IEEE 930 2005
$91.54
(Replaced) IEEE Guide for the Statistical Analysis of Electrical Insulation Breakdown Data
Published By | Publication Date | Number of Pages |
IEEE | 2005 | 49 |
Revision Standard – Active. Replaced by IEC 62539 Ed.1 (2007-07). This guide describes, with examples, statistical methods to analyze times to breakdown and breakdown voltage data obtained from electrical testing of solid insulating materials, for purposes including characterization of the system, comparison with another insulator system, and prediction of the probability of breakdown at given times or voltages.
PDF Catalog
PDF Pages | PDF Title |
---|---|
3 | Title Page |
5 | Introduction Notice to users |
6 | Participants |
7 | CONTENTS |
9 | 1. Scope 2. References |
10 | 3. Steps required for analysis of breakdown data 3.1 Data acquisition 3.1.1 Commonly used testing techniques 3.1.2 Other data 3.1.3 Data requirements |
11 | 3.1.4 Practical precautions in data capture 3.2 Characterizing data using a probability function 3.2.1 Types of failure distribution |
12 | 3.2.2 Testing the adequacy of a distribution 3.2.3 Estimating parameters and confidence limits 3.3 Hypothesis testing |
13 | 4. Probability distributions for failure data 4.1 The Weibull distribution |
14 | 4.2 The Gumbel distribution 4.3 The lognormal distribution 4.4 Mixed distributions |
15 | 4.5 Other terminology 5. Testing the adequacy of a distribution 5.1 Weibull probability data 5.1.1 Estimating plotting positions for complete data |
16 | 5.1.2 Estimating plotting positions for singly censored data 5.1.3 Estimating plotting positions for progressively censored data 5.2 Use of probability paper for the three-parameter Weibull distribution |
17 | 5.3 The shape of a distribution plotted on Weibull probability paper 5.4 A simple technique for testing the adequacy of the Weibull distribution |
18 | 6. Graphical estimates of Weibull parameters 7. Computational techniques for Weibull parameter estimation 7.1 Larger data sets |
19 | 7.2 Smaller data sets |
20 | 8. Estimation of Weibull percentiles 9. Estimation of confidence intervals for the Weibull function |
21 | 9.1 Graphical procedure for complete and censored data 9.1.1 Confidence intervals for the shape parameter, b 9.1.2 Confidence intervals for the location parameter, a |
22 | 9.1.3 Confidence intervals for the Weibull percentiles 9.2 Plotting confidence limits 10. Estimation of the parameter and their confidence limits of the log-normal function 10.1 Estimation of lognormal parameters |
23 | 10.2 Estimation of confidence intervals of log-normal parameters 11. Comparison tests |
24 | 11.1 Simplified method to compare percentiles of Weibull distributions 12. Estimating Weibull parameters for a system using data from specimens |
25 | Annex A—Least squares regression |
49 | Annex B—Bibliography |