Shopping Cart

No products in the cart.

IEEE 802.6-1990

$181.46

Local and Metropolitan Area Networks: Distributed Queue Dual Bus (DQDB) Subnetwork of a Metropolitan Area Network (MAN)

Published By Publication Date Number of Pages
IEEE 1990 336
Guaranteed Safe Checkout
Category:

If you have any questions, feel free to reach out to our online customer service team by clicking on the bottom right corner. We’re here to assist you 24/7.
Email:[email protected]

New IEEE Standard – Inactive-Withdrawn. Withdrawn Standard. Withdrawn Date: Feb 07, 2003. No longer endorsed by the IEEE. This standard is part of a family of standards for local area networks (LANs) and metropolitan area networks (MANs) that deal with the Physical and Data Link Layers as defined by the ISO Open Systems Interconnection Reference Model. It defines a high-speed shared medium access protocol for use over a dual, counterflowing, unidirectional bus subnetwork. The Physical Layer and Distributed Queue Dual Bus (DQDB) Layer are required to support a Logical Link Control (LLC) Sublayer by means of a connectionless Medium Access Control (MAC) Sublayer service in a manner consistent with other IEEE 902 networks. Additional DQDB Layer functions are specified as a framework for other services. These additional functions will support Isochronous Service Users and Connection-Oriented Data Service users, but their implementation is not required for conformance.

PDF Catalog

PDF Pages PDF Title
21 1 Introduction
1.1 Scope
22 Scope of IEEE Std
23 1.2 Applicability
1.3 Definitions
31 1.4 Acronyms
33 1.5 References
34 1.6 Conformance
35 1.7 Notation
Service Specification Method and Notation
Layer Service Model
36 Time Sequence Diagram
37 1.7.2 State Machine Notation
1.8 Organization of the Standard
39 Overview
2.1 DQDB Subnetwork
Dual Bus Architecture
40 Dual Bus Architecture
41 Example Access Unit Attachment
42 Access Control to the Dual Bus Subnetwork
43 Queue Formation on Bus A
47 Queueing for Access (Bus A)
48 Gaining Access (Bus A)
50 Provision of DQDB Layer Services
51 DQDB Layer Services
52 IMPDU
53 Format of a DMPDU
54 Transfer of an IMPDU
58 Performance of the Distributed Queue
59 DQDB Subnetwork Configuration Control
60 Looped Bus Topology
61 Node Functional Architecture
Physical Layer Functions
62 DQDB Node Functional Architecture
63 DQDB Layer Functions
67 DQDB Layer Service Definition
68 MAC Service Provided to the LLC Sublayer
3.1.1 MA-UNITDATA request
69 3.1.2 MA-UNITDATA indication
70 3.1.3 MA-STATUS indication
3.2 Isochronous Service
71 3.2.1 ISU-DATA request
72 3.2.2 ISU-DATA indication
Connection-Oriented Data Service
73 Physical Layer Service Definition
74 4.1 Ph-DATA request
Physical Layer Services (at each node)
76 4.2 Ph-DATA indication
77 indication primitives
78 Node Not Performing Head of Bus Functions
Node Not Performing Head of Bus Functions
79 Node Performing Head of Bus Functions
Node Not Performing Head of Bus Functions
80 Node Performing Head of Bus A Function
82 Node Performing Head of Bus B Function
83 4.4 Ph-TIMING-SOURCE request
Node Performing Head of Bus A and Head of Bus B Functions
84 4.5 Ph-TIMING-MARK indication
85 4.6 Ph-STATUS indication
87 5 DQDB Node Functional Description
Provision of MAC Service to LLC
88 DQDB Node Functional Architecture
89 MAC Convergence Function (MCF) Block
DQDB Layer Functions to Support LLC Service
90 MCF Transmit Functions
93 Segmentation of an IMPDU of Greater than 88 Octets Length
95 Block
98 MCF Receive Functions
99 Receive Interaction between QA Functions Block and MCF Block
103 Queued Arbitrated (QA) Functions Block
105 QA Functions Block Transmit Functions
106 QA Functions Block
109 Common Functions Block
110 QA Functions Block Receive Functions
111 QA Functions Block
113 MAC Sublayer Service Management Functions
Convergence Function Block
114 Provision of Isochronous Service
Isochronous Convergence Function (ICF) Block
115 DQDB Layer Functions to Support Isochronous Service
116 DQDB Node Functional Architecture Showing ICF Block
117 Pre-Arbitrated (PA) Functions Block
118 Block
119 Functions Block
120 PA Functions Block
121 Isochronous Service Provider Management Functions
Provision of Other Services
Connection-Oriented Data Service
122 Service
123 DQDB Node Functional Architecture Showing COCF Block
124 Block
COCF Block
125 5.4 Common Functions
Functions Block
126 Octets
127 Functional Data Path for the Common Functions Block
Fig
128 Common Functions Block
129 QA Functions Block
130 Common Functions Block
PA Functions Block
131 Subnetwork Configuration Control Function
133 Default Slot Generator Function
134 Valid Bus Identification at Start-up
135 Default Slot Generator Function
138 5.4.3 Head of Bus Functions
139 Key to Functional Data Path Diagrams
Fig
140 Function
141 Bus A Function
142 5.4.4 MID Page Allocation Functions
Bus B Function
143 Head of Bus B Functions
150 DQDB Layer Protocol Data Unit (PDU) Formats
6.1 Ordering Principles
6.2 Slot
Access Control Field (ACF)
Slot Format
Fig
Access Control Field
Fig
151 Queued Arbitrated (&A) Slot
REQUEST Field
Fig
Slot Access Control Field Codings
152 6.3.1 QA Segment
QA Segment Format
Fig
QA Segment Header Fields
Fig
153 6.4 Pre-Arbitrated (PA) Slot
154 6.4.1 PA Segment
PA Segment Format
Fig
PA Segment Header Fields
Fig
155 6.5 Transfer of MAC Service Data Unit (MSDU)
156 6.5.1 Initial MAC Protocol Data Unit (IMPDU)
IMPDU Format
Fig
Common PDU Header Format
Fig
158 Address Field
Fig
Format
Fig
Coding of ADDRESS-TYPE Subfield
160 PVPL Field Format
Fig
161 QOS/CIB/HEL Field Format
Fig
Coding of the PI Field
162 Coding of QOS-DELAY
164 Derived MAC Protocol Data Unit (DMPDU)
Common PDU Trailer Format
Fig
165 Segmentation of an IMPDU into DMPDUs
Fig
166 DMPDU Format
Fig
DMPDU Header Format
DMPDU Type
168 Protocol Data Unit (PDU) Hierarchy for MAC Service
DMPDU Trailer Format
169 (a) MAC Connectionless Service PDU Hierarchy
170 (b) MAC Connectionless Service PDU Hierarchy (continued;)
171 Access Control Field Conformance
172 Queued Arbitrated Segment Conformance
Pre-Arbitrated Segment Conformance
173 IMPDU Conformance
174 DMPDU Conformance
175 DQDB Layer Facilities
7.1 Timers
Reassembly IMPDU Timer (RIT)
176 Head of Bus Arbitration Timer (Timer-H)
7.2 Counters
Request Counter (REQ-1-CNTR)
Countdown Counter (CD-I-CNTR)
177 Local Request Queue Counter (REQJ-Q)
Page Counter (PAGE-CNTR)
178 Bandwidth Balancing Counter (BWB-CNTR)
(TX-SEQUENCE-NUM)
7.3 System Parameters
Reassembly IMPDU Timer Period (RIT-PERIOD)
(Timer-H-PERIOD)
179 7.3.3 Quality of Service Map (QOS-MAP)
(RESERVED-MID-PAGES)
Maximum Number of MID Pages (MAX-MID-PAGES)
Bandwidth Balancing Modulus (BWB-MOD)
180 7.4 Flags
Configuration Control Flag (CC-12-CONTROL)
Default Configuration Control Flag (CC-D2-CONTROL)
CRC32 Generation Flag (CRC32-GEN-CONTROL)
181 CRC32 Checking Flag (CRC32-CHECK-CONTROL)
Resource Status Indicators
Configuration Control Status Indicator (CC-STATUS)
182 Head of Bus Operation Indicator (HOB-OPERATION)
Link Status Indicator (LINK-STATUS)
External Timing Source Status Indicator (ETS-STATUS)
184 8 DQDB Layer Operation
8.1 Distributed Queue Operation
Distributed Queue State Machine (DQSM)
186 DQSM for Bus x at Priority Level I L
188 8.1.2 REQ Queue Machine (RQM)
189 Bandwidth Balancing Machine (BWBM)
190 8.2 Reassembly Operation
Reassembly State Machine (RSM)
192 Instance of Reassembly State Machine (RSM)
196 Segment Header Check Sequence Processing
Functional Diagram for HCS Decoder
197 HCS Decoder State Machine
198 DQDB Layer Management Interface (LMI)
DQDB Layer Management Interface (LMI) Model
199 DQDB LMI Primitives
201 VCI Management Functions
9.2.1 LM-ACTION invoke (CL-VCI-ADD)
203 9.2.2 LM-ACTION invoke (CL-VCI-DELETE)
204 LM-ACTION invoke (OPEN-CE-ICF)
206 LM-ACTION invoke (OPEN-CE-COCF)
207 LM-ACTION invoke (CLOSE-CE)
208 LM-ACTION invoke (PA-VCI-ADD-HOB)
209 LM-ACTION invoke (PA-VCI-DELETE-HOB)
Header Extension Management Functions
210 LM-ACTION invoke (HEXT-INSTAL)
211 LM-ACTION invoke (NEXT-PURGE)
Message Identifier (MID) Management Functions
212 LM-ACTION invoke (MID-PAGE-GET)
213 LM-ACTION reply (MID-PAGE-GET)
LM-ACTION invoke (MID-PAGE-RELEASE)
214 LM-ACTION reply (MID-PAGE-RELEASE)
215 LM-EVENT notify (MID-PAGE-LOST)
9.5 Address Management Functions
216 9.5.1 LM-ACTION invoke (ADDRESS-ADD)
9.5.2 LM-ACTION invoke (ADDRESS-DELETE)
217 System Parameter Management Functions
219 Configuration Control Function Management Functions
LM-SET invoke (CC-FLAG)
220 CRC32 Control Flag Management Functions
9.8.1 LM-SET invoke (CRC32-FLAG)
221 Other Management Functions
LM-ACTION invoke (RESET)
Primitives
DQDB Layer Management Interaction
223 10 DQDB Layer Management Protocol
10.1 DQDB Layer Management Information Octets
224 Bus Identification Field (BIF)
DQDB Layer Management Information Octets
225 SubNetwork Configuration Field (SNCF)
SNCF Subfield Formats
Table 10-1 BIF Codes
226 MID Page Allocation Field (MPAF)
DSGS Codes
Table 10-3 HOBS Codes
ETSS Codes
227 MPAF Subfield Formats
PR Codes
228 10.2 Configuration Control Protocol
PCM Codes
PCC Codes
229 Functions in a Node
230 the Default Slot Generator Function
the Default Slot Generator Function
231 Function Type
Generation of Subnetwork Configuration Field Subfields
232 Received at a Node Containing the Default Slot Generator
Received at a Node Not Containing the Default Slot Generator
234 Default Configuration Control State Machine
235 Diagram
238 Head of Bus Function Operations Table
239 Source Function Operations Table
240 Configuration Control Type 2 State Machine
242 (CC-2 Function)
246 Table 10-11 Configuration Control Type 2 Function Operations Table
247 Configuration Control Type 1 State Machine
248 (CC-1 Function)
252 Table 10-12 Configuration Control Type 1 Function Operations Table
253 10.3 MID Page Allocation Protocol
255 Page Counter State Machine (PCSM) for Head of Bus A
MID Page Allocation Protocol Information Flow
257 Page Reservation State Machine for Head of Bus A
258 Page Counter Modulus Operation for Head of Bus A
Page Counter State Machine (PCSM) for Bus A or Bus B
259 11.2 Node Configuration
Fig 10-11 Page Counter State Machine for Bus x (PCSM-x)
261 10.3.5 Keep Page State Machine (KPSM)
262 Get Page State Machine (GPSM)
263 Fig 10-12 Get Page State Machine (GPSM)
265 11 Physical Layer Principles of Operation
11.1 Architectural Considerations
11.3 Duplex Operation of the Transmission Link
266 Physical Layer Connection State Machine (PLCSM)
267 11.4 Node Synchronization
Physical Layer Connection State Machine (PLCSM)
268 Physical Layer Connection State Machine
269 11.5 Physical Layer Maintenance Functions
Fault Detection within Nodes
11.5.2 Node Isolation
Abstract Encoding of LSS
270 Fault Detection on Transmission Links
11.5.4 Nodes Not Supporting Head of Bus Functions
11.6 Physical Layer Facilities
Control Flag
271 Head of Bus Capable Flag (HOB-CAPABLE)
272 Systems
12.1 Introduction
DS3 Relationship to the PLCP
Transmission System Relationship to the PLCP
273 12.2 The PLCP Frame Format
12.3 PLCP Field Definitions
Framing Octets Al, A2)
Path Overhead Identifier (P11-PO)
12.3.3 PLCP Path Overhead Octets
274 The PLCP Frame Format
275 Path Overhead Identifier (POI) Octet
Al and A2 Codes
Path Overhead Identifier (POI) Codes
276 PLCP Path Status (Gl)
LSS Codes
277 12.3.4 Trailer Nibbles
12.4 PLCP Behavior During Faults
Table 12-4 Cycle/Stuff Counter Codes
278 12.5 PLCP Behavior During DQDB Layer out of Service
279 12.6 PLCP Framing
PLCP Framing State Machine Transition Diagram
281 Link Status Signal Operations Table
Table 12-5 Link Status Signal Operations Table
282 12.6.2 Physical Layer Frame Timing Operations Table
Table
284 Requirements for Supporting Connection Setup
A1 Introduction
285 Call Establishment Model
Call Establishment Procedures
Functional Elements for Call Setup
286 Call
288 Layer Management Message Flows at the Originating Side
290 Layer Management Message Flows at the Terminating Side
291 A4 Call Clearing Procedures
292 Layer Management Message Flows at the Terminating Side
293 A5 References
294 Bus Selection for Connectionless Service
B1 Introduction
Bothways Transmission
Bus Selection Tables
295 Open Dual Bus Topology
Looped Dual Bus Topology
296 Looped Topology Reconfigured into Open Topology
297 Self-Learned Tables
B5 Table Maintenance by Aging Out
298 A Distributed Scheme for Table Maintenance
B7 References
299 Requirement for Equal Slot Rates on Both Buses
300 Relationship between DQSM and RQM
301 Local Request Queue
302 Common Functions Block Architecture
303 Slot Generator Function
304 Default Slot Generator Function
305 Rationale for the Subnetwork Timing Reference Selection Hierarchy
F1 Introduction
Rationale for the Hierarchy
307 Example Stable Subnetwork Configurations
308 Key to Subnetwork Configuration Diagrams
309 Looped Configuration: External Timing at Node with SG-D
310 One Other Node
312 Looped Configuration: Local Timing at Node with SG-D
313 with SG-D
314 Externally Timed
315 Externally Timed
316 Externally Timed
317 Locally Timed
318 Locally Timed
319 Locally Timed
320 (and Upstream on Bus B) from Node with SG-D
321 (and Upstream on Bus A) from Node with SG-D
322 (Node with SG-D at Head of Bus A)
323 Head of Bus B)
324 Remote from Node with SG-D
325 Remote from Node with SG-D
326 Island Configuration: No External Timing
Island Configuration: External Timing in Middle of Bus
327 Island Configuration: External Timing at Head of Bus B
Island Configuration: External Timing at Head of Bus A
328 Undergoing Configuration Changes
H1 Introduction
H2 Configuration Control Protocol Facilities
329 Rationale for the Head of Bus Arbitration Timer
H4 Example of Configuration Control Protocol
331 Looped Configuration of Four Nodes
332 Failed Link Between Nodes Q and S
333 Arbitration Completed
334 Reconfigured to Open Configuration
IEEE 802.6-1990
$181.46