Shopping Cart

No products in the cart.

IEEE 802.3x 1997

$139.75

IEEE Standards for Local and Metropolitan Area Networks: Specification for 802.3 Full Duplex Operation

Published By Publication Date Number of Pages
IEEE 1997 325
Guaranteed Safe Checkout
Category:

If you have any questions, feel free to reach out to our online customer service team by clicking on the bottom right corner. We’re here to assist you 24/7.
Email:[email protected]

Amendment Standard – Inactive – Superseded. Superseded by IEEE Std 802.3-2002 Necessary changes and additions are made to provide for an additional, full duplex mode of operation on a speed-independent basis. Changes are made to the MAC and selected Physical Layer implementations (10BASE-T, 10BASE-FL, 100BASE-T) to support full duplex. A mechanism for pause-based flow control is also added.p> Abstract 802.3y: Changes and additions to the 100BASE-T portion of IEEE Std 802.3 are provided to specify an additional 100 Mb/s transceiver type 100BASE-T, which can support full duplex operation over two pairs of Category 3 or better cabling.

PDF Catalog

PDF Pages PDF Title
1 Important notice!
2 IEEE Std 802.3x-1997 and
IEEE Standards for Local and Metropolitan Area Networks:
Supplements to Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and…
Specification for 802.3 Full Duplex Operation and Physical Layer Specification for 100 Mb/s Opera…
4 Introduction
(This introduction is not part of IEEE Std 802.3x-1997 and IEEE Std 802.3y-1997.)
5 Conformance test methodology
6 IEEE Std 802.3x-1997 and IEEE Std 802.3y-1997
7 Geoffrey O. Thompson, Chair
David Law, Vice Chair
Rich Seifert, Chair and Editor, 802.3x Task Force
10 CONTENTS
16 IEEE Standards for Local and Metropolitan Area Networks: Supplement to Carrier Sense Multiple Acc…
1. Introduction
1.1 Overview
1.1.1 Basic concepts
17 1.1.1.1 Half duplex operation
1.1.1.2 Full duplex operation
a) The physical medium is capable of supporting simultaneous transmission and reception without i…
b) There are exactly two stations connected with a full duplex point-to-point link. Since there i…
c) Both stations on the LAN are capable of, and have been configured to use, full duplex operation.
18 Figure 1-1— ISO/IEC 8802-3 relationship to the ISO/IEC Open Systems Interconnection (OSI) referen…
1.1.3 Layer interfaces
a) The interface between the MAC sublayer and the LLC sublayer its client includes facilities for…
b) The interface between the MAC sublayer and the Physical Layer in�cludes sig�nals for framing (…
19 1.3 References
1.4 Definitions
24 2. MAC service specification
2.1 Scope and field of application
Figure 2-1a— Service specification relation to the LAN model
25 2.2 Overview of the service
2.2.1 General description of services provided by the layer
2.2.2 Model used for the service specification
2.2.3 Overview of interactions
Figure 2-1b— Service specification primitive relationships (optional MAC control sublayer impleme…
26 2.3 Detailed service specification
2.3.1 MA_DATA.request
2.3.1.1 Function
2.3.1.2 Semantics of the service primitive
2.3.1.3 When generated
2.3.1.4 Effect of receipt
2.3.2 MA_DATA.indication
2.3.2.1 Function
27 2.3.2.2 Semantics of the service primitive
2.3.2.3 When generated
2.3.2.4 Effect of receipt
2.3.2.5 Additional comments
2.3.3 MA_CONTROL.request
2.3.3.1 Function
28 2.3.3.2 Semantics of the service primitive
2.3.3.3 When generated
2.3.3.4 Effect of receipt
2.3.4 MA_CONTROL.indication
2.3.4.1 Function
2.3.4.2 Semantics of the service primitive
2.3.4.3 When generated
2.3.4.4 Effect of receipt
29 3. MAC Media access control frame structure
3.1 Overview
3.1.1 MAC frame format
Figure 3-1— MAC frame format
30 3.2.3 Address fields
Figure 3-2— Address field format���
31 3.2.3.1 Address designation
a) Individual Address. The address associated with a particular station on the network.
b) Group Address. A multidestination address, associated with one or more stations on a given net…
3.2.6 Length/Type field
a) If the value of this field is less than or equal to the value of maxValidFrame (as specified i…
b) If the value of this field is greater than or equal to 1536 decimal (equal to 0600 hexadecimal…
32 3.2.7 Data and PAD fields
3.2.8 Frame check sequence (FCS) field
a) The first 32 bits of the frame are complemented.
b) The n bits of the frame are then considered to be the coefficients of a poly�nomial M(x) of de…
c) M(x) is multiplied by x32 and divided by G(x), producing a remainder R(x) of de�gree < £ 31. (…
d) The coefficients of R(x) are considered to be a 32-bit sequence.
e) The bit sequence is complemented and the result is the CRC.
33 3.4 Invalid MAC frame
a) The frame length is inconsistent with the a length field value specified in the length/type fi…
b) It is not an integral number of octets in length.
c) The bits of the incoming frame (exclusive of the FCS field itself) do not generate a CRC value…
34 4. Media access control
4.1 Functional model of the media access control method
4.1.1 Overview
a) In half duplex mode, stations contend for the use of the physical medium, using the CSMA/CD al…
b) The full duplex mode of operation can be used when all of the following are true:
35 4.1.2 CSMA/CD operation
Figure 4-1— MAC sublayer partitioning, relationship to the ISO Open Systems Interconnection (OSI)…
4.1.2.1 Normal operation
4.1.2.1.1 Transmission without contention
36 4.1.2.1.2 Reception without contention
4.1.2.2 Access interference and recovery
37 4.1.3 Relationships to the LLC sublayer MAC client and Physical Layer Layers
4.1.4 CSMA/CD access method functional capabilities
38 Figure 4-2— CSMA/CD Media Access Control functions
a) For Frame Transmission
b) For Frame Reception
3) Discards or passes to Network Management all frames not addressed to the receiving station
c) In half duplex mode, defers transmission of a bit-serial stream whenever the physical medium i…
d) Appends proper FCS value to outgoing frames and verifies full octet boundary alignment
e) Checks incoming frames for transmission errors by way of FCS and verifies octet boundary align…
f) Delays transmission of frame bit stream for specified interframe gap period
g) In half duplex mode, halts transmission when collision is detected
h) In half duplex mode, schedules retransmission after a collision until a specified retry limit …
i) In half duplex mode, enforces collision to ensure propagation throughout network by sending ja…
j) Discards received transmissions that are less than a minimum length
k) Appends preamble, Start Frame Delimiter, DA, SA, length count/type field, and FCS to all frame…
l) Removes preamble, Start Frame Delimiter, DA, SA, length count/type field, FCS and pad field (i…
39 4.2 CSMA/CD Media Access Control (MAC) method: Precise specification
4.2.2.1 Ground rules for the procedural model
4.2.2.3 Organization of the procedural model
a) Frame Transmitter process
b) Frame Receiver process
c) Bit Transmitter process
d) Bit Receiver process
e) Deference process
40 Figure 4-3— Relationship among CSMA/CD procedures
41 Figure 4-4a— Control flow summary
42 Figure 4-4b— Control flow summary
43 Figure 4-5— Control flow: MAC sublayer
44 4.2.3 Frame transmission model
a) Transmit Data Encapsulation includes the assembly of the outgoing frame (from the values provi…
b) Transmit Media Access Management includes carrier deference, interframe spacing, collision det…
4.2.3.1 Transmit data encapsulation
4.2.3.1.1 Frame assembly
4.2.3.1.2 Frame check sequence generation
4.2.3.2 Transmit media access management
4.2.3.2.1 Carrier Deference
a) Half duplex mode
45 b) Full duplex Mode
4.2.3.2.3 Collision handling (half duplex mode only)
4.2.3.2.4 Collision detection and enforcement (half duplex mode only)
4.2.3.2.5 Collision backoff and retransmission (half duplex mode only)
4.2.3.2.6 Full duplex transmission
4.2.3.3 Minimum frame size
4.2.4 Frame reception model
a) Receive Data Decapsulation comprises address recognition, frame check se�quence validation, an…
b) Receive Media Access Management comprises recognition of collision frag�ments from incoming fr…
46 4.2.4.1 Receive data decapsulation
4.2.4.1.3 Frame disassembly
4.2.4.2 Receive media access management
4.2.4.2.1 Framing
4.2.4.2.2 Collision filtering
4.2.6 Start frame sequence
4.2.7.1 Common constants and types
47 4.2.7.2 Transmit state variables
48 4.2.7.3 Receive state variables
4.2.7.4 Summary of interlayer interfaces
a) The interface to the LLC sublayer MAC client, defined in 4.3.2, is summarized be�low:
b) The interface to the Physical Layer, defined in 4.3.3, is summarized in the following:
49 4.2.7.5 State variable initialization
4.2.8 Frame transmission
53 4.2.9 Frame reception
56 4.2.10 Common procedures
57 4.3 Interfaces to/from adjacent layers
4.3.1 Overview
4.3.2 Services provided by the MAC sublayer
58 4.3.3 Services required from the physical layer
60 4.4 Specific implementations
4.4.1 Compatibility overview
4.4.2 Allowable implementations
4.4.2.1 Parameterized values
4.4.2.2 Parameterized values
4.4.2.3 Parameterized values
4.4.3 Configuration guidelines
62 6. PLS service specifications
6.2 Overview of the service
6.2.3 Overview of interactions
a) Service primitives that support MAC peer-to-peer interactions.
b) Service primitives that have local significance and support sublayer-to-sublayer interactions.
a) Peer-to-Peer
b) Sublayer-to-Sublayer
Figure 6-1— Service specification relationship to the IEEE 802.3 CSMA/CD LAN model
63 6.2.4 Basic services and options
6.3 Detailed service specification
6.3.1 Peer-to-Peer service primitives
6.3.1.2 PLS_DATA.indication
6.3.1.2.1 Function
6.3.1.2.2 Semantics of the service primitive
6.3.1.2.3 When generated
6.3.1.2.4 Effect of receipt
6.3.2 Sublayer-to-Sublayer service primitives
6.3.2.3 PLS_DATA_VALID.indication
6.3.2.3.1 Function
64 6.3.2.3.2 Semantics of the service primitive
6.3.2.3.3 When generated
6.3.2.3.4 Effect of receipt
65 7. Physical Signaling (PLS) and Attachment Unit In�terface (AUI) specifications
7.1 Scope
Figure 7-1— Physical layer partitioning, relationship to the ISO Open Systems Interconnection (OS…
a) Capable of supporting one or more of the specified data rates
b) Capable of driving up to 50 m (164 ft) of cable
c) Permits the DTE to test the AUI, AUI cable, MAU, and the medium itself
d) Supports MAUs for baseband coax, baseband twisted pair, broadband coax, and baseband fiber
66 7.1.3 Application
a) Provide the DTE with media independence for baseband coax, baseband twisted pair, broadband co…
b) Provide for the separation by cable of up to 50 m (164 ft) the DTE and the MAU.
7.1.4 Modes of operation
7.2 Functional specification
7.2.1 PLS–PMA (DTE–MAU) interface protocol
7.2.1.2 PMA to PLS interface
67 7.2.1.2.3 signal_quality_error message
a) Improper Signals On The Medium. The MAU may send the sig�nal_quality_error message at any time…
b) Collision. Collision occurs when more than one MAU is transmitting on the medium. The local MA…
c) signal_quality_error Message Test. The MAU sends the signal_qual�ity_error message at the comp…
7.2.2 PLS Interface to MAC and management entities
7.2.2.1 PLS–MAC interface
68 7.2.2.1.6 DATA_VALID_STATUS
7.2.2.2 PLS-Management entity Interface
7.2.2.2.4 SQE_TEST
7.2.4 PLS functions
Figure 7-6— PLS Input and Data_Valid function
69 7.2.4.3 Output function
7.2.4.4 Input function
7.2.4.6 Carrier sense function
7.3 Signal characteristics
7.3.2 Signaling rate
70 13. System considerations for multi-segment 10 Mb/s baseband networks
13.5 Full duplex topology limitations
71 14. Twisted-Pair Medium Attachment Unit (MAU) and baseband medium, Type 10BASE-T
14.1 Scope
14.1.2 Overview
14.1.1.1 Medium Attachment Unit (MAU)
a) Enables coupling the Physical Signaling (PLS) sublayer by way of the Attachment Unit Interface…
b) Supports message traffic at a data rate of 10�Mb/s.
c) Provides for operating over 0 to at least 100�m (328�ft) of twisted pair with�out the use of a…
d) Permits the Data Terminal Equipment (DTE) or repeater to confirm op�eration of the MAU and ava…
e) Supports network configurations using CSMA/CD access method de�fined in ISO/IEC�8802�3 this In…
f) Supports a point-to-point interconnection between MAUs and, when used with repeaters having mu…
g) Allows incorporation of the MAU within the physical bounds of a DTE or repeater.
h) Allows for either half duplex operation, full duplex operation, or both.�
Figure 14-1— 10BASE-T relationship to the ISO Open Systems Interconnection (OSI) reference model …
72 14.1.3 Application perspective
14.1.3.3 Mode Modes of operation
14.2 MAU functional specifications
a) Transmit function. Provides the ability to transfer Manchester-encoded data from the DO circui…
b) Receive function. Provides the ability to transfer Manchester-encoded data from the RD circuit…
c) Loopback function (half duplex mode only). Provides the ability to transfer Manchester-encoded…
d) Collision Presence function. Provides the ability to detect the simultaneous occurrence of Man…
e) signal_quality_error Message (SQE) Test function. Provides the ability to indicate to the DTE …
f) Jabber function. Provides the ability to prevent abnormally long recep�tion of Manchester-enco…
g) Link Integrity Test function. Provides the ability to protect the network from the consequence…
h) Auto-Negotiation. Optionally provides the capability for a device at one end of a link segment…
73 14.2.1 MAU functions
14.2.1.3 Loopback function requirements (half duplex mode only)
74 14.2.1.4 Collision presence function requirements (half duplex mode only)
14.2.1.5 signal_quality_error Message (SQE) test function require�ments
14.2.1.6 Jabber function requirements
a) In�hibit the Loopback function and the transmission of TD_output messages by the Transmit func…
b) Send the CS0 signal on the CI circuit, when the MAU is connected to a DTE operating in half du…
75 14.2.1.8 Auto-Negotiation
14.2.3 MAU state diagrams
76 Figure 14-3a— MAU transmit, receive, loopback, and collision presence functions state�diagram (ha…
Figure 14-3b— MAU transmit and receive functions state diagram (full duplex mode)
77 Figure 14-5— Jabber function state diagram
78 14.8 MAU labeling
a) Data rate capability in Mb/s
b) Power level in terms of maximum current drain (for external MAUs)
c) Any applicable safety warnings
d) Duplex capabilities
14.10 (Changes to) PICS proforma for 10BASE-T
79 15. Fiber optic medium and common elements of medium attachment units and star, Type 10BASE-F
15.1 Scope
15.1.1 Overview
15.1.3 Applications perspective: MAUs, stars, and fiber optic medium
15.1.3.4 Guidelines for systems implementation
80 15.1.3.5 Mode Modes of operation
15.7 MAU labeling
a) Whether 10BASE-FP MAU, 10BASE-FB MAU or 10BASE-FL MAU
b) Data rate capability in Mb/s
c) Power level in terms of maximum current drain (for external MAUs as required by 15.5.3)
d) Any applicable safety warnings
e) Which connector is input and which is output
f) For 10BASE-FP MAUs, the Manufacturer ID and the MAU ID in two separate fields (see 16.3.1.1.3)
g) For 10BASE-FL MAUs, if it is capable of full duplex operation
82 18. Fiber optic medium attachment unit, Type 10BASE-FL
18.3 MAU functional specifications
a) Transmit function. Provides the ability to transfer Manchester encoded data from the DO circui…
b) Receive function. Provides the ability to transfer Manchester encoded data from the ORD circui…
c) Loopback function (half duplex mode only). Provides the ability to transfer Manchester encoded…
d) Collision Presence function. Provides the ability to detect simultaneous occurrence of Manches…
e) Signal_quality_error Message (SQE) Test function. Provides the ability to indicate to the DTE …
f) Jabber function. Provides the ability to prevent abnormally long reception of Manchester encod…
g) Link Integrity Test function. Provides the ability to protect the network from the consequence…
18.3.1 MAU functions
83 18.3.1.3 Loopback function requirements (half duplex mode only)
18.3.1.4 Collision presence function requirements (half duplex mode only)
18.3.1.5 Signal_quality_error message (SQE) test function requirements
84 18.3.1.6 Jabber function requirements
a) In�hibit the Loopback function and the transmission of OTD_output messages by the Transmit fun…
b) Send the CS0 signal on the CI circuit, when the MAU is connected to a DTE operating in half du…
18.3.1.8 Auto-Negotiation
18.3.2 MAU State diagrams
85 Figure 18-1a— MAU transmit, receive, loopback, and collision presence functions�state�diagram (ha…
86 Figure 18-3— Jabber function state diagram
87 18.5 Protocol implementation conformance statement (PICS) proforma for clause 18, fiber optic med…
18.5.2.2 Abbreviations
18.5.5 Major capabilities/options���
88 18.5.6.5 MAU functions
18.5.6.11 Loopback function��
89 18.5.6.12 Collision presence function��
18.5.6.13 Signal_quality_error message (SQE) test function��
90 18.5.6.14 Jabber function��
18.5.6.16 MAU state diagram requirements
91 18.5.6.25 signal_quality_error message (SQE)
18.5.6.27 MAU labeling����
92 21. Introduction to 100�Mb/s baseband networks, Type 100BASE-T
21.5.4 Operators
Table 21-1— State machine operators�
21.6.2 Abbreviations and special symbols
93 a) Within the section Balanced Cabling Link Class C (specified up to 16 MHz): CSMA/CD 100BASE-T2 …
b) Within the section Optical Link: CSMA/CD 100BASE-FX ISO/IEC 8802-3/DAD 1995 2
c) Within the section Balanced Cabling Link Class D (Defined up to 100 MHz): CSMA/CD 100BASE-TX I…
21.8 MAC delay constraints (exposed MII)
94 Figure 22-3— Reconciliation sublayer (RS) inputs and outputs and STA connections to MII
22. Reconciliation sublayer (RS) and Media Independent Interface (MII)
22.1 Overview
g) It provides for full duplex operation.
22.2.1.7.1 Function
22.2.1.7.2 Semantics of the service primitive
95 22.2.1.7.3 When generated
22.2.2.7 RXD (receive data)
22.2.4 Management functions
22.2.4.1.3 Speed selection
22.2.4.1.8 Duplex mode
96 22.2.4.2 Extended capability registers
Table 22-6— MII Management register set
97 Table 22-8— Status register bit definitions
98 22.2.4.2.7 100BASE-T2 half duplex ability
22.2.4.2.8 Reserved bits
22.2.4.3.6 Auto-Negotiation link partner Received Next Page (Register 8)
22.2.4.3.7 100BASE-T2 Control register (register 9)
22.2.4.3.8 100BASE-T2 Status register (register 10)
99 22.7.3.4 Management functions
102 23. Physical Coding Sublayer (PCS), Physical Medium Attachment (PMA) sublayer and baseband medium…
a) Support the CSMA/CD MAC in the half duplex mode of operation.
103 24. Physical coding sublayer (PCS) and Physical Medium Attachment (PMA) sublayer, Type 100BASE-X
a) Support the CSMA/CD MAC in the half duplex and the full duplex modes of operation.
b) Support the 100BASE-T MII, repeater, and optional Auto-Negation.
c) Provide 100 Mb/s data rate at the MII.
d) Support cable plants using Category 5 UTP, 150 ½ STP or optical fiber, compliant with ISO/IEC …
e) Allow for a nominal network extent of 200–400 m, including
1) unshielded twisted-pair links of 100 m;
2) two repeater networks of approximately 200 m span;
3) one repeater networks of approximately 300 m span (using fiber); and
4) DTE/DTE links of approximately 400 m (half duplex mode using fiber) and 2 km (full duplex mode…
f) Preserve full duplex behavior of underlying PMD channels.
Table 24-2a— MDI to MII delay constraints (exposed MII, half duplex mode)
104 Table 24-2b— PHY delay constraints (exposed MII, full duplex mode)
Table 24-3a— DTE delay constraints (unexposed MII, half duplex mode)
24.6.3 Carrier de-assertion/assertion constraint (half duplex mode only)
105 27. Repeater for 100 Mb/s baseband networks
Table 27-1— Start-of-packet variability
106 Table 27-2— Start-of-packet propagation and start-of-collision jam propagation delays
27.3.1.5.1 100BASE-X and 100BASE-T2 carrier integrity functional requirements
108 Figure 27-9— 100BASE-X/T2 carrier integrity monitor state diagram for port X
109 Figure 27-10— 100BASE-T2 transmit state diagram for port X
110 a) Data rate capability in Mb/s
b) Any applicable safety warnings
c) Port type, i.e., 100BASE-TX, and 100BASE-T4, or 100BASE-T2
d) Worst-case bit time delays between any two ports appropriate for
1) Start-of-packet propagation delay
2) Start-of-collision Jam propagation delay
3) Cessation-of-collision Jam propagation delay
112 28. Physical Layer link signaling for 10 Mb/s and 100 Mb/s Auto-Negotiation on twisted pair
113 Figure 28-13— Functional reference diagram
114 29. System considerations for multi-segment 100BASE-T networks
115 29.4 Full duplex 100 Mb/s topology limitations
Table 29-5— Link segment length limits; 100Mb/s full duplex segments
116 Changes to
30. 10 Mb/s and 100 Mb/s management
Change the text of 30.1 to read as follows:
30.1 Overview
117 30.1.1 Scope
30.1.2 Relationship to objects in IEEE 802.1F
30.1.3 Systems management overview
118 30.1.4 Management model
Figure 30-1— Interaction between manager, agent, and objects
a) Attributes. Data-like properties (as seen by management) of a managed object.
b) Actions. Operations that a managing process may perform on an object or its attributes.
c) Notifications. Unsolicited reports of events that may be generated by an object.
d) Behaviour. The way in which managed objects, attributes, and actions interact with the actual …
119 30.2 Managed objects
30.2.1 Introduction
30.2.2 Overview of managed objects
a) Identify a resource
b) Control a resource
c) Monitor a resource
30.2.2.1 Text description of managed objects
121 30.2.2.2 Functions to support management
30.2.2.2.1 DTE MAC sublayer functions
a) frameTooLong
b) alignmentError
c) frameCheckError
d) lengthError
30.2.2.2.2 Repeater functions
Figure 30-2— Functions relationship
123 30.2.3 Containment
Figure 30-3— 10/100 Mb/s entity relationship diagram
30.2.4 Naming
124 30.2.5 Capabilities
125 Table 30-1a— Capabilities�
126 Table 30-1b— Capabilities�
127 Table 30-1c— Capabilities
128 Table 30-1d— Capabilities�
129 Table 30-1e— Capabilities�
130 30.3 Layer management for DTEs
30.3.1 MAC entity managed object class
30.3.1.1 MAC entity attributes
30.3.1.1.1 aMACID
30.3.1.1.2 aFramesTransmittedOK
30.3.1.1.3 aSingleCollisionFrames
30.3.1.1.4 aMultipleCollisionFrames
131 30.3.1.1.5 aFramesReceivedOK
30.3.1.1.6 aFrameCheckSequenceErrors
30.3.1.1.7 aAlignmentErrors
30.3.1.1.8 aOctetsTransmittedOK
132 30.3.1.1.9 aFramesWithDeferredXmissions
30.3.1.1.10 aLateCollisions
30.3.1.1.11 aFramesAbortedDueToXSColls
30.3.1.1.12 aFramesLostDueToIntMACXmitError
133 30.3.1.1.13 aCarrierSenseErrors
30.3.1.1.14 aOctetsReceivedOK
30.3.1.1.15 aFramesLostDueToIntMACRcvError
30.3.1.1.16 aPromiscuousStatus
134 30.3.1.1.17 aReadMulticastAddressList
30.3.1.1.18 aMulticastFramesXmittedOK
30.3.1.1.19 aBroadcastFramesXmittedOK
30.3.1.1.20 aFramesWithExcessiveDeferral
135 30.3.1.1.21 aMulticastFramesReceivedOK
30.3.1.1.22 aBroadcastFramesReceivedOK
30.3.1.1.23 aInRangeLengthErrors
30.3.1.1.24 aOutOfRangeLengthField
136 30.3.1.1.25 aFrameTooLongErrors
30.3.1.1.26 aMACEnableStatus
30.3.1.1.27 aTransmitEnableStatus
30.3.1.1.28 aMulticastReceiveStatus
137 30.3.1.1.29 aReadWriteMACAddress
30.3.1.1.30 aCollisionFrames
30.3.1.1.31 aMACCapabilities
ATTRIBUTE
APPROPRIATE SYNTAX:
BEHAVIOUR DEFINED AS:
30.3.1.1.32 aDuplexStatus
ATTRIBUTE
APPROPRIATE SYNTAX:
BEHAVIOUR DEFINED AS:
138 30.3.1.2 MAC entity actions
30.3.1.2.1 acInitializeMAC
30.3.1.2.2 acAddGroupAddress
30.3.1.2.3 acDeleteGroupAddress
30.3.1.2.4 acExecuteSelfTest
30.3.2 PHY entity managed object class
139 30.3.2.1 PHY entity attributes
30.3.2.1.1 aPHYID
30.3.2.1.2 aPhyType
140 30.3.2.1.3 aPhyTypeList
30.3.2.1.4 aSQETestErrors
30.3.2.1.5 aSymbolErrorDuringCarrier
30.3.2.1.6 aMIIDetect
141 30.3.2.1.7 aPhyAdminState
30.3.2.2 PHY entity actions
30.3.2.2.1 acPhyAdminControl
30.3.3 MAC control entity object class
30.3.3.1 aMACControlID
ATTRIBUTE
APPROPRIATE SYNTAX:
BEHAVIOUR DEFINED AS:
142 30.3.3.2 aMACControlFunctionsSupported
ATTRIBUTE
APPROPRIATE SYNTAX:
BEHAVIOUR DEFINED AS:
30.3.3.3 aMACControlFramesTransmitted
ATTRIBUTE
APPROPRIATE SYNTAX:
BEHAVIOUR DEFINED AS:
30.3.3.4 aMACControlFramesReceived
ATTRIBUTE
APPROPRIATE SYNTAX:
BEHAVIOUR DEFINED AS:
30.3.3.5 aUnsupportedOpcodesReceived
ATTRIBUTE
APPROPRIATE SYNTAX:
BEHAVIOUR DEFINED AS:
143 30.3.4 PAUSE entity managed object class
30.3.4.1 aPAUSELinkDelayAllowance
ATTRIBUTE
APPROPRIATE SYNTAX:
BEHAVIOUR DEFINED AS:
30.3.4.2 aPAUSEMACCtrlFramesTransmitted
ATTRIBUTE
APPROPRIATE SYNTAX:
BEHAVIOUR DEFINED AS:
30.3.4.3 aPAUSEMACCtrlFramesReceived
ATTRIBUTE
APPROPRIATE SYNTAX:
BEHAVIOUR DEFINED AS:
30.4 Layer management for 10 and 100 Mb/s baseband repeaters
30.4.1 Repeater managed object class
144 30.4.1.1 Repeater attributes
30.4.1.1.1 aRepeaterID
30.4.1.1.2 aRepeaterType
30.4.1.1.3 aRepeaterGroupCapacity
30.4.1.1.4 aGroupMap
145 30.4.1.1.5 aRepeaterHealthState
30.4.1.1.6 aRepeaterHealthText
30.4.1.1.7 aRepeaterHealthData
30.4.1.1.8 aTransmitCollisions
146 30.4.1.2 Repeater actions
30.4.1.2.1 acResetRepeater
30.4.1.2.2 acExecuteNonDisruptiveSelfTest
30.4.1.3 Repeater notifications
30.4.1.3.1 nRepeaterHealth
147 30.4.1.3.2 nRepeaterReset
30.4.1.3.3 nGroupMapChange
30.4.2 Group managed object class
30.4.2.1 Group attributes
30.4.2.1.1 aGroupID
148 30.4.2.1.2 aGroupPortCapacity
30.4.2.1.3 aPortMap
30.4.2.2 Group notifications
30.4.2.2.1 nPortMapChange
30.4.3 Repeater port managed object class
30.4.3.1 Port attributes
30.4.3.1.1 aPortID
149 30.4.3.1.2 aPortAdminState
30.4.3.1.3 aAutoPartitionState
30.4.3.1.4 aReadableFrames
30.4.3.1.5 aReadableOctets
150 30.4.3.1.6 aFrameCheckSequenceErrors
30.4.3.1.7 aAlignmentErrors
30.4.3.1.8 aFramesTooLong
30.4.3.1.9 aShortEvents
151 30.4.3.1.10 aRunts
30.4.3.1.11 aCollisions
30.4.3.1.12 aLateEvents
152 30.4.3.1.13 aVeryLongEvents
30.4.3.1.14 aDataRateMismatches
30.4.3.1.15 aAutoPartitions
153 30.4.3.1.16 aIsolates
30.4.3.1.17 aSymbolErrorDuringPacket
30.4.3.1.18 aLastSourceAddress
30.4.3.1.19 aSourceAddressChanges
154 30.4.3.2 Port actions
30.4.3.2.1 acPortAdminControl
30.5 Layer management for 10 and 100 Mb/s medium attachment units (MAUs)
30.5.1 MAU managed object class
30.5.1.1 MAU attributes
30.5.1.1.1 aMAUID
30.5.1.1.2 aMAUType
ATTRIBUTE
APPROPRIATE SYNTAX:
155 BEHAVIOUR DEFINED AS:
30.5.1.1.3 aMAUTypeList
30.5.1.1.4 aMediaAvailable
156 30.5.1.1.5 aLoseMediaCounter
30.5.1.1.6 aJabber
30.5.1.1.7 aMAUAdminState
157 30.5.1.1.8 aBbMAUXmitRcvSplitType
30.5.1.1.9 aBroadbandFrequencies
30.5.1.1.10 aFalseCarriers
158 30.5.1.1.11 aIdleErrorCount
ATTRIBUTE
APPROPRIATE SYNTAX:
BEHAVIOUR DEFINED AS:
30.5.1.2 MAU actions
30.5.1.2.1 acResetMAU
30.5.1.2.2 acMAUAdminControl
30.5.1.3 MAU notifications
30.5.1.3.1 nJabber
30.6 Management for link Auto-Negotiation
30.6.1 Auto-Negotiation managed object class
30.6.1.1 Auto-Negotiation attributes
159 30.6.1.1.1 aAutoNegID
30.6.1.1.2 aAutoNegAdminState
30.6.1.1.3 aAutoNegRemoteSignaling
30.6.1.1.4 aAutoNegAutoConfig
30.6.1.1.5 aAutoNegLocalTechnologyAbility
ATTRIBUTE
APPROPRIATE SYNTAX:
160 BEHAVIOUR DEFINED AS:
30.6.1.1.6 aAutoNegAdvertisedTechnologyAbility
30.6.1.1.7 aAutoNegReceivedTechnologyAbility
30.6.1.1.8 aAutoNegLocalSelectorAbility
161 30.6.1.1.9 aAutoNegAdvertisedSelectorAbility
30.6.1.1.10 aAutoNegReceivedSelectorAbility
30.6.1.2 Auto-Negotiation actions
30.6.1.2.1 acAutoNegRestartAutoConfig
30.6.1.2.2 acAutoNegAdminControl
162 31. MAC control
31.1 Overview
31.2 Layer architecture
Figure 31-1— Architectural positioning of MAC Control sublayer
31.3 Support by interlayer interfaces
163 Figure 31-2— MAC Control sublayer support of interlayer service interfaces
164 31.4 MAC Control frames
31.4.1 MAC Control frame format
Figure 31-3— MAC Control frame format
31.4.1.1 Destination address field
31.4.1.2 Source address field
31.4.1.3 Length/Type field
165 31.4.1.4 MAC Control opcode
31.4.1.5 MAC Control parameters
31.4.1.6 Reserved field
31.5 Opcode-independent MAC Control sublayer operation
31.5.1 Frame parsing and data frame reception
a) The destination_address parameter is set equal to the destinationParam from the ReceiveFrame f…
b) The source_address parameter is set equal to the sourceParam from the ReceiveFrame function.
c) The m_sdu parameter is set equal to the concatenation of the lengthOrTypeParam and the dataPar…
d) The reception_status parameter is set equal to the ReceiveStatus from the ReceiveFrame function.
166 31.5.2 Control frame reception
31.5.3 Opcode-independent MAC control receive state diagram
31.5.3.1 Constants
31.5.3.2 Variables
31.5.3.3 Functions
31.5.3.4 Messages
167 31.5.3.5 Opcode-independent MAC Control receive state diagram
Figure 31-4— Generic MAC Control Receive State Diagram
31.6 Compatibility requirements
31.7 MAC Control client behavior
168 31.8 Protocol Implementation Conformance Statement (PICS) proforma for clause 31, MAC Control
31.8.1 Introduction
31.8.2 Identification
31.8.2.1 Implementation identification
31.8.2.2 Protocol summary
169 31.8.3 PICS proforma for MAC control frames
31.8.3.1 Support by interlayer interfaces
31.8.3.2 MAC control frame format
31.8.3.3 Opcode-independent MAC control sublayer operation
31.8.3.4 Control opcode assignments
170 32. Physical coding sublayer (PCS), physical medium attachment (PMA) sublayer and baseband medium…
32.1 Overview
a) Support the CSMA/CD MAC
b) Support the 100BASE-T MII, Repeater and Auto-Negotiation
c) Support Full-Duplex operations (clause 31)
d) Provide 100 Mb/s data rate at the MII
e) Provide for operating over two pairs of category 3, 4, or 5 balanced twisted pair cabling syst…
f) Support operation of other applications on adjacent pairs
g) Allow for a nominal network extent of 200 m including
1) Balanced cabling links of 100 m to support both half duplex and full duplex operation
2) Two-repeater networks of approximately 200 m span
h) Provide a communication channel with a symbol error rate of less than one part in 1010 at the …
32.1.1 Relation of 100BASE-T2 to other standards
171 Figure 32-1— Type 100BASE-T2 PHY relationship to the ISO Open Systems Interconnection (OSI) Refer…
172 32.1.2 Operation of 100BASE-T2
Figure 32-2— 100BASE-T2 topology
Figure 32-3— PAM5x5 symbol constellation
173 Figure 32-4— Division of responsibilities between 100BASE-T2 PCS, PMA, and PHY Control
174 32.1.2.1 Physical coding sublayer (PCS)
32.1.2.2 Physical medium attachment (PMA) sublayer
32.1.2.3 PHY Control function
175 32.1.3 Application of 100BASE-T2
32.1.3.1 Compatibility considerations
32.1.3.2 Incorporating the 100BASE-T2 PHY into a DTE
32.1.3.3 Use of 100BASE-T2 PHY for point-to-point communication
32.1.3.4 Auto-Negotiation requirement
32.1.4 State diagram conventions
32.2 PHY Control functional specifications and service interface
32.2.1 PHY Control function
176 32.2.2 PHY Control Service interface
32.2.2.1 PHYC_CONFIG.indicate
32.2.2.1.1 Semantics of the primitive
177 32.2.2.1.2 When generated
32.2.2.1.3 Effect of receipt
32.2.2.2 PHYC_TXMODE.indicate
32.2.2.2.1 Semantics of the primitive
32.2.2.2.2 When generated
32.2.2.2.3 Effect of receipt
32.2.2.3 PHYC_RXSTATUS.request
32.2.2.3.1 Semantics of the primitive
178 32.2.2.3.2 When generated
32.2.2.3.3 Effect of receipt
32.2.2.4 PHYC_REMRXSTATUS.request
32.2.2.4.1 Semantics of the primitive
32.2.2.4.2 When generated
32.2.2.4.3 Effect of receipt
32.2.3 State diagram variables
179 32.2.4 State diagram timers
180 32.2.5 PHY Control state diagram
Figure 21-5— PMA control state diagram for master PHY
32.3 PCS functional specifications
181 Figure 32-6— PCS reference diagram
32.3.1 PCS functions
32.3.1.1 PCS Reset function
32.3.1.2 PCS Transmit function
182 Figure 32-7— PCS Transmit reference diagram
183 32.3.1.2.1 Side-stream scrambler polynomials
Figure 32-8— Realization of side-stream scramblers by linear feedback shift registers
32.3.1.2.2 Generation of bits San[2:0] and Sbn[2:0]
184 32.3.1.2.3 Generation of sequences An and Bn
186 Figure 32-9— Symbol mapping and encoding rule summary
Figure 32-10— Symbol constellations in idle and data modes
32.3.1.3 PCS Receive function
187 32.3.1.3.1 Receiver descrambler polynomials
32.3.1.3.2 Decoding of quinary symbols
Table 32-1— �Inverse quinary symbol mapping
32.3.1.4 PCS Carrier Sense function
188 32.3.1.5 PCS Collision Presence function
32.3.2 PCS interfaces
32.3.2.1 PCS–MII interface signals
Table 32-2— �MII interface signals
32.3.2.2 PCS–management entity signals
32.3.3 Frame structure
189 Figure 32-11— PCS sublayer to PMA sublayer frame structure
32.3.4 State variables
32.3.4.1 Variables
191 32.3.4.2 Timer
32.3.4.3 Messages
32.3.5 State diagrams
32.3.5.1 PCS Transmit
32.3.5.2 PCS Receive
192 32.3.5.3 PCS Carrier Sense
32.3.6 PCS electrical specifications
193 Figure 32-12— PCS Transmit state diagram
194 Figure 32-13— PCS Receive state diagram
195 Figure 32-14— PCS Carrier Sense state diagram
32.4 PMA functional specifications and service interface
32.4.1 PMA functional specifications
Figure 32-15— PMA reference diagram
196 32.4.1.1 PMA functions
32.4.1.1.1 PMA Reset function
32.4.1.1.2 PMA Transmit function
32.4.1.1.3 PMA Receive function
32.4.1.1.4 Link Monitor function
a) the pma_type variable that indicates whether the remote station is of type 100BASE-T2 or not,
b) the link_status variable that is sent across the PMA Service interface.
197 32.4.1.1.5 Clock Recovery function
32.4.1.2 PMA interface messages
32.4.1.2.1 MDI signals transmitted by the PHY
32.4.1.2.2 Signals received at the MDI
32.4.1.3 PMA state diagram
32.4.1.3.1 State diagram variables
198 32.4.1.3.2 Timers
32.4.1.3.3 Link Monitor state diagram��������
Figure 32-16— Link Monitor state diagram
32.4.2 PMA service interface
199 32.4.2.1 PMA_TYPE.indicate
32.4.2.1.1 Semantics of the primitive
32.4.2.1.2 When generated
32.4.2.1.3 Effect of receipt
32.4.2.2 PMA_UNITDATA.request
32.4.2.2.1 Semantics of the primitive
200 32.4.2.2.2 When generated
32.4.2.2.3 Effect of receipt
32.4.2.3 PMA_UNITDATA.indicate
32.4.2.3.1 Semantics of the primitive
32.4.2.3.2 When generated
32.4.2.3.3 Effect of receipt
32.4.2.4 PMA_LINK.request
32.4.2.4.1 Semantics of the primitive
201 32.4.2.4.2 When generated
32.4.2.4.3 Effect of receipt
32.4.2.5 PMA_LINK.indicate
32.4.2.5.1 Semantics of the primitive
32.4.2.5.2 When generated
32.4.2.5.3 Effect of receipt
32.4.2.6 PMA_CARRIER.indicate
32.4.2.7 PMA_RXERROR.indicate
202 32.4.2.8 PMA_RXSTATUS.request
32.5 Management functions
32.5.1 100BASE-T2 Use of Auto-Negotiation and MII registers 8, 9, and 10
203 32.5.2 Management functions
Table 32-3— 100BASE-T2 Control and Status registers
32.5.3 PHY specific registers for 100BASE-T2
204 32.5.3.1 100BASE-T2 Control register (register 9)
Table 32-4— 100BASE-T2 Control register (MII management register 9) bit definition
32.5.3.1.1 Transmitter test mode
32.5.3.1.2 Receive test mode
32.5.3.1.3 MASTER-SLAVE Manual Configuration Enable
205 32.5.3.1.4 MASTER-SLAVE Manual Configuration Value
32.5.3.1.5 T2_Repeater/DTE Bit
32.5.3.1.6 Reserved bits
32.5.3.2 100BASE-T2 Status register (register 10)
Table 32-5— 100BASE-T2 Status register (MII management register 10) bit definition
32.5.3.2.1 MASTER-SLAVE Manual Configuration Fault
206 32.5.3.2.2 MASTER-SLAVE Configuration Resolution Complete
32.5.3.2.3 Local Receiver Status
32.5.3.2.4 Remote Receiver Status
32.5.3.2.5 Reserved bits
32.5.3.2.6 Idle Error count
32.5.4 Changes and additions to Auto-Negotiation (28)
207 Table 32-6— Link Partner Next Page Ability register bit definitions (MII Management register 8)��
32.5.4.3 Use of Auto-Negotiation Next Page codes for 100BASE-T2 PHYs
208 Table 32-7— Bit assignments for Unformatted Next Pages containing 100BASE-T2 Technology Ability F…
209 Table 32-8— 100BASE-T2 MASTER-SLAVE Configuration Resolution table
210 32.6 PMA electrical specifications
32.6.1 PMA-to-MDI interface characteristics
32.6.1.1 Isolation requirement
a) 1500 V rms at 50–60 Hz for 60 s, applied as specified in Section 5.3.2 of IEC 950
b) 2250 Vdc for 60 s, applied as specified in Section 5.3.2 of IEC 950
c) A sequence of ten 2400 V impulses of alternating polarity, applied at intervals of not less th…
32.6.1.2 Transmitter electrical specifications
32.6.1.2.1 Transmitter test modes
211 Table 32-9— �MII management register set
212 Figure 32-17— Example Transmitter Test Mode Transmitter
213 32.6.1.2.2 Peak differential output voltage and level distortion
32.6.1.2.3 Maximum output droop
32.6.1.2.4 Differential output templates
214 Figure 32-18— Normalized transmit templates as measured at MDI through preprocessing filter
215 Table 32-10— �Normalized time domain voltage template (continued)
216 Table 32-11— Normalized frequency domain amplitude spectrum template (continued)
217 32.6.1.2.5 Transmitter timing jitter
32.6.1.2.6 Transmit clock frequency
32.6.1.3 Receiver electrical specifications
32.6.1.3.1 Test channel
218 Figure 32-19— Conceptual diagram of test channel
219 Figure 32-20— Test channel responses
220 Table 32-12 —Coefficients for Worst Case Channel and T2 Alien NEXT Model (continued)
230 32.6.1.3.2 Receiver test mode
32.6.1.3.3 Receiver differential input signals
32.6.1.3.4 Receiver alien NEXT tolerance
Table 32-12— Receiver Alien NEXT test cases
32.6.1.3.5 Receiver timing jitter
231 32.6.1.3.6 Common-mode noise rejection
Figure 32-21— Receiver common-mode noise rejection test circuit
32.6.1.3.7 Receiver frequency tolerance
32.6.1.4 MDI Specifications
32.6.1.4.1 MDI differential impedance
232 32.6.1.4.2 MDI impedance balance
Figure 32-22— MDI impedance balance test circuit
32.6.1.4.3 MDI common-mode output voltage
233 Figure 32-23— Common-mode output voltage test circuit
32.6.1.4.4 MDI fault tolerance
Figure 32-24— MDI fault tolerance test circuit
32.6.2 Power consumption
234 32.7 Link segment characteristics
a) 100BASE-T2
b) 10BASE-T
c) Digital Phone services compliant with the ITU-T Recommendation I.430 and ANSI T1.605 and T1.601
32.7.1 Cabling
a) 100BASE-T2 uses a star topology. Balanced cabling is used to connect PHY entities.
b) 100BASE-T2 is an ISO 11801 class C application, with additional installation requirements and …
c) 100BASE-T2 shall use 2 pairs of balanced cabling, category 3 or better, with a nominal charact…
d) When using category 3 cabling for the link segment, clause 32 recommends, but does not require…
e) The use of shielding is outside the scope of this standard.
f) The use of other cabling systems is discussed in annex 32A.
32.7.2 Link transmission parameters
32.7.2.1 Insertion loss
235 32.7.2.2 Differential characteristic impedance
32.7.2.3 Coupling parameters
32.7.2.3.1 Differential near-end crosstalk (NEXT) loss
32.7.2.3.2 Multiple-disturber NEXT (MDNEXT) loss
32.7.2.3.3 Equal level far-end crosstalk loss (ELFEXT)
236 32.7.2.3.4 Multiple-disturber ELFEXT (MDELFEXT) loss
32.7.2.3.5 10BASE-T NEXT loss to insertion loss ratio requirement
32.7.2.4 Delay
32.7.2.4.1 Maximum link delay
32.7.2.4.2 Difference in link delays
237 32.7.3 Noise
a) Echo from the local transmitter on the same pair (duplex channel). Echo is caused by the hybri…
b) Near-end crosstalk (NEXT) noise from the local transmitter on the other pair (duplex channel) …
c) Far-end crosstalk (FEXT) noise from the remote transmitters on the other pair (duplex channel)…
d) Noise from non-idealities in the duplex channels, transmitters and receivers; for example, DAC…
e) Noise from sources outside the cabling which couple into the link segment via electric and mag…
f) Noise from services in adjacent wire pairs in the same cable sheath. These services generate n…
238 32.7.3.1 Near end crosstalk noise
a) Two disturbing alien pairs with a NEXT loss greater than 22.0 dB at 16 MHz
b) All disturbers combined on a power sum basis
32.7.3.2 Far end crosstalk noise
a) One disturbing pair with ELFEXT (Equal Level Far End Crosstalk) loss greater than 20.9 dB at 1…
b) Two additional disturbers with ELFEXT (Equal Level Far End Crosstalk) loss greater than 27.0 d…
c) All disturbers combined on a power sum basis
32.7.3.3 External coupled noise
239 32.7.4 Installation practice
32.7.4.1 Connector installation practices
32.7.4.2 Restrictions on use of category 3 cabling with more than four pairs
32.7.4.3 Restrictions on use of category 5 cabling with up to 25 pairs
32.8 MDI specification
32.8.1 MDI connectors
Figure 32-25— MDI connector
32.8.2 Crossover function
240 Figure 32-26— Balanced cabling connector
Table 32-14— Assignment of PMA signals to MDI pin-outs
32.9 System considerations
241 32.10 Environmental specifications
32.10.1 General safety
32.10.2 Network safety
a) Direct contact between LAN components and power, lighting, or communications circuits
b) Static charge buildup on LAN cabling and components
c) High-energy transients coupled onto the LAN cabling system
d) Voltage potential differences between safety grounds to which various LAN components are con�n…
32.10.2.1 Installation
32.10.2.2 Grounding
32.10.2.3 Installation and maintenance guidelines
32.10.2.4 Telephony voltages
242 32.10.3 Environment
32.10.3.1 Electromagnetic emission
32.10.3.2 Temperature and humidity
32.10.4 Cabling specifications
32.11 PHY labeling
a) Data rate capability in Mb/s
b) Power level in terms of maximum current drain (for external PHYs)
c) Port type (i.e., 100BASE-T2)
d) Any applicable safety warnings
32.12 Delay constraints
243 32.12.1 PHY delay constraints (exposed MII)
Table 32-15— �MDI to MII delay constraints (exposed MII)
32.12.2 DTE delay constraints (unexposed MII)
Table 32-16— �DTE delay constraints (unexposed MII)
244 32.13 Protocol Implementation Conformance Statement (PICS) proforma for clause 32, Physical Codin…
32.13.1 Identification
32.13.1.1 Implementation identification
32.13.1.2 Protocol summary
245 32.13.2 Major capabilities/options
32.13.3 Compatibility considerations
246 32.13.4 PHY control function
247 32.13.5 Physical Coding Sublayer (PCS) or Physical Medium Attachment sublayer (PMA)
32.13.5.1 PCS transmit functions
32.13.5.2 PCS receive functions��
32.13.5.3
248 32.13.5.4 Other PCS functions
249 32.13.5.5 PMA functions
250 32.13.5.6 PMA service interface
251 32.13.5.7 Management functions
253 32.13.5.8 100BASE-T2 specific Auto-Negotiation requirements
254 32.13.5.9 PMA electrical specifications
260 32.13.5.10 Characteristics of the link segment
262 32.13.5.11 MDI requirements
32.13.5.12 General safety and environmental requirements
263 32.13.5.13 Timing requirements exposed MII :
32.13.5.14 Timing requirements unexposed MII :
32.13.5.15 Timing requirements: carrier assertion/deassertion constraint :
264 Annex C �[from the 1996 Edition (Appendix B in prior Edition)]
(informative)
State Diagram, MAC sublayer
265 Annex 28B
(normative)
Physical Layer link signaling for 10 Mb/s and 100 Mb/s Auto- Negotiation on twisted pair
a) 100BASE-T2 full duplex
b) 100BASE-TX full duplex
c) 100BASE-T2
d) 100BASE-T4
e) 100BASE-TX
f) 10BASE-T full duplex
g) 10BASE-T
267 Annex 28C
(normative)
Next Page Message Code Field definitions
Table 28C-1— Message code field values
268 Annex 28D
(normative)
Description of extensions to clause 28 and associated annexes
28D.1 Introduction
28D.2 Extensions to clause 28
28D.2.1 Extensions required for clause 31 (full duplex)
28D.2.2 Extensions required for clause 32 (100BASE-T2)
28D.3 Extensions for clause 31
269 28D.4 Extensions for clause 32 (100BASE-T2)
270 Annex 30A
30A.1 DTE MAC entity managed object class
30A.1.1 DTE MAC entity formal definition
272 30A.1.2 DTE MAC entity attributes
280 30A.1.3 DTE MAC entity actions
281 30A.2 DTE physical entity managed object class
30A.2.1 DTE physical entity formal definition
282 30A.2.2 DTE physical entity attributes
284 30A.2.3 DTE physical entity actions
285 30A.3 DTE MAC control entity managed object class
30A.3.1 DTE MAC control entity formal definition
30A.3.2 DTE MAC Control entity attributes
286 30A.4 DTE MAC Control function entity managed object class
30A.4.1 DTE MAC Control function entity formal definition
287 30A.4.2 DTE MAC Control function entity attributes
288 30A.5 Repeater managed object class
30A.5.1 Repeater, formal definition
289 30A.5.2 Repeater attributes
291 30A.5.3 Repeater actions
30A.5.4 Repeater notifications
292 30A.6 Group managed object class
30A.6.1 Group, formal definition
30A.6.2 Group attributes
293 30A.6.3 Group notifications
30A.7 Repeater port managed object class
30A.7.1 Port, formal definition
294 30A.7.2 Port attributes
299 30A.7.3 Port actions
30A.8 MAU managed object class
30A.8.1 MAU, formal definition
301 30A.8.2 MAU attributes
303 30A.8.3 MAU actions
304 30A.8.4 MAU notifications
30A.9 AutoNegotiation managed object class
30A.9.1 AutoNegotiation, formal definition
305 30A.9.2 Auto-Negotiation attributes
307 30A.9.3 AutoNegotiation actions
308 30A.10 ResourceTypeID managed object class
30A.10.1 ResourceTypeID, formal definition
309 Annex 30B (normative)
30B.1 Common attributes template
30B.2 ASN.1 module for CSMA/CD managed objects
314 Annex 31A
(normative)
MAC Control opcode assignments
Table 31A-1— MAC Control opcodes
Table 31A-2— MAC Control indications
315 Annex 31B
(normative)
MAC Control PAUSE operation
31B.1 PAUSE description
a) The globally-assigned 48 bit multicast address 01-80-C2-00-00-01,
b) The PAUSE opcode,
c) A request_operand indicating the length of time for which it wishes to inhibit data frame tran…
31B.2 Parameter semantics
316 31B.3 Detailed specification of PAUSE operation
31B.3.1 Transmit operation
a) The destinationParam is set equal to the destination_address parameter of the MA_DATA.request …
b) The sourceParam is set equal to the 48 bit individual address of the station.
c) The lengthOrTypeParam is set to the reserved 802.3_MAC_Control value specified in 31.4.1.3.
d) The dataParam is set equal to the concatenation of the PAUSE opcode encoding (see Annex 31A), …
a) The destinationParam is set equal to the destination_address parameter of the MA_CONTROL.reque…
b) The sourceParam is set equal to the 48 bit individual address of the station.
c) The lengthOrTypeParam and dataParam are set from the m_sdu field of the MA_DATA.request primit…
31B.3.2 Transmit state diagram for PAUSE operation
31B.3.2.1 Constants
31B.3.2.2 Variables
317 31B.3.2.3 Functions
31B.3.2.4 Timers
31B.3.2.5 Messages
31B.3.2.6 Transmit state diagram for PAUSE operation
318 Figure 31B-1— PAUSE Operation transmit state diagram
319 31B.3.3 Receive operation
31B.3.4 Receive state diagram for PAUSE operation
31B.3.4.1 Constants
31B.3.4.2 Variables
320 31B.3.4.3 Timers
31B.3.4.4 Receive state diagram (INITIATE MAC CONTROL FUNCTION) for PAUSE operation
Figure 31B-2— PAUSE operation receive state diagram
30B.3.5 Status indication operation
31B.3.6 Indication state diagram for pause operation
31B.3.6.1 Constants
31B.3.6.2 Variables
321 31B.3.6.3 Messages
31B.3.6.4 Indication state diagram for PAUSE operation
Figure 31B-3— PAUSE operation indication state diagram
31B.3.7 Timing considerations for PAUSE operation
322 31B.4 Protocol Implementation Conformance Statement (PICS) proforma for PAUSE operation
31B.4.1 Introduction
31B.4.2 Identification
31B.4.2.1 Implementation identification
31B.4.2.2 Protocol summary
323 31B.4.3 Major capabilities/options������
31B.4.4 PAUSE command requirements
31B.4.5 PAUSE command state diagram requirements
31B.4.6 PAUSE command MAC timing considerations������
324 Annex 32 A
(informative)
Use of cabling systems with nominal differential characteristic impedance of 120 ½ or 150 ½
a) increased echo due primarily to poorer hybrid performance
b) increased cabling attenuation roughness due to increased reflections
c) increased transmitter launch amplitude
d) possible non-linearities in transmitter
IEEE 802.3x 1997
$139.75