IEEE 802.3x 1997
$139.75
IEEE Standards for Local and Metropolitan Area Networks: Specification for 802.3 Full Duplex Operation
Published By | Publication Date | Number of Pages |
IEEE | 1997 | 325 |
Amendment Standard – Inactive – Superseded. Superseded by IEEE Std 802.3-2002 Necessary changes and additions are made to provide for an additional, full duplex mode of operation on a speed-independent basis. Changes are made to the MAC and selected Physical Layer implementations (10BASE-T, 10BASE-FL, 100BASE-T) to support full duplex. A mechanism for pause-based flow control is also added.p> Abstract 802.3y: Changes and additions to the 100BASE-T portion of IEEE Std 802.3 are provided to specify an additional 100 Mb/s transceiver type 100BASE-T, which can support full duplex operation over two pairs of Category 3 or better cabling.
PDF Catalog
PDF Pages | PDF Title |
---|---|
1 | Important notice! |
2 | IEEE Std 802.3x-1997 and IEEE Standards for Local and Metropolitan Area Networks: Supplements to Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and… Specification for 802.3 Full Duplex Operation and Physical Layer Specification for 100 Mb/s Opera… |
4 | Introduction (This introduction is not part of IEEE Std 802.3x-1997 and IEEE Std 802.3y-1997.) |
5 | Conformance test methodology |
6 | IEEE Std 802.3x-1997 and IEEE Std 802.3y-1997 |
7 | Geoffrey O. Thompson, Chair David Law, Vice Chair Rich Seifert, Chair and Editor, 802.3x Task Force |
10 | CONTENTS |
16 | IEEE Standards for Local and Metropolitan Area Networks: Supplement to Carrier Sense Multiple Acc… 1. Introduction 1.1 Overview 1.1.1 Basic concepts |
17 | 1.1.1.1 Half duplex operation 1.1.1.2 Full duplex operation a) The physical medium is capable of supporting simultaneous transmission and reception without i… b) There are exactly two stations connected with a full duplex point-to-point link. Since there i… c) Both stations on the LAN are capable of, and have been configured to use, full duplex operation. |
18 | Figure 1-1— ISO/IEC 8802-3 relationship to the ISO/IEC Open Systems Interconnection (OSI) referen… 1.1.3 Layer interfaces a) The interface between the MAC sublayer and the LLC sublayer its client includes facilities for… b) The interface between the MAC sublayer and the Physical Layer in�cludes sig�nals for framing (… |
19 | 1.3 References 1.4 Definitions |
24 | 2. MAC service specification 2.1 Scope and field of application Figure 2-1a— Service specification relation to the LAN model |
25 | 2.2 Overview of the service 2.2.1 General description of services provided by the layer 2.2.2 Model used for the service specification 2.2.3 Overview of interactions Figure 2-1b— Service specification primitive relationships (optional MAC control sublayer impleme… |
26 | 2.3 Detailed service specification 2.3.1 MA_DATA.request 2.3.1.1 Function 2.3.1.2 Semantics of the service primitive 2.3.1.3 When generated 2.3.1.4 Effect of receipt 2.3.2 MA_DATA.indication 2.3.2.1 Function |
27 | 2.3.2.2 Semantics of the service primitive 2.3.2.3 When generated 2.3.2.4 Effect of receipt 2.3.2.5 Additional comments 2.3.3 MA_CONTROL.request 2.3.3.1 Function |
28 | 2.3.3.2 Semantics of the service primitive 2.3.3.3 When generated 2.3.3.4 Effect of receipt 2.3.4 MA_CONTROL.indication 2.3.4.1 Function 2.3.4.2 Semantics of the service primitive 2.3.4.3 When generated 2.3.4.4 Effect of receipt |
29 | 3. MAC Media access control frame structure 3.1 Overview 3.1.1 MAC frame format Figure 3-1— MAC frame format |
30 | 3.2.3 Address fields Figure 3-2— Address field format��� |
31 | 3.2.3.1 Address designation a) Individual Address. The address associated with a particular station on the network. b) Group Address. A multidestination address, associated with one or more stations on a given net… 3.2.6 Length/Type field a) If the value of this field is less than or equal to the value of maxValidFrame (as specified i… b) If the value of this field is greater than or equal to 1536 decimal (equal to 0600 hexadecimal… |
32 | 3.2.7 Data and PAD fields 3.2.8 Frame check sequence (FCS) field a) The first 32 bits of the frame are complemented. b) The n bits of the frame are then considered to be the coefficients of a poly�nomial M(x) of de… c) M(x) is multiplied by x32 and divided by G(x), producing a remainder R(x) of de�gree < £ 31. (… d) The coefficients of R(x) are considered to be a 32-bit sequence. e) The bit sequence is complemented and the result is the CRC. |
33 | 3.4 Invalid MAC frame a) The frame length is inconsistent with the a length field value specified in the length/type fi… b) It is not an integral number of octets in length. c) The bits of the incoming frame (exclusive of the FCS field itself) do not generate a CRC value… |
34 | 4. Media access control 4.1 Functional model of the media access control method 4.1.1 Overview a) In half duplex mode, stations contend for the use of the physical medium, using the CSMA/CD al… b) The full duplex mode of operation can be used when all of the following are true: |
35 | 4.1.2 CSMA/CD operation Figure 4-1— MAC sublayer partitioning, relationship to the ISO Open Systems Interconnection (OSI)… 4.1.2.1 Normal operation 4.1.2.1.1 Transmission without contention |
36 | 4.1.2.1.2 Reception without contention 4.1.2.2 Access interference and recovery |
37 | 4.1.3 Relationships to the LLC sublayer MAC client and Physical Layer Layers 4.1.4 CSMA/CD access method functional capabilities |
38 | Figure 4-2— CSMA/CD Media Access Control functions a) For Frame Transmission b) For Frame Reception 3) Discards or passes to Network Management all frames not addressed to the receiving station c) In half duplex mode, defers transmission of a bit-serial stream whenever the physical medium i… d) Appends proper FCS value to outgoing frames and verifies full octet boundary alignment e) Checks incoming frames for transmission errors by way of FCS and verifies octet boundary align… f) Delays transmission of frame bit stream for specified interframe gap period g) In half duplex mode, halts transmission when collision is detected h) In half duplex mode, schedules retransmission after a collision until a specified retry limit … i) In half duplex mode, enforces collision to ensure propagation throughout network by sending ja… j) Discards received transmissions that are less than a minimum length k) Appends preamble, Start Frame Delimiter, DA, SA, length count/type field, and FCS to all frame… l) Removes preamble, Start Frame Delimiter, DA, SA, length count/type field, FCS and pad field (i… |
39 | 4.2 CSMA/CD Media Access Control (MAC) method: Precise specification 4.2.2.1 Ground rules for the procedural model 4.2.2.3 Organization of the procedural model a) Frame Transmitter process b) Frame Receiver process c) Bit Transmitter process d) Bit Receiver process e) Deference process |
40 | Figure 4-3— Relationship among CSMA/CD procedures |
41 | Figure 4-4a— Control flow summary |
42 | Figure 4-4b— Control flow summary |
43 | Figure 4-5— Control flow: MAC sublayer |
44 | 4.2.3 Frame transmission model a) Transmit Data Encapsulation includes the assembly of the outgoing frame (from the values provi… b) Transmit Media Access Management includes carrier deference, interframe spacing, collision det… 4.2.3.1 Transmit data encapsulation 4.2.3.1.1 Frame assembly 4.2.3.1.2 Frame check sequence generation 4.2.3.2 Transmit media access management 4.2.3.2.1 Carrier Deference a) Half duplex mode |
45 | b) Full duplex Mode 4.2.3.2.3 Collision handling (half duplex mode only) 4.2.3.2.4 Collision detection and enforcement (half duplex mode only) 4.2.3.2.5 Collision backoff and retransmission (half duplex mode only) 4.2.3.2.6 Full duplex transmission 4.2.3.3 Minimum frame size 4.2.4 Frame reception model a) Receive Data Decapsulation comprises address recognition, frame check se�quence validation, an… b) Receive Media Access Management comprises recognition of collision frag�ments from incoming fr… |
46 | 4.2.4.1 Receive data decapsulation 4.2.4.1.3 Frame disassembly 4.2.4.2 Receive media access management 4.2.4.2.1 Framing 4.2.4.2.2 Collision filtering 4.2.6 Start frame sequence 4.2.7.1 Common constants and types |
47 | 4.2.7.2 Transmit state variables |
48 | 4.2.7.3 Receive state variables 4.2.7.4 Summary of interlayer interfaces a) The interface to the LLC sublayer MAC client, defined in 4.3.2, is summarized be�low: b) The interface to the Physical Layer, defined in 4.3.3, is summarized in the following: |
49 | 4.2.7.5 State variable initialization 4.2.8 Frame transmission |
53 | 4.2.9 Frame reception |
56 | 4.2.10 Common procedures |
57 | 4.3 Interfaces to/from adjacent layers 4.3.1 Overview 4.3.2 Services provided by the MAC sublayer |
58 | 4.3.3 Services required from the physical layer |
60 | 4.4 Specific implementations 4.4.1 Compatibility overview 4.4.2 Allowable implementations 4.4.2.1 Parameterized values 4.4.2.2 Parameterized values 4.4.2.3 Parameterized values 4.4.3 Configuration guidelines |
62 | 6. PLS service specifications 6.2 Overview of the service 6.2.3 Overview of interactions a) Service primitives that support MAC peer-to-peer interactions. b) Service primitives that have local significance and support sublayer-to-sublayer interactions. a) Peer-to-Peer b) Sublayer-to-Sublayer Figure 6-1— Service specification relationship to the IEEE 802.3 CSMA/CD LAN model |
63 | 6.2.4 Basic services and options 6.3 Detailed service specification 6.3.1 Peer-to-Peer service primitives 6.3.1.2 PLS_DATA.indication 6.3.1.2.1 Function 6.3.1.2.2 Semantics of the service primitive 6.3.1.2.3 When generated 6.3.1.2.4 Effect of receipt 6.3.2 Sublayer-to-Sublayer service primitives 6.3.2.3 PLS_DATA_VALID.indication 6.3.2.3.1 Function |
64 | 6.3.2.3.2 Semantics of the service primitive 6.3.2.3.3 When generated 6.3.2.3.4 Effect of receipt |
65 | 7. Physical Signaling (PLS) and Attachment Unit In�terface (AUI) specifications 7.1 Scope Figure 7-1— Physical layer partitioning, relationship to the ISO Open Systems Interconnection (OS… a) Capable of supporting one or more of the specified data rates b) Capable of driving up to 50 m (164 ft) of cable c) Permits the DTE to test the AUI, AUI cable, MAU, and the medium itself d) Supports MAUs for baseband coax, baseband twisted pair, broadband coax, and baseband fiber |
66 | 7.1.3 Application a) Provide the DTE with media independence for baseband coax, baseband twisted pair, broadband co… b) Provide for the separation by cable of up to 50 m (164 ft) the DTE and the MAU. 7.1.4 Modes of operation 7.2 Functional specification 7.2.1 PLS–PMA (DTE–MAU) interface protocol 7.2.1.2 PMA to PLS interface |
67 | 7.2.1.2.3 signal_quality_error message a) Improper Signals On The Medium. The MAU may send the sig�nal_quality_error message at any time… b) Collision. Collision occurs when more than one MAU is transmitting on the medium. The local MA… c) signal_quality_error Message Test. The MAU sends the signal_qual�ity_error message at the comp… 7.2.2 PLS Interface to MAC and management entities 7.2.2.1 PLS–MAC interface |
68 | 7.2.2.1.6 DATA_VALID_STATUS 7.2.2.2 PLS-Management entity Interface 7.2.2.2.4 SQE_TEST 7.2.4 PLS functions Figure 7-6— PLS Input and Data_Valid function |
69 | 7.2.4.3 Output function 7.2.4.4 Input function 7.2.4.6 Carrier sense function 7.3 Signal characteristics 7.3.2 Signaling rate |
70 | 13. System considerations for multi-segment 10 Mb/s baseband networks 13.5 Full duplex topology limitations |
71 | 14. Twisted-Pair Medium Attachment Unit (MAU) and baseband medium, Type 10BASE-T 14.1 Scope 14.1.2 Overview 14.1.1.1 Medium Attachment Unit (MAU) a) Enables coupling the Physical Signaling (PLS) sublayer by way of the Attachment Unit Interface… b) Supports message traffic at a data rate of 10�Mb/s. c) Provides for operating over 0 to at least 100�m (328�ft) of twisted pair with�out the use of a… d) Permits the Data Terminal Equipment (DTE) or repeater to confirm op�eration of the MAU and ava… e) Supports network configurations using CSMA/CD access method de�fined in ISO/IEC�8802�3 this In… f) Supports a point-to-point interconnection between MAUs and, when used with repeaters having mu… g) Allows incorporation of the MAU within the physical bounds of a DTE or repeater. h) Allows for either half duplex operation, full duplex operation, or both.� Figure 14-1— 10BASE-T relationship to the ISO Open Systems Interconnection (OSI) reference model … |
72 | 14.1.3 Application perspective 14.1.3.3 Mode Modes of operation 14.2 MAU functional specifications a) Transmit function. Provides the ability to transfer Manchester-encoded data from the DO circui… b) Receive function. Provides the ability to transfer Manchester-encoded data from the RD circuit… c) Loopback function (half duplex mode only). Provides the ability to transfer Manchester-encoded… d) Collision Presence function. Provides the ability to detect the simultaneous occurrence of Man… e) signal_quality_error Message (SQE) Test function. Provides the ability to indicate to the DTE … f) Jabber function. Provides the ability to prevent abnormally long recep�tion of Manchester-enco… g) Link Integrity Test function. Provides the ability to protect the network from the consequence… h) Auto-Negotiation. Optionally provides the capability for a device at one end of a link segment… |
73 | 14.2.1 MAU functions 14.2.1.3 Loopback function requirements (half duplex mode only) |
74 | 14.2.1.4 Collision presence function requirements (half duplex mode only) 14.2.1.5 signal_quality_error Message (SQE) test function require�ments 14.2.1.6 Jabber function requirements a) In�hibit the Loopback function and the transmission of TD_output messages by the Transmit func… b) Send the CS0 signal on the CI circuit, when the MAU is connected to a DTE operating in half du… |
75 | 14.2.1.8 Auto-Negotiation 14.2.3 MAU state diagrams |
76 | Figure 14-3a— MAU transmit, receive, loopback, and collision presence functions state�diagram (ha… Figure 14-3b— MAU transmit and receive functions state diagram (full duplex mode) |
77 | Figure 14-5— Jabber function state diagram |
78 | 14.8 MAU labeling a) Data rate capability in Mb/s b) Power level in terms of maximum current drain (for external MAUs) c) Any applicable safety warnings d) Duplex capabilities 14.10 (Changes to) PICS proforma for 10BASE-T |
79 | 15. Fiber optic medium and common elements of medium attachment units and star, Type 10BASE-F 15.1 Scope 15.1.1 Overview 15.1.3 Applications perspective: MAUs, stars, and fiber optic medium 15.1.3.4 Guidelines for systems implementation |
80 | 15.1.3.5 Mode Modes of operation 15.7 MAU labeling a) Whether 10BASE-FP MAU, 10BASE-FB MAU or 10BASE-FL MAU b) Data rate capability in Mb/s c) Power level in terms of maximum current drain (for external MAUs as required by 15.5.3) d) Any applicable safety warnings e) Which connector is input and which is output f) For 10BASE-FP MAUs, the Manufacturer ID and the MAU ID in two separate fields (see 16.3.1.1.3) g) For 10BASE-FL MAUs, if it is capable of full duplex operation |
82 | 18. Fiber optic medium attachment unit, Type 10BASE-FL 18.3 MAU functional specifications a) Transmit function. Provides the ability to transfer Manchester encoded data from the DO circui… b) Receive function. Provides the ability to transfer Manchester encoded data from the ORD circui… c) Loopback function (half duplex mode only). Provides the ability to transfer Manchester encoded… d) Collision Presence function. Provides the ability to detect simultaneous occurrence of Manches… e) Signal_quality_error Message (SQE) Test function. Provides the ability to indicate to the DTE … f) Jabber function. Provides the ability to prevent abnormally long reception of Manchester encod… g) Link Integrity Test function. Provides the ability to protect the network from the consequence… 18.3.1 MAU functions |
83 | 18.3.1.3 Loopback function requirements (half duplex mode only) 18.3.1.4 Collision presence function requirements (half duplex mode only) 18.3.1.5 Signal_quality_error message (SQE) test function requirements |
84 | 18.3.1.6 Jabber function requirements a) In�hibit the Loopback function and the transmission of OTD_output messages by the Transmit fun… b) Send the CS0 signal on the CI circuit, when the MAU is connected to a DTE operating in half du… 18.3.1.8 Auto-Negotiation 18.3.2 MAU State diagrams |
85 | Figure 18-1a— MAU transmit, receive, loopback, and collision presence functions�state�diagram (ha… |
86 | Figure 18-3— Jabber function state diagram |
87 | 18.5 Protocol implementation conformance statement (PICS) proforma for clause 18, fiber optic med… 18.5.2.2 Abbreviations 18.5.5 Major capabilities/options��� |
88 | 18.5.6.5 MAU functions 18.5.6.11 Loopback function�� |
89 | 18.5.6.12 Collision presence function�� 18.5.6.13 Signal_quality_error message (SQE) test function�� |
90 | 18.5.6.14 Jabber function�� 18.5.6.16 MAU state diagram requirements |
91 | 18.5.6.25 signal_quality_error message (SQE) 18.5.6.27 MAU labeling���� |
92 | 21. Introduction to 100�Mb/s baseband networks, Type 100BASE-T 21.5.4 Operators Table 21-1— State machine operators� 21.6.2 Abbreviations and special symbols |
93 | a) Within the section Balanced Cabling Link Class C (specified up to 16 MHz): CSMA/CD 100BASE-T2 … b) Within the section Optical Link: CSMA/CD 100BASE-FX ISO/IEC 8802-3/DAD 1995 2 c) Within the section Balanced Cabling Link Class D (Defined up to 100 MHz): CSMA/CD 100BASE-TX I… 21.8 MAC delay constraints (exposed MII) |
94 | Figure 22-3— Reconciliation sublayer (RS) inputs and outputs and STA connections to MII 22. Reconciliation sublayer (RS) and Media Independent Interface (MII) 22.1 Overview g) It provides for full duplex operation. 22.2.1.7.1 Function 22.2.1.7.2 Semantics of the service primitive |
95 | 22.2.1.7.3 When generated 22.2.2.7 RXD (receive data) 22.2.4 Management functions 22.2.4.1.3 Speed selection 22.2.4.1.8 Duplex mode |
96 | 22.2.4.2 Extended capability registers Table 22-6— MII Management register set |
97 | Table 22-8— Status register bit definitions |
98 | 22.2.4.2.7 100BASE-T2 half duplex ability 22.2.4.2.8 Reserved bits 22.2.4.3.6 Auto-Negotiation link partner Received Next Page (Register 8) 22.2.4.3.7 100BASE-T2 Control register (register 9) 22.2.4.3.8 100BASE-T2 Status register (register 10) |
99 | 22.7.3.4 Management functions |
102 | 23. Physical Coding Sublayer (PCS), Physical Medium Attachment (PMA) sublayer and baseband medium… a) Support the CSMA/CD MAC in the half duplex mode of operation. |
103 | 24. Physical coding sublayer (PCS) and Physical Medium Attachment (PMA) sublayer, Type 100BASE-X a) Support the CSMA/CD MAC in the half duplex and the full duplex modes of operation. b) Support the 100BASE-T MII, repeater, and optional Auto-Negation. c) Provide 100 Mb/s data rate at the MII. d) Support cable plants using Category 5 UTP, 150 ½ STP or optical fiber, compliant with ISO/IEC … e) Allow for a nominal network extent of 200–400 m, including 1) unshielded twisted-pair links of 100 m; 2) two repeater networks of approximately 200 m span; 3) one repeater networks of approximately 300 m span (using fiber); and 4) DTE/DTE links of approximately 400 m (half duplex mode using fiber) and 2 km (full duplex mode… f) Preserve full duplex behavior of underlying PMD channels. Table 24-2a— MDI to MII delay constraints (exposed MII, half duplex mode) |
104 | Table 24-2b— PHY delay constraints (exposed MII, full duplex mode) Table 24-3a— DTE delay constraints (unexposed MII, half duplex mode) 24.6.3 Carrier de-assertion/assertion constraint (half duplex mode only) |
105 | 27. Repeater for 100 Mb/s baseband networks Table 27-1— Start-of-packet variability |
106 | Table 27-2— Start-of-packet propagation and start-of-collision jam propagation delays 27.3.1.5.1 100BASE-X and 100BASE-T2 carrier integrity functional requirements |
108 | Figure 27-9— 100BASE-X/T2 carrier integrity monitor state diagram for port X |
109 | Figure 27-10— 100BASE-T2 transmit state diagram for port X |
110 | a) Data rate capability in Mb/s b) Any applicable safety warnings c) Port type, i.e., 100BASE-TX, and 100BASE-T4, or 100BASE-T2 d) Worst-case bit time delays between any two ports appropriate for 1) Start-of-packet propagation delay 2) Start-of-collision Jam propagation delay 3) Cessation-of-collision Jam propagation delay |
112 | 28. Physical Layer link signaling for 10 Mb/s and 100 Mb/s Auto-Negotiation on twisted pair |
113 | Figure 28-13— Functional reference diagram |
114 | 29. System considerations for multi-segment 100BASE-T networks |
115 | 29.4 Full duplex 100 Mb/s topology limitations Table 29-5— Link segment length limits; 100Mb/s full duplex segments |
116 | Changes to 30. 10 Mb/s and 100 Mb/s management Change the text of 30.1 to read as follows: 30.1 Overview |
117 | 30.1.1 Scope 30.1.2 Relationship to objects in IEEE 802.1F 30.1.3 Systems management overview |
118 | 30.1.4 Management model Figure 30-1— Interaction between manager, agent, and objects a) Attributes. Data-like properties (as seen by management) of a managed object. b) Actions. Operations that a managing process may perform on an object or its attributes. c) Notifications. Unsolicited reports of events that may be generated by an object. d) Behaviour. The way in which managed objects, attributes, and actions interact with the actual … |
119 | 30.2 Managed objects 30.2.1 Introduction 30.2.2 Overview of managed objects a) Identify a resource b) Control a resource c) Monitor a resource 30.2.2.1 Text description of managed objects |
121 | 30.2.2.2 Functions to support management 30.2.2.2.1 DTE MAC sublayer functions a) frameTooLong b) alignmentError c) frameCheckError d) lengthError 30.2.2.2.2 Repeater functions Figure 30-2— Functions relationship |
123 | 30.2.3 Containment Figure 30-3— 10/100 Mb/s entity relationship diagram 30.2.4 Naming |
124 | 30.2.5 Capabilities |
125 | Table 30-1a— Capabilities� |
126 | Table 30-1b— Capabilities� |
127 | Table 30-1c— Capabilities |
128 | Table 30-1d— Capabilities� |
129 | Table 30-1e— Capabilities� |
130 | 30.3 Layer management for DTEs 30.3.1 MAC entity managed object class 30.3.1.1 MAC entity attributes 30.3.1.1.1 aMACID 30.3.1.1.2 aFramesTransmittedOK 30.3.1.1.3 aSingleCollisionFrames 30.3.1.1.4 aMultipleCollisionFrames |
131 | 30.3.1.1.5 aFramesReceivedOK 30.3.1.1.6 aFrameCheckSequenceErrors 30.3.1.1.7 aAlignmentErrors 30.3.1.1.8 aOctetsTransmittedOK |
132 | 30.3.1.1.9 aFramesWithDeferredXmissions 30.3.1.1.10 aLateCollisions 30.3.1.1.11 aFramesAbortedDueToXSColls 30.3.1.1.12 aFramesLostDueToIntMACXmitError |
133 | 30.3.1.1.13 aCarrierSenseErrors 30.3.1.1.14 aOctetsReceivedOK 30.3.1.1.15 aFramesLostDueToIntMACRcvError 30.3.1.1.16 aPromiscuousStatus |
134 | 30.3.1.1.17 aReadMulticastAddressList 30.3.1.1.18 aMulticastFramesXmittedOK 30.3.1.1.19 aBroadcastFramesXmittedOK 30.3.1.1.20 aFramesWithExcessiveDeferral |
135 | 30.3.1.1.21 aMulticastFramesReceivedOK 30.3.1.1.22 aBroadcastFramesReceivedOK 30.3.1.1.23 aInRangeLengthErrors 30.3.1.1.24 aOutOfRangeLengthField |
136 | 30.3.1.1.25 aFrameTooLongErrors 30.3.1.1.26 aMACEnableStatus 30.3.1.1.27 aTransmitEnableStatus 30.3.1.1.28 aMulticastReceiveStatus |
137 | 30.3.1.1.29 aReadWriteMACAddress 30.3.1.1.30 aCollisionFrames 30.3.1.1.31 aMACCapabilities ATTRIBUTE APPROPRIATE SYNTAX: BEHAVIOUR DEFINED AS: 30.3.1.1.32 aDuplexStatus ATTRIBUTE APPROPRIATE SYNTAX: BEHAVIOUR DEFINED AS: |
138 | 30.3.1.2 MAC entity actions 30.3.1.2.1 acInitializeMAC 30.3.1.2.2 acAddGroupAddress 30.3.1.2.3 acDeleteGroupAddress 30.3.1.2.4 acExecuteSelfTest 30.3.2 PHY entity managed object class |
139 | 30.3.2.1 PHY entity attributes 30.3.2.1.1 aPHYID 30.3.2.1.2 aPhyType |
140 | 30.3.2.1.3 aPhyTypeList 30.3.2.1.4 aSQETestErrors 30.3.2.1.5 aSymbolErrorDuringCarrier 30.3.2.1.6 aMIIDetect |
141 | 30.3.2.1.7 aPhyAdminState 30.3.2.2 PHY entity actions 30.3.2.2.1 acPhyAdminControl 30.3.3 MAC control entity object class 30.3.3.1 aMACControlID ATTRIBUTE APPROPRIATE SYNTAX: BEHAVIOUR DEFINED AS: |
142 | 30.3.3.2 aMACControlFunctionsSupported ATTRIBUTE APPROPRIATE SYNTAX: BEHAVIOUR DEFINED AS: 30.3.3.3 aMACControlFramesTransmitted ATTRIBUTE APPROPRIATE SYNTAX: BEHAVIOUR DEFINED AS: 30.3.3.4 aMACControlFramesReceived ATTRIBUTE APPROPRIATE SYNTAX: BEHAVIOUR DEFINED AS: 30.3.3.5 aUnsupportedOpcodesReceived ATTRIBUTE APPROPRIATE SYNTAX: BEHAVIOUR DEFINED AS: |
143 | 30.3.4 PAUSE entity managed object class 30.3.4.1 aPAUSELinkDelayAllowance ATTRIBUTE APPROPRIATE SYNTAX: BEHAVIOUR DEFINED AS: 30.3.4.2 aPAUSEMACCtrlFramesTransmitted ATTRIBUTE APPROPRIATE SYNTAX: BEHAVIOUR DEFINED AS: 30.3.4.3 aPAUSEMACCtrlFramesReceived ATTRIBUTE APPROPRIATE SYNTAX: BEHAVIOUR DEFINED AS: 30.4 Layer management for 10 and 100 Mb/s baseband repeaters 30.4.1 Repeater managed object class |
144 | 30.4.1.1 Repeater attributes 30.4.1.1.1 aRepeaterID 30.4.1.1.2 aRepeaterType 30.4.1.1.3 aRepeaterGroupCapacity 30.4.1.1.4 aGroupMap |
145 | 30.4.1.1.5 aRepeaterHealthState 30.4.1.1.6 aRepeaterHealthText 30.4.1.1.7 aRepeaterHealthData 30.4.1.1.8 aTransmitCollisions |
146 | 30.4.1.2 Repeater actions 30.4.1.2.1 acResetRepeater 30.4.1.2.2 acExecuteNonDisruptiveSelfTest 30.4.1.3 Repeater notifications 30.4.1.3.1 nRepeaterHealth |
147 | 30.4.1.3.2 nRepeaterReset 30.4.1.3.3 nGroupMapChange 30.4.2 Group managed object class 30.4.2.1 Group attributes 30.4.2.1.1 aGroupID |
148 | 30.4.2.1.2 aGroupPortCapacity 30.4.2.1.3 aPortMap 30.4.2.2 Group notifications 30.4.2.2.1 nPortMapChange 30.4.3 Repeater port managed object class 30.4.3.1 Port attributes 30.4.3.1.1 aPortID |
149 | 30.4.3.1.2 aPortAdminState 30.4.3.1.3 aAutoPartitionState 30.4.3.1.4 aReadableFrames 30.4.3.1.5 aReadableOctets |
150 | 30.4.3.1.6 aFrameCheckSequenceErrors 30.4.3.1.7 aAlignmentErrors 30.4.3.1.8 aFramesTooLong 30.4.3.1.9 aShortEvents |
151 | 30.4.3.1.10 aRunts 30.4.3.1.11 aCollisions 30.4.3.1.12 aLateEvents |
152 | 30.4.3.1.13 aVeryLongEvents 30.4.3.1.14 aDataRateMismatches 30.4.3.1.15 aAutoPartitions |
153 | 30.4.3.1.16 aIsolates 30.4.3.1.17 aSymbolErrorDuringPacket 30.4.3.1.18 aLastSourceAddress 30.4.3.1.19 aSourceAddressChanges |
154 | 30.4.3.2 Port actions 30.4.3.2.1 acPortAdminControl 30.5 Layer management for 10 and 100 Mb/s medium attachment units (MAUs) 30.5.1 MAU managed object class 30.5.1.1 MAU attributes 30.5.1.1.1 aMAUID 30.5.1.1.2 aMAUType ATTRIBUTE APPROPRIATE SYNTAX: |
155 | BEHAVIOUR DEFINED AS: 30.5.1.1.3 aMAUTypeList 30.5.1.1.4 aMediaAvailable |
156 | 30.5.1.1.5 aLoseMediaCounter 30.5.1.1.6 aJabber 30.5.1.1.7 aMAUAdminState |
157 | 30.5.1.1.8 aBbMAUXmitRcvSplitType 30.5.1.1.9 aBroadbandFrequencies 30.5.1.1.10 aFalseCarriers |
158 | 30.5.1.1.11 aIdleErrorCount ATTRIBUTE APPROPRIATE SYNTAX: BEHAVIOUR DEFINED AS: 30.5.1.2 MAU actions 30.5.1.2.1 acResetMAU 30.5.1.2.2 acMAUAdminControl 30.5.1.3 MAU notifications 30.5.1.3.1 nJabber 30.6 Management for link Auto-Negotiation 30.6.1 Auto-Negotiation managed object class 30.6.1.1 Auto-Negotiation attributes |
159 | 30.6.1.1.1 aAutoNegID 30.6.1.1.2 aAutoNegAdminState 30.6.1.1.3 aAutoNegRemoteSignaling 30.6.1.1.4 aAutoNegAutoConfig 30.6.1.1.5 aAutoNegLocalTechnologyAbility ATTRIBUTE APPROPRIATE SYNTAX: |
160 | BEHAVIOUR DEFINED AS: 30.6.1.1.6 aAutoNegAdvertisedTechnologyAbility 30.6.1.1.7 aAutoNegReceivedTechnologyAbility 30.6.1.1.8 aAutoNegLocalSelectorAbility |
161 | 30.6.1.1.9 aAutoNegAdvertisedSelectorAbility 30.6.1.1.10 aAutoNegReceivedSelectorAbility 30.6.1.2 Auto-Negotiation actions 30.6.1.2.1 acAutoNegRestartAutoConfig 30.6.1.2.2 acAutoNegAdminControl |
162 | 31. MAC control 31.1 Overview 31.2 Layer architecture Figure 31-1— Architectural positioning of MAC Control sublayer 31.3 Support by interlayer interfaces |
163 | Figure 31-2— MAC Control sublayer support of interlayer service interfaces |
164 | 31.4 MAC Control frames 31.4.1 MAC Control frame format Figure 31-3— MAC Control frame format 31.4.1.1 Destination address field 31.4.1.2 Source address field 31.4.1.3 Length/Type field |
165 | 31.4.1.4 MAC Control opcode 31.4.1.5 MAC Control parameters 31.4.1.6 Reserved field 31.5 Opcode-independent MAC Control sublayer operation 31.5.1 Frame parsing and data frame reception a) The destination_address parameter is set equal to the destinationParam from the ReceiveFrame f… b) The source_address parameter is set equal to the sourceParam from the ReceiveFrame function. c) The m_sdu parameter is set equal to the concatenation of the lengthOrTypeParam and the dataPar… d) The reception_status parameter is set equal to the ReceiveStatus from the ReceiveFrame function. |
166 | 31.5.2 Control frame reception 31.5.3 Opcode-independent MAC control receive state diagram 31.5.3.1 Constants 31.5.3.2 Variables 31.5.3.3 Functions 31.5.3.4 Messages |
167 | 31.5.3.5 Opcode-independent MAC Control receive state diagram Figure 31-4— Generic MAC Control Receive State Diagram 31.6 Compatibility requirements 31.7 MAC Control client behavior |
168 | 31.8 Protocol Implementation Conformance Statement (PICS) proforma for clause 31, MAC Control 31.8.1 Introduction 31.8.2 Identification 31.8.2.1 Implementation identification 31.8.2.2 Protocol summary |
169 | 31.8.3 PICS proforma for MAC control frames 31.8.3.1 Support by interlayer interfaces 31.8.3.2 MAC control frame format 31.8.3.3 Opcode-independent MAC control sublayer operation 31.8.3.4 Control opcode assignments |
170 | 32. Physical coding sublayer (PCS), physical medium attachment (PMA) sublayer and baseband medium… 32.1 Overview a) Support the CSMA/CD MAC b) Support the 100BASE-T MII, Repeater and Auto-Negotiation c) Support Full-Duplex operations (clause 31) d) Provide 100 Mb/s data rate at the MII e) Provide for operating over two pairs of category 3, 4, or 5 balanced twisted pair cabling syst… f) Support operation of other applications on adjacent pairs g) Allow for a nominal network extent of 200 m including 1) Balanced cabling links of 100 m to support both half duplex and full duplex operation 2) Two-repeater networks of approximately 200 m span h) Provide a communication channel with a symbol error rate of less than one part in 1010 at the … 32.1.1 Relation of 100BASE-T2 to other standards |
171 | Figure 32-1— Type 100BASE-T2 PHY relationship to the ISO Open Systems Interconnection (OSI) Refer… |
172 | 32.1.2 Operation of 100BASE-T2 Figure 32-2— 100BASE-T2 topology Figure 32-3— PAM5x5 symbol constellation |
173 | Figure 32-4— Division of responsibilities between 100BASE-T2 PCS, PMA, and PHY Control |
174 | 32.1.2.1 Physical coding sublayer (PCS) 32.1.2.2 Physical medium attachment (PMA) sublayer 32.1.2.3 PHY Control function |
175 | 32.1.3 Application of 100BASE-T2 32.1.3.1 Compatibility considerations 32.1.3.2 Incorporating the 100BASE-T2 PHY into a DTE 32.1.3.3 Use of 100BASE-T2 PHY for point-to-point communication 32.1.3.4 Auto-Negotiation requirement 32.1.4 State diagram conventions 32.2 PHY Control functional specifications and service interface 32.2.1 PHY Control function |
176 | 32.2.2 PHY Control Service interface 32.2.2.1 PHYC_CONFIG.indicate 32.2.2.1.1 Semantics of the primitive |
177 | 32.2.2.1.2 When generated 32.2.2.1.3 Effect of receipt 32.2.2.2 PHYC_TXMODE.indicate 32.2.2.2.1 Semantics of the primitive 32.2.2.2.2 When generated 32.2.2.2.3 Effect of receipt 32.2.2.3 PHYC_RXSTATUS.request 32.2.2.3.1 Semantics of the primitive |
178 | 32.2.2.3.2 When generated 32.2.2.3.3 Effect of receipt 32.2.2.4 PHYC_REMRXSTATUS.request 32.2.2.4.1 Semantics of the primitive 32.2.2.4.2 When generated 32.2.2.4.3 Effect of receipt 32.2.3 State diagram variables |
179 | 32.2.4 State diagram timers |
180 | 32.2.5 PHY Control state diagram Figure 21-5— PMA control state diagram for master PHY 32.3 PCS functional specifications |
181 | Figure 32-6— PCS reference diagram 32.3.1 PCS functions 32.3.1.1 PCS Reset function 32.3.1.2 PCS Transmit function |
182 | Figure 32-7— PCS Transmit reference diagram |
183 | 32.3.1.2.1 Side-stream scrambler polynomials Figure 32-8— Realization of side-stream scramblers by linear feedback shift registers 32.3.1.2.2 Generation of bits San[2:0] and Sbn[2:0] |
184 | 32.3.1.2.3 Generation of sequences An and Bn |
186 | Figure 32-9— Symbol mapping and encoding rule summary Figure 32-10— Symbol constellations in idle and data modes 32.3.1.3 PCS Receive function |
187 | 32.3.1.3.1 Receiver descrambler polynomials 32.3.1.3.2 Decoding of quinary symbols Table 32-1— �Inverse quinary symbol mapping 32.3.1.4 PCS Carrier Sense function |
188 | 32.3.1.5 PCS Collision Presence function 32.3.2 PCS interfaces 32.3.2.1 PCS–MII interface signals Table 32-2— �MII interface signals 32.3.2.2 PCS–management entity signals 32.3.3 Frame structure |
189 | Figure 32-11— PCS sublayer to PMA sublayer frame structure 32.3.4 State variables 32.3.4.1 Variables |
191 | 32.3.4.2 Timer 32.3.4.3 Messages 32.3.5 State diagrams 32.3.5.1 PCS Transmit 32.3.5.2 PCS Receive |
192 | 32.3.5.3 PCS Carrier Sense 32.3.6 PCS electrical specifications |
193 | Figure 32-12— PCS Transmit state diagram |
194 | Figure 32-13— PCS Receive state diagram |
195 | Figure 32-14— PCS Carrier Sense state diagram 32.4 PMA functional specifications and service interface 32.4.1 PMA functional specifications Figure 32-15— PMA reference diagram |
196 | 32.4.1.1 PMA functions 32.4.1.1.1 PMA Reset function 32.4.1.1.2 PMA Transmit function 32.4.1.1.3 PMA Receive function 32.4.1.1.4 Link Monitor function a) the pma_type variable that indicates whether the remote station is of type 100BASE-T2 or not, b) the link_status variable that is sent across the PMA Service interface. |
197 | 32.4.1.1.5 Clock Recovery function 32.4.1.2 PMA interface messages 32.4.1.2.1 MDI signals transmitted by the PHY 32.4.1.2.2 Signals received at the MDI 32.4.1.3 PMA state diagram 32.4.1.3.1 State diagram variables |
198 | 32.4.1.3.2 Timers 32.4.1.3.3 Link Monitor state diagram�������� Figure 32-16— Link Monitor state diagram 32.4.2 PMA service interface |
199 | 32.4.2.1 PMA_TYPE.indicate 32.4.2.1.1 Semantics of the primitive 32.4.2.1.2 When generated 32.4.2.1.3 Effect of receipt 32.4.2.2 PMA_UNITDATA.request 32.4.2.2.1 Semantics of the primitive |
200 | 32.4.2.2.2 When generated 32.4.2.2.3 Effect of receipt 32.4.2.3 PMA_UNITDATA.indicate 32.4.2.3.1 Semantics of the primitive 32.4.2.3.2 When generated 32.4.2.3.3 Effect of receipt 32.4.2.4 PMA_LINK.request 32.4.2.4.1 Semantics of the primitive |
201 | 32.4.2.4.2 When generated 32.4.2.4.3 Effect of receipt 32.4.2.5 PMA_LINK.indicate 32.4.2.5.1 Semantics of the primitive 32.4.2.5.2 When generated 32.4.2.5.3 Effect of receipt 32.4.2.6 PMA_CARRIER.indicate 32.4.2.7 PMA_RXERROR.indicate |
202 | 32.4.2.8 PMA_RXSTATUS.request 32.5 Management functions 32.5.1 100BASE-T2 Use of Auto-Negotiation and MII registers 8, 9, and 10 |
203 | 32.5.2 Management functions Table 32-3— 100BASE-T2 Control and Status registers 32.5.3 PHY specific registers for 100BASE-T2 |
204 | 32.5.3.1 100BASE-T2 Control register (register 9) Table 32-4— 100BASE-T2 Control register (MII management register 9) bit definition 32.5.3.1.1 Transmitter test mode 32.5.3.1.2 Receive test mode 32.5.3.1.3 MASTER-SLAVE Manual Configuration Enable |
205 | 32.5.3.1.4 MASTER-SLAVE Manual Configuration Value 32.5.3.1.5 T2_Repeater/DTE Bit 32.5.3.1.6 Reserved bits 32.5.3.2 100BASE-T2 Status register (register 10) Table 32-5— 100BASE-T2 Status register (MII management register 10) bit definition 32.5.3.2.1 MASTER-SLAVE Manual Configuration Fault |
206 | 32.5.3.2.2 MASTER-SLAVE Configuration Resolution Complete 32.5.3.2.3 Local Receiver Status 32.5.3.2.4 Remote Receiver Status 32.5.3.2.5 Reserved bits 32.5.3.2.6 Idle Error count 32.5.4 Changes and additions to Auto-Negotiation (28) |
207 | Table 32-6— Link Partner Next Page Ability register bit definitions (MII Management register 8)�� 32.5.4.3 Use of Auto-Negotiation Next Page codes for 100BASE-T2 PHYs |
208 | Table 32-7— Bit assignments for Unformatted Next Pages containing 100BASE-T2 Technology Ability F… |
209 | Table 32-8— 100BASE-T2 MASTER-SLAVE Configuration Resolution table |
210 | 32.6 PMA electrical specifications 32.6.1 PMA-to-MDI interface characteristics 32.6.1.1 Isolation requirement a) 1500 V rms at 50–60 Hz for 60 s, applied as specified in Section 5.3.2 of IEC 950 b) 2250 Vdc for 60 s, applied as specified in Section 5.3.2 of IEC 950 c) A sequence of ten 2400 V impulses of alternating polarity, applied at intervals of not less th… 32.6.1.2 Transmitter electrical specifications 32.6.1.2.1 Transmitter test modes |
211 | Table 32-9— �MII management register set |
212 | Figure 32-17— Example Transmitter Test Mode Transmitter |
213 | 32.6.1.2.2 Peak differential output voltage and level distortion 32.6.1.2.3 Maximum output droop 32.6.1.2.4 Differential output templates |
214 | Figure 32-18— Normalized transmit templates as measured at MDI through preprocessing filter |
215 | Table 32-10— �Normalized time domain voltage template (continued) |
216 | Table 32-11— Normalized frequency domain amplitude spectrum template (continued) |
217 | 32.6.1.2.5 Transmitter timing jitter 32.6.1.2.6 Transmit clock frequency 32.6.1.3 Receiver electrical specifications 32.6.1.3.1 Test channel |
218 | Figure 32-19— Conceptual diagram of test channel |
219 | Figure 32-20— Test channel responses |
220 | Table 32-12 —Coefficients for Worst Case Channel and T2 Alien NEXT Model (continued) |
230 | 32.6.1.3.2 Receiver test mode 32.6.1.3.3 Receiver differential input signals 32.6.1.3.4 Receiver alien NEXT tolerance Table 32-12— Receiver Alien NEXT test cases 32.6.1.3.5 Receiver timing jitter |
231 | 32.6.1.3.6 Common-mode noise rejection Figure 32-21— Receiver common-mode noise rejection test circuit 32.6.1.3.7 Receiver frequency tolerance 32.6.1.4 MDI Specifications 32.6.1.4.1 MDI differential impedance |
232 | 32.6.1.4.2 MDI impedance balance Figure 32-22— MDI impedance balance test circuit 32.6.1.4.3 MDI common-mode output voltage |
233 | Figure 32-23— Common-mode output voltage test circuit 32.6.1.4.4 MDI fault tolerance Figure 32-24— MDI fault tolerance test circuit 32.6.2 Power consumption |
234 | 32.7 Link segment characteristics a) 100BASE-T2 b) 10BASE-T c) Digital Phone services compliant with the ITU-T Recommendation I.430 and ANSI T1.605 and T1.601 32.7.1 Cabling a) 100BASE-T2 uses a star topology. Balanced cabling is used to connect PHY entities. b) 100BASE-T2 is an ISO 11801 class C application, with additional installation requirements and … c) 100BASE-T2 shall use 2 pairs of balanced cabling, category 3 or better, with a nominal charact… d) When using category 3 cabling for the link segment, clause 32 recommends, but does not require… e) The use of shielding is outside the scope of this standard. f) The use of other cabling systems is discussed in annex 32A. 32.7.2 Link transmission parameters 32.7.2.1 Insertion loss |
235 | 32.7.2.2 Differential characteristic impedance 32.7.2.3 Coupling parameters 32.7.2.3.1 Differential near-end crosstalk (NEXT) loss 32.7.2.3.2 Multiple-disturber NEXT (MDNEXT) loss 32.7.2.3.3 Equal level far-end crosstalk loss (ELFEXT) |
236 | 32.7.2.3.4 Multiple-disturber ELFEXT (MDELFEXT) loss 32.7.2.3.5 10BASE-T NEXT loss to insertion loss ratio requirement 32.7.2.4 Delay 32.7.2.4.1 Maximum link delay 32.7.2.4.2 Difference in link delays |
237 | 32.7.3 Noise a) Echo from the local transmitter on the same pair (duplex channel). Echo is caused by the hybri… b) Near-end crosstalk (NEXT) noise from the local transmitter on the other pair (duplex channel) … c) Far-end crosstalk (FEXT) noise from the remote transmitters on the other pair (duplex channel)… d) Noise from non-idealities in the duplex channels, transmitters and receivers; for example, DAC… e) Noise from sources outside the cabling which couple into the link segment via electric and mag… f) Noise from services in adjacent wire pairs in the same cable sheath. These services generate n… |
238 | 32.7.3.1 Near end crosstalk noise a) Two disturbing alien pairs with a NEXT loss greater than 22.0 dB at 16 MHz b) All disturbers combined on a power sum basis 32.7.3.2 Far end crosstalk noise a) One disturbing pair with ELFEXT (Equal Level Far End Crosstalk) loss greater than 20.9 dB at 1… b) Two additional disturbers with ELFEXT (Equal Level Far End Crosstalk) loss greater than 27.0 d… c) All disturbers combined on a power sum basis 32.7.3.3 External coupled noise |
239 | 32.7.4 Installation practice 32.7.4.1 Connector installation practices 32.7.4.2 Restrictions on use of category 3 cabling with more than four pairs 32.7.4.3 Restrictions on use of category 5 cabling with up to 25 pairs 32.8 MDI specification 32.8.1 MDI connectors Figure 32-25— MDI connector 32.8.2 Crossover function |
240 | Figure 32-26— Balanced cabling connector Table 32-14— Assignment of PMA signals to MDI pin-outs 32.9 System considerations |
241 | 32.10 Environmental specifications 32.10.1 General safety 32.10.2 Network safety a) Direct contact between LAN components and power, lighting, or communications circuits b) Static charge buildup on LAN cabling and components c) High-energy transients coupled onto the LAN cabling system d) Voltage potential differences between safety grounds to which various LAN components are con�n… 32.10.2.1 Installation 32.10.2.2 Grounding 32.10.2.3 Installation and maintenance guidelines 32.10.2.4 Telephony voltages |
242 | 32.10.3 Environment 32.10.3.1 Electromagnetic emission 32.10.3.2 Temperature and humidity 32.10.4 Cabling specifications 32.11 PHY labeling a) Data rate capability in Mb/s b) Power level in terms of maximum current drain (for external PHYs) c) Port type (i.e., 100BASE-T2) d) Any applicable safety warnings 32.12 Delay constraints |
243 | 32.12.1 PHY delay constraints (exposed MII) Table 32-15— �MDI to MII delay constraints (exposed MII) 32.12.2 DTE delay constraints (unexposed MII) Table 32-16— �DTE delay constraints (unexposed MII) |
244 | 32.13 Protocol Implementation Conformance Statement (PICS) proforma for clause 32, Physical Codin… 32.13.1 Identification 32.13.1.1 Implementation identification 32.13.1.2 Protocol summary |
245 | 32.13.2 Major capabilities/options 32.13.3 Compatibility considerations |
246 | 32.13.4 PHY control function |
247 | 32.13.5 Physical Coding Sublayer (PCS) or Physical Medium Attachment sublayer (PMA) 32.13.5.1 PCS transmit functions 32.13.5.2 PCS receive functions�� 32.13.5.3 |
248 | 32.13.5.4 Other PCS functions |
249 | 32.13.5.5 PMA functions |
250 | 32.13.5.6 PMA service interface |
251 | 32.13.5.7 Management functions |
253 | 32.13.5.8 100BASE-T2 specific Auto-Negotiation requirements |
254 | 32.13.5.9 PMA electrical specifications |
260 | 32.13.5.10 Characteristics of the link segment |
262 | 32.13.5.11 MDI requirements 32.13.5.12 General safety and environmental requirements |
263 | 32.13.5.13 Timing requirements exposed MII : 32.13.5.14 Timing requirements unexposed MII : 32.13.5.15 Timing requirements: carrier assertion/deassertion constraint : |
264 | Annex C �[from the 1996 Edition (Appendix B in prior Edition)] (informative) State Diagram, MAC sublayer |
265 | Annex 28B (normative) Physical Layer link signaling for 10 Mb/s and 100 Mb/s Auto- Negotiation on twisted pair a) 100BASE-T2 full duplex b) 100BASE-TX full duplex c) 100BASE-T2 d) 100BASE-T4 e) 100BASE-TX f) 10BASE-T full duplex g) 10BASE-T |
267 | Annex 28C (normative) Next Page Message Code Field definitions Table 28C-1— Message code field values |
268 | Annex 28D (normative) Description of extensions to clause 28 and associated annexes 28D.1 Introduction 28D.2 Extensions to clause 28 28D.2.1 Extensions required for clause 31 (full duplex) 28D.2.2 Extensions required for clause 32 (100BASE-T2) 28D.3 Extensions for clause 31 |
269 | 28D.4 Extensions for clause 32 (100BASE-T2) |
270 | Annex 30A 30A.1 DTE MAC entity managed object class 30A.1.1 DTE MAC entity formal definition |
272 | 30A.1.2 DTE MAC entity attributes |
280 | 30A.1.3 DTE MAC entity actions |
281 | 30A.2 DTE physical entity managed object class 30A.2.1 DTE physical entity formal definition |
282 | 30A.2.2 DTE physical entity attributes |
284 | 30A.2.3 DTE physical entity actions |
285 | 30A.3 DTE MAC control entity managed object class 30A.3.1 DTE MAC control entity formal definition 30A.3.2 DTE MAC Control entity attributes |
286 | 30A.4 DTE MAC Control function entity managed object class 30A.4.1 DTE MAC Control function entity formal definition |
287 | 30A.4.2 DTE MAC Control function entity attributes |
288 | 30A.5 Repeater managed object class 30A.5.1 Repeater, formal definition |
289 | 30A.5.2 Repeater attributes |
291 | 30A.5.3 Repeater actions 30A.5.4 Repeater notifications |
292 | 30A.6 Group managed object class 30A.6.1 Group, formal definition 30A.6.2 Group attributes |
293 | 30A.6.3 Group notifications 30A.7 Repeater port managed object class 30A.7.1 Port, formal definition |
294 | 30A.7.2 Port attributes |
299 | 30A.7.3 Port actions 30A.8 MAU managed object class 30A.8.1 MAU, formal definition |
301 | 30A.8.2 MAU attributes |
303 | 30A.8.3 MAU actions |
304 | 30A.8.4 MAU notifications 30A.9 AutoNegotiation managed object class 30A.9.1 AutoNegotiation, formal definition |
305 | 30A.9.2 Auto-Negotiation attributes |
307 | 30A.9.3 AutoNegotiation actions |
308 | 30A.10 ResourceTypeID managed object class 30A.10.1 ResourceTypeID, formal definition |
309 | Annex 30B (normative) 30B.1 Common attributes template 30B.2 ASN.1 module for CSMA/CD managed objects |
314 | Annex 31A (normative) MAC Control opcode assignments Table 31A-1— MAC Control opcodes Table 31A-2— MAC Control indications |
315 | Annex 31B (normative) MAC Control PAUSE operation 31B.1 PAUSE description a) The globally-assigned 48 bit multicast address 01-80-C2-00-00-01, b) The PAUSE opcode, c) A request_operand indicating the length of time for which it wishes to inhibit data frame tran… 31B.2 Parameter semantics |
316 | 31B.3 Detailed specification of PAUSE operation 31B.3.1 Transmit operation a) The destinationParam is set equal to the destination_address parameter of the MA_DATA.request … b) The sourceParam is set equal to the 48 bit individual address of the station. c) The lengthOrTypeParam is set to the reserved 802.3_MAC_Control value specified in 31.4.1.3. d) The dataParam is set equal to the concatenation of the PAUSE opcode encoding (see Annex 31A), … a) The destinationParam is set equal to the destination_address parameter of the MA_CONTROL.reque… b) The sourceParam is set equal to the 48 bit individual address of the station. c) The lengthOrTypeParam and dataParam are set from the m_sdu field of the MA_DATA.request primit… 31B.3.2 Transmit state diagram for PAUSE operation 31B.3.2.1 Constants 31B.3.2.2 Variables |
317 | 31B.3.2.3 Functions 31B.3.2.4 Timers 31B.3.2.5 Messages 31B.3.2.6 Transmit state diagram for PAUSE operation |
318 | Figure 31B-1— PAUSE Operation transmit state diagram |
319 | 31B.3.3 Receive operation 31B.3.4 Receive state diagram for PAUSE operation 31B.3.4.1 Constants 31B.3.4.2 Variables |
320 | 31B.3.4.3 Timers 31B.3.4.4 Receive state diagram (INITIATE MAC CONTROL FUNCTION) for PAUSE operation Figure 31B-2— PAUSE operation receive state diagram 30B.3.5 Status indication operation 31B.3.6 Indication state diagram for pause operation 31B.3.6.1 Constants 31B.3.6.2 Variables |
321 | 31B.3.6.3 Messages 31B.3.6.4 Indication state diagram for PAUSE operation Figure 31B-3— PAUSE operation indication state diagram 31B.3.7 Timing considerations for PAUSE operation |
322 | 31B.4 Protocol Implementation Conformance Statement (PICS) proforma for PAUSE operation 31B.4.1 Introduction 31B.4.2 Identification 31B.4.2.1 Implementation identification 31B.4.2.2 Protocol summary |
323 | 31B.4.3 Major capabilities/options������ 31B.4.4 PAUSE command requirements 31B.4.5 PAUSE command state diagram requirements 31B.4.6 PAUSE command MAC timing considerations������ |
324 | Annex 32 A (informative) Use of cabling systems with nominal differential characteristic impedance of 120 ½ or 150 ½ a) increased echo due primarily to poorer hybrid performance b) increased cabling attenuation roughness due to increased reflections c) increased transmitter launch amplitude d) possible non-linearities in transmitter |