4 BLMQ signcryption: Decrypt and verify (BLMQ-SC-DV)
65 11. Identity-based key agreement schemes
66 11.1 Wang key agreement scheme
11.1.1 Wang key agreement: Derive public key (WKA-KA-D1)
67 11.1.2 Wang key agreement: Derive private key (WKA-KA-D2)
11.1.3 Wang key agreement: Verification (WKA-KA-V)
68 11.1.4 Wang key agreement: Derive secret value (WKA-KA-D3)
69 11.1.5 Wang key agreement: Generate shared secrets (WKA-KA-G)
11.2 SCC key agreement scheme
70 11.2.1 SCC key agreement: Generate shared secrets (SCC-KA-G)
71 Annex A (informative) Number-theoretic background
A.1 Integer and modular arithmetic: Overview
A.1.1 Modular arithmetic
A.1.1.1 Modular reduction
72 A.1.1.2 Integers modulo m
A.1.1.3 Modular exponentiation
A.1.1.4 GCDs and LCMs
73 A.1.1.5 Modular division
A.1.2 Prime finite fields
A.1.2.1 Field GF(p)
A.1.2.2 Orders
A.1.2.3 Generators
A.1.2.4 Exponentiation and discrete logarithms
74 A.1.3 Modular square roots
A.1.3.1 Legendre symbol
A.1.3.2 Square roots modulo a prime
A.2 Integer and modular arithmetic: Algorithms
A.2.1 Modular exponentiation
75 A.2.2 Extended Euclidean algorithm
A.2.3 Evaluating Legendre symbols
76 A.2.4 Generating Lucas sequences
A.2.5 Finding square roots modulo a prime
77 A.2.6 Finding square roots modulo a power of 2
78 A.2.7 Computing the order of a given integer modulo a prime
A.2.8 Constructing an integer of a given order modulo a prime
A.3 Extension fields: Overview
A.3.1 Finite fields
79 A.3.2 Polynomials over finite fields
A.3.2.1 Polynomial congruences
80 A.3.3 Extension fields
A.3.3.1 Addition
A.3.3.2 Multiplication
A.3.4 Polynomial basis representations
81 A.3.5 Extension fields (continued)
A.3.5.1 Exponentiation
A.3.5.2 Division
A.3.5.3 Orders
A.3.5.4 Generators
A.3.5.5 Exponentiation and discrete logarithms
82 A.3.5.6 Field extensions
A.4 Extension fields: Algorithms
A.4.1 Exponentiation
A.4.2 Division
83 A.4.3 Squares
A.4.4 Square roots
A.4.5 Trace in binary field extension
84 A.4.6 Half-trace in binary fields
A.4.7 Solving quadratic equations over GF(2m)
85 A.4.8 Trace in ternary field extensions
A.4.9 The 1/3-trace in ternary fields
86 A.4.10 Solving cubic equations over GF(3m)
A.5 Polynomials over a finite field
A.5.1 Exponentiation modulo a polynomial
A.5.2 GCDs over a finite field
87 A.5.3 Factoring polynomials over GF(p) (special case)
A.5.4 Factoring polynomials over GF(2) (special case)
88 A.5.5 Checking polynomials over GF(2r) for irreducibility
A.5.6 Finding a root in GF(2m) of an irreducible binary polynomial
A.5.7 Embedding in an extension field
89 A.6 Elliptic curves: Overview
A.6.1 Introduction
A.6.1.1 The Weierstrass equation
90 A.6.1.2 Orders
91 A.6.1.3 Pairings
A.6.1.4 Twists
92 A.6.2 Operations on elliptic curves
A.6.2.1 The point at infinity
93 A.6.2.2 Full addition
A.6.2.3 Scalar multiplication
A.6.3 Curve orders
A.6.3.1 Basic facts
94 A.6.3.2 Near primality
A.6.4 Representation of points
A.6.4.1 Affine coordinates
A.6.4.2 Coordinate compression
A.6.4.3 Projective coordinates
95 A.7 Elliptic curves: General algorithms
A.7.1 Full addition and subtraction (prime case)
96 A.7.2 Full addition and subtraction (binary case)
A.7.3 Full addition and subtraction (supersingular curves in characteristic 2)
97 A.7.4 Elliptic scalar multiplication
A.7.5 Projective elliptic doubling (prime case)
98 A.7.6 Projective elliptic addition (prime case)
100 A.7.7 Projective elliptic doubling (binary case)
101 A.7.8 Projective elliptic addition (binary case)
103 A.7.9 Projective full addition and subtraction
104 A.7.10 Projective elliptic scalar multiplication
A.7.11 Decompression of y coordinates (prime case)
105 A.7.12 Decompression of y coordinates (binary case)
A.7.13 Decompression of y coordinates (ternary case)
A.7.14 Finding a random point on an elliptic curve (prime case)
106 A.7.15 Finding a random point on an elliptic curve (binary case)
A.7.16 Finding a random point on an elliptic curve (ternary case)
107 A.7.17 Finding a point of large prime order
A.7.18 Curve orders over small binary fields
A.7.19 Curve orders over extension fields
108 A.7.20 Curve orders via subfields
A.8 Class group calculations
A.8.1 Overview
109 A.8.2 Class group and class number
110 A.8.3 Reduced class polynomials
112 A.9 Complex multiplication
A.9.1 Overview
113 A.9.2 Finding a nearly prime order over GF(p)
A.9.2.1 Congruence conditions
114 A.9.2.2 Testing for CM discriminants (prime case)
115 A.9.2.3 Finding a nearly prime order (prime case)
116 A.9.3 Constructing a curve and point (prime case)
A.9.3.1 Constructing a curve with prescribed CM (prime case)
118 A.9.3.2 Choosing the curve and point (prime case)
A.10 Pairings for cryptography
119 A.10.1 Pairing-friendly elliptic curves
A.10.2 Curve families
A.10.2.1 Type 1 (E supersingular)
120 A.10.2.2 Type 2 (E ordinary)
A.10.2.3 Type 3 (E ordinary)
A.10.3 The Miller loop
121 A.10.4 Pairing calculations
A.10.5 Pairings
A.10.5.1 Tate
A.10.5.2 Eta
122 A.10.5.3 Ate
A.10.5.4 R-Ate
A.11 Elliptic curves for pairing-based cryptography
A.11.1 Super-singular curves
A.11.1.1 Super-singular curves with embedding degree 2
133 Annex B (normative) Conformance
B.1 General model
134 B.2 Conformance requirements
136 B.3 Examples
B.3.1 BF IBE
137 B.3.2 BB1 KEM
138 Annex C (informative) Rationale
C.1 General
C.1.1 Why are so many cryptographic techniques defined in this document?
C.1.2 How were the decisions made regarding the inclusion of individual schemes?
C.1.3 What is the basis for believing that the schemes defined in this document are secure?
139 Annex D (informative) Security considerations
D.1 Introduction
D.2 Cryptographic security
D.3 Server secret protection
140 Annex E (informative) Formats
E.1 Overview
E.2 Representing basic data types as octet strings
141 E.2.1 Integers (I2OSP and OS2IP)
E.2.2 Finite field elements (FE2OSP and OS2FEP)
E.2.3 Elliptic curve points (EC2OSP and OS2ECP)
E.2.4 Polynomials over GF(p), p ( 2 (PN2OSP and OS2PNP)
143 Annex F (informative) Bibliography
IEEE 1363.3 2013
$86.67