{"id":129349,"date":"2024-10-19T06:24:50","date_gmt":"2024-10-19T06:24:50","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/ieee-802-3x-1997\/"},"modified":"2024-10-24T23:35:19","modified_gmt":"2024-10-24T23:35:19","slug":"ieee-802-3x-1997","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/ieee\/ieee-802-3x-1997\/","title":{"rendered":"IEEE 802.3x 1997"},"content":{"rendered":"

Amendment Standard – Inactive – Superseded. Superseded by IEEE Std 802.3-2002 Necessary changes and additions are made to provide for an additional, full duplex mode of operation on a speed-independent basis. Changes are made to the MAC and selected Physical Layer implementations (10BASE-T, 10BASE-FL, 100BASE-T) to support full duplex. A mechanism for pause-based flow control is also added.p> Abstract 802.3y: Changes and additions to the 100BASE-T portion of IEEE Std 802.3 are provided to specify an additional 100 Mb\/s transceiver type 100BASE-T, which can support full duplex operation over two pairs of Category 3 or better cabling.<\/p>\n

PDF Catalog<\/h4>\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
PDF Pages<\/th>\nPDF Title<\/th>\n<\/tr>\n
1<\/td>\nImportant notice! <\/td>\n<\/tr>\n
2<\/td>\nIEEE Std 802.3x-1997 and
IEEE Standards for Local and Metropolitan Area Networks:
Supplements to Carrier Sense Multiple Access with Collision Detection (CSMA\/CD) Access Method and…
Specification for 802.3 Full Duplex Operation and Physical Layer Specification for 100 Mb\/s Opera… <\/td>\n<\/tr>\n
4<\/td>\nIntroduction
(This introduction is not part of IEEE Std 802.3x-1997 and IEEE Std 802.3y-1997.) <\/td>\n<\/tr>\n
5<\/td>\nConformance test methodology <\/td>\n<\/tr>\n
6<\/td>\nIEEE Std 802.3x-1997 and IEEE Std 802.3y-1997 <\/td>\n<\/tr>\n
7<\/td>\nGeoffrey O. Thompson, Chair
David Law, Vice Chair
Rich Seifert, Chair and Editor, 802.3x Task Force <\/td>\n<\/tr>\n
10<\/td>\nCONTENTS <\/td>\n<\/tr>\n
16<\/td>\nIEEE Standards for Local and Metropolitan Area Networks: Supplement to Carrier Sense Multiple Acc…
1. Introduction
1.1 Overview
1.1.1 Basic concepts <\/td>\n<\/tr>\n
17<\/td>\n1.1.1.1 Half duplex operation
1.1.1.2 Full duplex operation
a) The physical medium is capable of supporting simultaneous transmission and reception without i…
b) There are exactly two stations connected with a full duplex point-to-point link. Since there i…
c) Both stations on the LAN are capable of, and have been configured to use, full duplex operation. <\/td>\n<\/tr>\n
18<\/td>\nFigure 1-1\u2014 ISO\/IEC 8802-3 relationship to the ISO\/IEC Open Systems Interconnection (OSI) referen…
1.1.3 Layer interfaces
a) The interface between the MAC sublayer and the LLC sublayer its client includes facilities for…
b) The interface between the MAC sublayer and the Physical Layer in\ufffdcludes sig\ufffdnals for framing (… <\/td>\n<\/tr>\n
19<\/td>\n1.3 References
1.4 Definitions <\/td>\n<\/tr>\n
24<\/td>\n2. MAC service specification
2.1 Scope and field of application
Figure 2-1a\u2014 Service specification relation to the LAN model <\/td>\n<\/tr>\n
25<\/td>\n2.2 Overview of the service
2.2.1 General description of services provided by the layer
2.2.2 Model used for the service specification
2.2.3 Overview of interactions
Figure 2-1b\u2014 Service specification primitive relationships (optional MAC control sublayer impleme… <\/td>\n<\/tr>\n
26<\/td>\n2.3 Detailed service specification
2.3.1 MA_DATA.request
2.3.1.1 Function
2.3.1.2 Semantics of the service primitive
2.3.1.3 When generated
2.3.1.4 Effect of receipt
2.3.2 MA_DATA.indication
2.3.2.1 Function <\/td>\n<\/tr>\n
27<\/td>\n2.3.2.2 Semantics of the service primitive
2.3.2.3 When generated
2.3.2.4 Effect of receipt
2.3.2.5 Additional comments
2.3.3 MA_CONTROL.request
2.3.3.1 Function <\/td>\n<\/tr>\n
28<\/td>\n2.3.3.2 Semantics of the service primitive
2.3.3.3 When generated
2.3.3.4 Effect of receipt
2.3.4 MA_CONTROL.indication
2.3.4.1 Function
2.3.4.2 Semantics of the service primitive
2.3.4.3 When generated
2.3.4.4 Effect of receipt <\/td>\n<\/tr>\n
29<\/td>\n3. MAC Media access control frame structure
3.1 Overview
3.1.1 MAC frame format
Figure 3-1\u2014 MAC frame format <\/td>\n<\/tr>\n
30<\/td>\n3.2.3 Address fields
Figure 3-2\u2014 Address field format\ufffd\ufffd\ufffd <\/td>\n<\/tr>\n
31<\/td>\n3.2.3.1 Address designation
a) Individual Address. The address associated with a particular station on the network.
b) Group Address. A multidestination address, associated with one or more stations on a given net…
3.2.6 Length\/Type field
a) If the value of this field is less than or equal to the value of maxValidFrame (as specified i…
b) If the value of this field is greater than or equal to 1536 decimal (equal to 0600 hexadecimal… <\/td>\n<\/tr>\n
32<\/td>\n3.2.7 Data and PAD fields
3.2.8 Frame check sequence (FCS) field
a) The first 32 bits of the frame are complemented.
b) The n bits of the frame are then considered to be the coefficients of a poly\ufffdnomial M(x) of de…
c) M(x) is multiplied by x32 and divided by G(x), producing a remainder R(x) of de\ufffdgree < \u00a3 31. (…
d) The coefficients of R(x) are considered to be a 32-bit sequence.
e) The bit sequence is complemented and the result is the CRC. <\/td>\n<\/tr>\n
33<\/td>\n3.4 Invalid MAC frame
a) The frame length is inconsistent with the a length field value specified in the length\/type fi…
b) It is not an integral number of octets in length.
c) The bits of the incoming frame (exclusive of the FCS field itself) do not generate a CRC value… <\/td>\n<\/tr>\n
34<\/td>\n4. Media access control
4.1 Functional model of the media access control method
4.1.1 Overview
a) In half duplex mode, stations contend for the use of the physical medium, using the CSMA\/CD al…
b) The full duplex mode of operation can be used when all of the following are true: <\/td>\n<\/tr>\n
35<\/td>\n4.1.2 CSMA\/CD operation
Figure 4-1\u2014 MAC sublayer partitioning, relationship to the ISO Open Systems Interconnection (OSI)…
4.1.2.1 Normal operation
4.1.2.1.1 Transmission without contention <\/td>\n<\/tr>\n
36<\/td>\n4.1.2.1.2 Reception without contention
4.1.2.2 Access interference and recovery <\/td>\n<\/tr>\n
37<\/td>\n4.1.3 Relationships to the LLC sublayer MAC client and Physical Layer Layers
4.1.4 CSMA\/CD access method functional capabilities <\/td>\n<\/tr>\n
38<\/td>\nFigure 4-2\u2014 CSMA\/CD Media Access Control functions
a) For Frame Transmission
b) For Frame Reception
3) Discards or passes to Network Management all frames not addressed to the receiving station
c) In half duplex mode, defers transmission of a bit-serial stream whenever the physical medium i…
d) Appends proper FCS value to outgoing frames and verifies full octet boundary alignment
e) Checks incoming frames for transmission errors by way of FCS and verifies octet boundary align…
f) Delays transmission of frame bit stream for specified interframe gap period
g) In half duplex mode, halts transmission when collision is detected
h) In half duplex mode, schedules retransmission after a collision until a specified retry limit …
i) In half duplex mode, enforces collision to ensure propagation throughout network by sending ja…
j) Discards received transmissions that are less than a minimum length
k) Appends preamble, Start Frame Delimiter, DA, SA, length count\/type field, and FCS to all frame…
l) Removes preamble, Start Frame Delimiter, DA, SA, length count\/type field, FCS and pad field (i… <\/td>\n<\/tr>\n
39<\/td>\n4.2 CSMA\/CD Media Access Control (MAC) method: Precise specification
4.2.2.1 Ground rules for the procedural model
4.2.2.3 Organization of the procedural model
a) Frame Transmitter process
b) Frame Receiver process
c) Bit Transmitter process
d) Bit Receiver process
e) Deference process <\/td>\n<\/tr>\n
40<\/td>\nFigure 4-3\u2014 Relationship among CSMA\/CD procedures <\/td>\n<\/tr>\n
41<\/td>\nFigure 4-4a\u2014 Control flow summary <\/td>\n<\/tr>\n
42<\/td>\nFigure 4-4b\u2014 Control flow summary <\/td>\n<\/tr>\n
43<\/td>\nFigure 4-5\u2014 Control flow: MAC sublayer <\/td>\n<\/tr>\n
44<\/td>\n4.2.3 Frame transmission model
a) Transmit Data Encapsulation includes the assembly of the outgoing frame (from the values provi…
b) Transmit Media Access Management includes carrier deference, interframe spacing, collision det…
4.2.3.1 Transmit data encapsulation
4.2.3.1.1 Frame assembly
4.2.3.1.2 Frame check sequence generation
4.2.3.2 Transmit media access management
4.2.3.2.1 Carrier Deference
a) Half duplex mode <\/td>\n<\/tr>\n
45<\/td>\nb) Full duplex Mode
4.2.3.2.3 Collision handling (half duplex mode only)
4.2.3.2.4 Collision detection and enforcement (half duplex mode only)
4.2.3.2.5 Collision backoff and retransmission (half duplex mode only)
4.2.3.2.6 Full duplex transmission
4.2.3.3 Minimum frame size
4.2.4 Frame reception model
a) Receive Data Decapsulation comprises address recognition, frame check se\ufffdquence validation, an…
b) Receive Media Access Management comprises recognition of collision frag\ufffdments from incoming fr… <\/td>\n<\/tr>\n
46<\/td>\n4.2.4.1 Receive data decapsulation
4.2.4.1.3 Frame disassembly
4.2.4.2 Receive media access management
4.2.4.2.1 Framing
4.2.4.2.2 Collision filtering
4.2.6 Start frame sequence
4.2.7.1 Common constants and types <\/td>\n<\/tr>\n
47<\/td>\n4.2.7.2 Transmit state variables <\/td>\n<\/tr>\n
48<\/td>\n4.2.7.3 Receive state variables
4.2.7.4 Summary of interlayer interfaces
a) The interface to the LLC sublayer MAC client, defined in 4.3.2, is summarized be\ufffdlow:
b) The interface to the Physical Layer, defined in 4.3.3, is summarized in the following: <\/td>\n<\/tr>\n
49<\/td>\n4.2.7.5 State variable initialization
4.2.8 Frame transmission <\/td>\n<\/tr>\n
53<\/td>\n4.2.9 Frame reception <\/td>\n<\/tr>\n
56<\/td>\n4.2.10 Common procedures <\/td>\n<\/tr>\n
57<\/td>\n4.3 Interfaces to\/from adjacent layers
4.3.1 Overview
4.3.2 Services provided by the MAC sublayer <\/td>\n<\/tr>\n
58<\/td>\n4.3.3 Services required from the physical layer <\/td>\n<\/tr>\n
60<\/td>\n4.4 Specific implementations
4.4.1 Compatibility overview
4.4.2 Allowable implementations
4.4.2.1 Parameterized values
4.4.2.2 Parameterized values
4.4.2.3 Parameterized values
4.4.3 Configuration guidelines <\/td>\n<\/tr>\n
62<\/td>\n6. PLS service specifications
6.2 Overview of the service
6.2.3 Overview of interactions
a) Service primitives that support MAC peer-to-peer interactions.
b) Service primitives that have local significance and support sublayer-to-sublayer interactions.
a) Peer-to-Peer
b) Sublayer-to-Sublayer
Figure 6-1\u2014 Service specification relationship to the IEEE 802.3 CSMA\/CD LAN model <\/td>\n<\/tr>\n
63<\/td>\n6.2.4 Basic services and options
6.3 Detailed service specification
6.3.1 Peer-to-Peer service primitives
6.3.1.2 PLS_DATA.indication
6.3.1.2.1 Function
6.3.1.2.2 Semantics of the service primitive
6.3.1.2.3 When generated
6.3.1.2.4 Effect of receipt
6.3.2 Sublayer-to-Sublayer service primitives
6.3.2.3 PLS_DATA_VALID.indication
6.3.2.3.1 Function <\/td>\n<\/tr>\n
64<\/td>\n6.3.2.3.2 Semantics of the service primitive
6.3.2.3.3 When generated
6.3.2.3.4 Effect of receipt <\/td>\n<\/tr>\n
65<\/td>\n7. Physical Signaling (PLS) and Attachment Unit In\ufffdterface (AUI) specifications
7.1 Scope
Figure 7-1\u2014 Physical layer partitioning, relationship to the ISO Open Systems Interconnection (OS…
a) Capable of supporting one or more of the specified data rates
b) Capable of driving up to 50 m (164 ft) of cable
c) Permits the DTE to test the AUI, AUI cable, MAU, and the medium itself
d) Supports MAUs for baseband coax, baseband twisted pair, broadband coax, and baseband fiber <\/td>\n<\/tr>\n
66<\/td>\n7.1.3 Application
a) Provide the DTE with media independence for baseband coax, baseband twisted pair, broadband co…
b) Provide for the separation by cable of up to 50 m (164 ft) the DTE and the MAU.
7.1.4 Modes of operation
7.2 Functional specification
7.2.1 PLS\u2013PMA (DTE\u2013MAU) interface protocol
7.2.1.2 PMA to PLS interface <\/td>\n<\/tr>\n
67<\/td>\n7.2.1.2.3 signal_quality_error message
a) Improper Signals On The Medium. The MAU may send the sig\ufffdnal_quality_error message at any time…
b) Collision. Collision occurs when more than one MAU is transmitting on the medium. The local MA…
c) signal_quality_error Message Test. The MAU sends the signal_qual\ufffdity_error message at the comp…
7.2.2 PLS Interface to MAC and management entities
7.2.2.1 PLS\u2013MAC interface <\/td>\n<\/tr>\n
68<\/td>\n7.2.2.1.6 DATA_VALID_STATUS
7.2.2.2 PLS-Management entity Interface
7.2.2.2.4 SQE_TEST
7.2.4 PLS functions
Figure 7-6\u2014 PLS Input and Data_Valid function <\/td>\n<\/tr>\n
69<\/td>\n7.2.4.3 Output function
7.2.4.4 Input function
7.2.4.6 Carrier sense function
7.3 Signal characteristics
7.3.2 Signaling rate <\/td>\n<\/tr>\n
70<\/td>\n13. System considerations for multi-segment 10 Mb\/s baseband networks
13.5 Full duplex topology limitations <\/td>\n<\/tr>\n
71<\/td>\n14. Twisted-Pair Medium Attachment Unit (MAU) and baseband medium, Type 10BASE-T
14.1 Scope
14.1.2 Overview
14.1.1.1 Medium Attachment Unit (MAU)
a) Enables coupling the Physical Signaling (PLS) sublayer by way of the Attachment Unit Interface…
b) Supports message traffic at a data rate of 10\ufffdMb\/s.
c) Provides for operating over 0 to at least 100\ufffdm (328\ufffdft) of twisted pair with\ufffdout the use of a…
d) Permits the Data Terminal Equipment (DTE) or repeater to confirm op\ufffderation of the MAU and ava…
e) Supports network configurations using CSMA\/CD access method de\ufffdfined in ISO\/IEC\ufffd8802\ufffd3 this In…
f) Supports a point-to-point interconnection between MAUs and, when used with repeaters having mu…
g) Allows incorporation of the MAU within the physical bounds of a DTE or repeater.
h) Allows for either half duplex operation, full duplex operation, or both.\ufffd
Figure 14-1\u2014 10BASE-T relationship to the ISO Open Systems Interconnection (OSI) reference model … <\/td>\n<\/tr>\n
72<\/td>\n14.1.3 Application perspective
14.1.3.3 Mode Modes of operation
14.2 MAU functional specifications
a) Transmit function. Provides the ability to transfer Manchester-encoded data from the DO circui…
b) Receive function. Provides the ability to transfer Manchester-encoded data from the RD circuit…
c) Loopback function (half duplex mode only). Provides the ability to transfer Manchester-encoded…
d) Collision Presence function. Provides the ability to detect the simultaneous occurrence of Man…
e) signal_quality_error Message (SQE) Test function. Provides the ability to indicate to the DTE …
f) Jabber function. Provides the ability to prevent abnormally long recep\ufffdtion of Manchester-enco…
g) Link Integrity Test function. Provides the ability to protect the network from the consequence…
h) Auto-Negotiation. Optionally provides the capability for a device at one end of a link segment… <\/td>\n<\/tr>\n
73<\/td>\n14.2.1 MAU functions
14.2.1.3 Loopback function requirements (half duplex mode only) <\/td>\n<\/tr>\n
74<\/td>\n14.2.1.4 Collision presence function requirements (half duplex mode only)
14.2.1.5 signal_quality_error Message (SQE) test function require\ufffdments
14.2.1.6 Jabber function requirements
a) In\ufffdhibit the Loopback function and the transmission of TD_output messages by the Transmit func…
b) Send the CS0 signal on the CI circuit, when the MAU is connected to a DTE operating in half du… <\/td>\n<\/tr>\n
75<\/td>\n14.2.1.8 Auto-Negotiation
14.2.3 MAU state diagrams <\/td>\n<\/tr>\n
76<\/td>\nFigure 14-3a\u2014 MAU transmit, receive, loopback, and collision presence functions state\ufffddiagram (ha…
Figure 14-3b\u2014 MAU transmit and receive functions state diagram (full duplex mode) <\/td>\n<\/tr>\n
77<\/td>\nFigure 14-5\u2014 Jabber function state diagram <\/td>\n<\/tr>\n
78<\/td>\n14.8 MAU labeling
a) Data rate capability in Mb\/s
b) Power level in terms of maximum current drain (for external MAUs)
c) Any applicable safety warnings
d) Duplex capabilities
14.10 (Changes to) PICS proforma for 10BASE-T <\/td>\n<\/tr>\n
79<\/td>\n15. Fiber optic medium and common elements of medium attachment units and star, Type 10BASE-F
15.1 Scope
15.1.1 Overview
15.1.3 Applications perspective: MAUs, stars, and fiber optic medium
15.1.3.4 Guidelines for systems implementation <\/td>\n<\/tr>\n
80<\/td>\n15.1.3.5 Mode Modes of operation
15.7 MAU labeling
a) Whether 10BASE-FP MAU, 10BASE-FB MAU or 10BASE-FL MAU
b) Data rate capability in Mb\/s
c) Power level in terms of maximum current drain (for external MAUs as required by 15.5.3)
d) Any applicable safety warnings
e) Which connector is input and which is output
f) For 10BASE-FP MAUs, the Manufacturer ID and the MAU ID in two separate fields (see 16.3.1.1.3)
g) For 10BASE-FL MAUs, if it is capable of full duplex operation <\/td>\n<\/tr>\n
82<\/td>\n18. Fiber optic medium attachment unit, Type 10BASE-FL
18.3 MAU functional specifications
a) Transmit function. Provides the ability to transfer Manchester encoded data from the DO circui…
b) Receive function. Provides the ability to transfer Manchester encoded data from the ORD circui…
c) Loopback function (half duplex mode only). Provides the ability to transfer Manchester encoded…
d) Collision Presence function. Provides the ability to detect simultaneous occurrence of Manches…
e) Signal_quality_error Message (SQE) Test function. Provides the ability to indicate to the DTE …
f) Jabber function. Provides the ability to prevent abnormally long reception of Manchester encod…
g) Link Integrity Test function. Provides the ability to protect the network from the consequence…
18.3.1 MAU functions <\/td>\n<\/tr>\n
83<\/td>\n18.3.1.3 Loopback function requirements (half duplex mode only)
18.3.1.4 Collision presence function requirements (half duplex mode only)
18.3.1.5 Signal_quality_error message (SQE) test function requirements <\/td>\n<\/tr>\n
84<\/td>\n18.3.1.6 Jabber function requirements
a) In\ufffdhibit the Loopback function and the transmission of OTD_output messages by the Transmit fun…
b) Send the CS0 signal on the CI circuit, when the MAU is connected to a DTE operating in half du…
18.3.1.8 Auto-Negotiation
18.3.2 MAU State diagrams <\/td>\n<\/tr>\n
85<\/td>\nFigure 18-1a\u2014 MAU transmit, receive, loopback, and collision presence functions\ufffdstate\ufffddiagram (ha… <\/td>\n<\/tr>\n
86<\/td>\nFigure 18-3\u2014 Jabber function state diagram <\/td>\n<\/tr>\n
87<\/td>\n18.5 Protocol implementation conformance statement (PICS) proforma for clause 18, fiber optic med…
18.5.2.2 Abbreviations
18.5.5 Major capabilities\/options\ufffd\ufffd\ufffd <\/td>\n<\/tr>\n
88<\/td>\n18.5.6.5 MAU functions
18.5.6.11 Loopback function\ufffd\ufffd <\/td>\n<\/tr>\n
89<\/td>\n18.5.6.12 Collision presence function\ufffd\ufffd
18.5.6.13 Signal_quality_error message (SQE) test function\ufffd\ufffd <\/td>\n<\/tr>\n
90<\/td>\n18.5.6.14 Jabber function\ufffd\ufffd
18.5.6.16 MAU state diagram requirements <\/td>\n<\/tr>\n
91<\/td>\n18.5.6.25 signal_quality_error message (SQE)
18.5.6.27 MAU labeling\ufffd\ufffd\ufffd\ufffd <\/td>\n<\/tr>\n
92<\/td>\n21. Introduction to 100\ufffdMb\/s baseband networks, Type 100BASE-T
21.5.4 Operators
Table 21-1\u2014 State machine operators\ufffd
21.6.2 Abbreviations and special symbols <\/td>\n<\/tr>\n
93<\/td>\na) Within the section Balanced Cabling Link Class C (specified up to 16 MHz): CSMA\/CD 100BASE-T2 …
b) Within the section Optical Link: CSMA\/CD 100BASE-FX ISO\/IEC 8802-3\/DAD 1995 2
c) Within the section Balanced Cabling Link Class D (Defined up to 100 MHz): CSMA\/CD 100BASE-TX I…
21.8 MAC delay constraints (exposed MII) <\/td>\n<\/tr>\n
94<\/td>\nFigure 22-3\u2014 Reconciliation sublayer (RS) inputs and outputs and STA connections to MII
22. Reconciliation sublayer (RS) and Media Independent Interface (MII)
22.1 Overview
g) It provides for full duplex operation.
22.2.1.7.1 Function
22.2.1.7.2 Semantics of the service primitive <\/td>\n<\/tr>\n
95<\/td>\n22.2.1.7.3 When generated
22.2.2.7 RXD (receive data)
22.2.4 Management functions
22.2.4.1.3 Speed selection
22.2.4.1.8 Duplex mode <\/td>\n<\/tr>\n
96<\/td>\n22.2.4.2 Extended capability registers
Table 22-6\u2014 MII Management register set <\/td>\n<\/tr>\n
97<\/td>\nTable 22-8\u2014 Status register bit definitions <\/td>\n<\/tr>\n
98<\/td>\n22.2.4.2.7 100BASE-T2 half duplex ability
22.2.4.2.8 Reserved bits
22.2.4.3.6 Auto-Negotiation link partner Received Next Page (Register 8)
22.2.4.3.7 100BASE-T2 Control register (register 9)
22.2.4.3.8 100BASE-T2 Status register (register 10) <\/td>\n<\/tr>\n
99<\/td>\n22.7.3.4 Management functions <\/td>\n<\/tr>\n
102<\/td>\n23. Physical Coding Sublayer (PCS), Physical Medium Attachment (PMA) sublayer and baseband medium…
a) Support the CSMA\/CD MAC in the half duplex mode of operation. <\/td>\n<\/tr>\n
103<\/td>\n24. Physical coding sublayer (PCS) and Physical Medium Attachment (PMA) sublayer, Type 100BASE-X
a) Support the CSMA\/CD MAC in the half duplex and the full duplex modes of operation.
b) Support the 100BASE-T MII, repeater, and optional Auto-Negation.
c) Provide 100 Mb\/s data rate at the MII.
d) Support cable plants using Category 5 UTP, 150 \u00bd STP or optical fiber, compliant with ISO\/IEC …
e) Allow for a nominal network extent of 200\u2013400 m, including
1) unshielded twisted-pair links of 100 m;
2) two repeater networks of approximately 200 m span;
3) one repeater networks of approximately 300 m span (using fiber); and
4) DTE\/DTE links of approximately 400 m (half duplex mode using fiber) and 2 km (full duplex mode…
f) Preserve full duplex behavior of underlying PMD channels.
Table 24-2a\u2014 MDI to MII delay constraints (exposed MII, half duplex mode) <\/td>\n<\/tr>\n
104<\/td>\nTable 24-2b\u2014 PHY delay constraints (exposed MII, full duplex mode)
Table 24-3a\u2014 DTE delay constraints (unexposed MII, half duplex mode)
24.6.3 Carrier de-assertion\/assertion constraint (half duplex mode only) <\/td>\n<\/tr>\n
105<\/td>\n27. Repeater for 100 Mb\/s baseband networks
Table 27-1\u2014 Start-of-packet variability <\/td>\n<\/tr>\n
106<\/td>\nTable 27-2\u2014 Start-of-packet propagation and start-of-collision jam propagation delays
27.3.1.5.1 100BASE-X and 100BASE-T2 carrier integrity functional requirements <\/td>\n<\/tr>\n
108<\/td>\nFigure 27-9\u2014 100BASE-X\/T2 carrier integrity monitor state diagram for port X <\/td>\n<\/tr>\n
109<\/td>\nFigure 27-10\u2014 100BASE-T2 transmit state diagram for port X <\/td>\n<\/tr>\n
110<\/td>\na) Data rate capability in Mb\/s
b) Any applicable safety warnings
c) Port type, i.e., 100BASE-TX, and 100BASE-T4, or 100BASE-T2
d) Worst-case bit time delays between any two ports appropriate for
1) Start-of-packet propagation delay
2) Start-of-collision Jam propagation delay
3) Cessation-of-collision Jam propagation delay <\/td>\n<\/tr>\n
112<\/td>\n28. Physical Layer link signaling for 10 Mb\/s and 100 Mb\/s Auto-Negotiation on twisted pair <\/td>\n<\/tr>\n
113<\/td>\nFigure 28-13\u2014 Functional reference diagram <\/td>\n<\/tr>\n
114<\/td>\n29. System considerations for multi-segment 100BASE-T networks <\/td>\n<\/tr>\n
115<\/td>\n29.4 Full duplex 100 Mb\/s topology limitations
Table 29-5\u2014 Link segment length limits; 100Mb\/s full duplex segments <\/td>\n<\/tr>\n
116<\/td>\nChanges to
30. 10 Mb\/s and 100 Mb\/s management
Change the text of 30.1 to read as follows:
30.1 Overview <\/td>\n<\/tr>\n
117<\/td>\n30.1.1 Scope
30.1.2 Relationship to objects in IEEE 802.1F
30.1.3 Systems management overview <\/td>\n<\/tr>\n
118<\/td>\n30.1.4 Management model
Figure 30-1\u2014 Interaction between manager, agent, and objects
a) Attributes. Data-like properties (as seen by management) of a managed object.
b) Actions. Operations that a managing process may perform on an object or its attributes.
c) Notifications. Unsolicited reports of events that may be generated by an object.
d) Behaviour. The way in which managed objects, attributes, and actions interact with the actual … <\/td>\n<\/tr>\n
119<\/td>\n30.2 Managed objects
30.2.1 Introduction
30.2.2 Overview of managed objects
a) Identify a resource
b) Control a resource
c) Monitor a resource
30.2.2.1 Text description of managed objects <\/td>\n<\/tr>\n
121<\/td>\n30.2.2.2 Functions to support management
30.2.2.2.1 DTE MAC sublayer functions
a) frameTooLong
b) alignmentError
c) frameCheckError
d) lengthError
30.2.2.2.2 Repeater functions
Figure 30-2\u2014 Functions relationship <\/td>\n<\/tr>\n
123<\/td>\n30.2.3 Containment
Figure 30-3\u2014 10\/100 Mb\/s entity relationship diagram
30.2.4 Naming <\/td>\n<\/tr>\n
124<\/td>\n30.2.5 Capabilities <\/td>\n<\/tr>\n
125<\/td>\nTable 30-1a\u2014 Capabilities\ufffd <\/td>\n<\/tr>\n
126<\/td>\nTable 30-1b\u2014 Capabilities\ufffd <\/td>\n<\/tr>\n
127<\/td>\nTable 30-1c\u2014 Capabilities <\/td>\n<\/tr>\n
128<\/td>\nTable 30-1d\u2014 Capabilities\ufffd <\/td>\n<\/tr>\n
129<\/td>\nTable 30-1e\u2014 Capabilities\ufffd <\/td>\n<\/tr>\n
130<\/td>\n30.3 Layer management for DTEs
30.3.1 MAC entity managed object class
30.3.1.1 MAC entity attributes
30.3.1.1.1 aMACID
30.3.1.1.2 aFramesTransmittedOK
30.3.1.1.3 aSingleCollisionFrames
30.3.1.1.4 aMultipleCollisionFrames <\/td>\n<\/tr>\n
131<\/td>\n30.3.1.1.5 aFramesReceivedOK
30.3.1.1.6 aFrameCheckSequenceErrors
30.3.1.1.7 aAlignmentErrors
30.3.1.1.8 aOctetsTransmittedOK <\/td>\n<\/tr>\n
132<\/td>\n30.3.1.1.9 aFramesWithDeferredXmissions
30.3.1.1.10 aLateCollisions
30.3.1.1.11 aFramesAbortedDueToXSColls
30.3.1.1.12 aFramesLostDueToIntMACXmitError <\/td>\n<\/tr>\n
133<\/td>\n30.3.1.1.13 aCarrierSenseErrors
30.3.1.1.14 aOctetsReceivedOK
30.3.1.1.15 aFramesLostDueToIntMACRcvError
30.3.1.1.16 aPromiscuousStatus <\/td>\n<\/tr>\n
134<\/td>\n30.3.1.1.17 aReadMulticastAddressList
30.3.1.1.18 aMulticastFramesXmittedOK
30.3.1.1.19 aBroadcastFramesXmittedOK
30.3.1.1.20 aFramesWithExcessiveDeferral <\/td>\n<\/tr>\n
135<\/td>\n30.3.1.1.21 aMulticastFramesReceivedOK
30.3.1.1.22 aBroadcastFramesReceivedOK
30.3.1.1.23 aInRangeLengthErrors
30.3.1.1.24 aOutOfRangeLengthField <\/td>\n<\/tr>\n
136<\/td>\n30.3.1.1.25 aFrameTooLongErrors
30.3.1.1.26 aMACEnableStatus
30.3.1.1.27 aTransmitEnableStatus
30.3.1.1.28 aMulticastReceiveStatus <\/td>\n<\/tr>\n
137<\/td>\n30.3.1.1.29 aReadWriteMACAddress
30.3.1.1.30 aCollisionFrames
30.3.1.1.31 aMACCapabilities
ATTRIBUTE
APPROPRIATE SYNTAX:
BEHAVIOUR DEFINED AS:
30.3.1.1.32 aDuplexStatus
ATTRIBUTE
APPROPRIATE SYNTAX:
BEHAVIOUR DEFINED AS: <\/td>\n<\/tr>\n
138<\/td>\n30.3.1.2 MAC entity actions
30.3.1.2.1 acInitializeMAC
30.3.1.2.2 acAddGroupAddress
30.3.1.2.3 acDeleteGroupAddress
30.3.1.2.4 acExecuteSelfTest
30.3.2 PHY entity managed object class <\/td>\n<\/tr>\n
139<\/td>\n30.3.2.1 PHY entity attributes
30.3.2.1.1 aPHYID
30.3.2.1.2 aPhyType <\/td>\n<\/tr>\n
140<\/td>\n30.3.2.1.3 aPhyTypeList
30.3.2.1.4 aSQETestErrors
30.3.2.1.5 aSymbolErrorDuringCarrier
30.3.2.1.6 aMIIDetect <\/td>\n<\/tr>\n
141<\/td>\n30.3.2.1.7 aPhyAdminState
30.3.2.2 PHY entity actions
30.3.2.2.1 acPhyAdminControl
30.3.3 MAC control entity object class
30.3.3.1 aMACControlID
ATTRIBUTE
APPROPRIATE SYNTAX:
BEHAVIOUR DEFINED AS: <\/td>\n<\/tr>\n
142<\/td>\n30.3.3.2 aMACControlFunctionsSupported
ATTRIBUTE
APPROPRIATE SYNTAX:
BEHAVIOUR DEFINED AS:
30.3.3.3 aMACControlFramesTransmitted
ATTRIBUTE
APPROPRIATE SYNTAX:
BEHAVIOUR DEFINED AS:
30.3.3.4 aMACControlFramesReceived
ATTRIBUTE
APPROPRIATE SYNTAX:
BEHAVIOUR DEFINED AS:
30.3.3.5 aUnsupportedOpcodesReceived
ATTRIBUTE
APPROPRIATE SYNTAX:
BEHAVIOUR DEFINED AS: <\/td>\n<\/tr>\n
143<\/td>\n30.3.4 PAUSE entity managed object class
30.3.4.1 aPAUSELinkDelayAllowance
ATTRIBUTE
APPROPRIATE SYNTAX:
BEHAVIOUR DEFINED AS:
30.3.4.2 aPAUSEMACCtrlFramesTransmitted
ATTRIBUTE
APPROPRIATE SYNTAX:
BEHAVIOUR DEFINED AS:
30.3.4.3 aPAUSEMACCtrlFramesReceived
ATTRIBUTE
APPROPRIATE SYNTAX:
BEHAVIOUR DEFINED AS:
30.4 Layer management for 10 and 100 Mb\/s baseband repeaters
30.4.1 Repeater managed object class <\/td>\n<\/tr>\n
144<\/td>\n30.4.1.1 Repeater attributes
30.4.1.1.1 aRepeaterID
30.4.1.1.2 aRepeaterType
30.4.1.1.3 aRepeaterGroupCapacity
30.4.1.1.4 aGroupMap <\/td>\n<\/tr>\n
145<\/td>\n30.4.1.1.5 aRepeaterHealthState
30.4.1.1.6 aRepeaterHealthText
30.4.1.1.7 aRepeaterHealthData
30.4.1.1.8 aTransmitCollisions <\/td>\n<\/tr>\n
146<\/td>\n30.4.1.2 Repeater actions
30.4.1.2.1 acResetRepeater
30.4.1.2.2 acExecuteNonDisruptiveSelfTest
30.4.1.3 Repeater notifications
30.4.1.3.1 nRepeaterHealth <\/td>\n<\/tr>\n
147<\/td>\n30.4.1.3.2 nRepeaterReset
30.4.1.3.3 nGroupMapChange
30.4.2 Group managed object class
30.4.2.1 Group attributes
30.4.2.1.1 aGroupID <\/td>\n<\/tr>\n
148<\/td>\n30.4.2.1.2 aGroupPortCapacity
30.4.2.1.3 aPortMap
30.4.2.2 Group notifications
30.4.2.2.1 nPortMapChange
30.4.3 Repeater port managed object class
30.4.3.1 Port attributes
30.4.3.1.1 aPortID <\/td>\n<\/tr>\n
149<\/td>\n30.4.3.1.2 aPortAdminState
30.4.3.1.3 aAutoPartitionState
30.4.3.1.4 aReadableFrames
30.4.3.1.5 aReadableOctets <\/td>\n<\/tr>\n
150<\/td>\n30.4.3.1.6 aFrameCheckSequenceErrors
30.4.3.1.7 aAlignmentErrors
30.4.3.1.8 aFramesTooLong
30.4.3.1.9 aShortEvents <\/td>\n<\/tr>\n
151<\/td>\n30.4.3.1.10 aRunts
30.4.3.1.11 aCollisions
30.4.3.1.12 aLateEvents <\/td>\n<\/tr>\n
152<\/td>\n30.4.3.1.13 aVeryLongEvents
30.4.3.1.14 aDataRateMismatches
30.4.3.1.15 aAutoPartitions <\/td>\n<\/tr>\n
153<\/td>\n30.4.3.1.16 aIsolates
30.4.3.1.17 aSymbolErrorDuringPacket
30.4.3.1.18 aLastSourceAddress
30.4.3.1.19 aSourceAddressChanges <\/td>\n<\/tr>\n
154<\/td>\n30.4.3.2 Port actions
30.4.3.2.1 acPortAdminControl
30.5 Layer management for 10 and 100 Mb\/s medium attachment units (MAUs)
30.5.1 MAU managed object class
30.5.1.1 MAU attributes
30.5.1.1.1 aMAUID
30.5.1.1.2 aMAUType
ATTRIBUTE
APPROPRIATE SYNTAX: <\/td>\n<\/tr>\n
155<\/td>\nBEHAVIOUR DEFINED AS:
30.5.1.1.3 aMAUTypeList
30.5.1.1.4 aMediaAvailable <\/td>\n<\/tr>\n
156<\/td>\n30.5.1.1.5 aLoseMediaCounter
30.5.1.1.6 aJabber
30.5.1.1.7 aMAUAdminState <\/td>\n<\/tr>\n
157<\/td>\n30.5.1.1.8 aBbMAUXmitRcvSplitType
30.5.1.1.9 aBroadbandFrequencies
30.5.1.1.10 aFalseCarriers <\/td>\n<\/tr>\n
158<\/td>\n30.5.1.1.11 aIdleErrorCount
ATTRIBUTE
APPROPRIATE SYNTAX:
BEHAVIOUR DEFINED AS:
30.5.1.2 MAU actions
30.5.1.2.1 acResetMAU
30.5.1.2.2 acMAUAdminControl
30.5.1.3 MAU notifications
30.5.1.3.1 nJabber
30.6 Management for link Auto-Negotiation
30.6.1 Auto-Negotiation managed object class
30.6.1.1 Auto-Negotiation attributes <\/td>\n<\/tr>\n
159<\/td>\n30.6.1.1.1 aAutoNegID
30.6.1.1.2 aAutoNegAdminState
30.6.1.1.3 aAutoNegRemoteSignaling
30.6.1.1.4 aAutoNegAutoConfig
30.6.1.1.5 aAutoNegLocalTechnologyAbility
ATTRIBUTE
APPROPRIATE SYNTAX: <\/td>\n<\/tr>\n
160<\/td>\nBEHAVIOUR DEFINED AS:
30.6.1.1.6 aAutoNegAdvertisedTechnologyAbility
30.6.1.1.7 aAutoNegReceivedTechnologyAbility
30.6.1.1.8 aAutoNegLocalSelectorAbility <\/td>\n<\/tr>\n
161<\/td>\n30.6.1.1.9 aAutoNegAdvertisedSelectorAbility
30.6.1.1.10 aAutoNegReceivedSelectorAbility
30.6.1.2 Auto-Negotiation actions
30.6.1.2.1 acAutoNegRestartAutoConfig
30.6.1.2.2 acAutoNegAdminControl <\/td>\n<\/tr>\n
162<\/td>\n31. MAC control
31.1 Overview
31.2 Layer architecture
Figure 31-1\u2014 Architectural positioning of MAC Control sublayer
31.3 Support by interlayer interfaces <\/td>\n<\/tr>\n
163<\/td>\nFigure 31-2\u2014 MAC Control sublayer support of interlayer service interfaces <\/td>\n<\/tr>\n
164<\/td>\n31.4 MAC Control frames
31.4.1 MAC Control frame format
Figure 31-3\u2014 MAC Control frame format
31.4.1.1 Destination address field
31.4.1.2 Source address field
31.4.1.3 Length\/Type field <\/td>\n<\/tr>\n
165<\/td>\n31.4.1.4 MAC Control opcode
31.4.1.5 MAC Control parameters
31.4.1.6 Reserved field
31.5 Opcode-independent MAC Control sublayer operation
31.5.1 Frame parsing and data frame reception
a) The destination_address parameter is set equal to the destinationParam from the ReceiveFrame f…
b) The source_address parameter is set equal to the sourceParam from the ReceiveFrame function.
c) The m_sdu parameter is set equal to the concatenation of the lengthOrTypeParam and the dataPar…
d) The reception_status parameter is set equal to the ReceiveStatus from the ReceiveFrame function. <\/td>\n<\/tr>\n
166<\/td>\n31.5.2 Control frame reception
31.5.3 Opcode-independent MAC control receive state diagram
31.5.3.1 Constants
31.5.3.2 Variables
31.5.3.3 Functions
31.5.3.4 Messages <\/td>\n<\/tr>\n
167<\/td>\n31.5.3.5 Opcode-independent MAC Control receive state diagram
Figure 31-4\u2014 Generic MAC Control Receive State Diagram
31.6 Compatibility requirements
31.7 MAC Control client behavior <\/td>\n<\/tr>\n
168<\/td>\n31.8 Protocol Implementation Conformance Statement (PICS) proforma for clause 31, MAC Control
31.8.1 Introduction
31.8.2 Identification
31.8.2.1 Implementation identification
31.8.2.2 Protocol summary <\/td>\n<\/tr>\n
169<\/td>\n31.8.3 PICS proforma for MAC control frames
31.8.3.1 Support by interlayer interfaces
31.8.3.2 MAC control frame format
31.8.3.3 Opcode-independent MAC control sublayer operation
31.8.3.4 Control opcode assignments <\/td>\n<\/tr>\n
170<\/td>\n32. Physical coding sublayer (PCS), physical medium attachment (PMA) sublayer and baseband medium…
32.1 Overview
a) Support the CSMA\/CD MAC
b) Support the 100BASE-T MII, Repeater and Auto-Negotiation
c) Support Full-Duplex operations (clause 31)
d) Provide 100 Mb\/s data rate at the MII
e) Provide for operating over two pairs of category 3, 4, or 5 balanced twisted pair cabling syst…
f) Support operation of other applications on adjacent pairs
g) Allow for a nominal network extent of 200 m including
1) Balanced cabling links of 100 m to support both half duplex and full duplex operation
2) Two-repeater networks of approximately 200 m span
h) Provide a communication channel with a symbol error rate of less than one part in 1010 at the …
32.1.1 Relation of 100BASE-T2 to other standards <\/td>\n<\/tr>\n
171<\/td>\nFigure 32-1\u2014 Type 100BASE-T2 PHY relationship to the ISO Open Systems Interconnection (OSI) Refer… <\/td>\n<\/tr>\n
172<\/td>\n32.1.2 Operation of 100BASE-T2
Figure 32-2\u2014 100BASE-T2 topology
Figure 32-3\u2014 PAM5x5 symbol constellation <\/td>\n<\/tr>\n
173<\/td>\nFigure 32-4\u2014 Division of responsibilities between 100BASE-T2 PCS, PMA, and PHY Control <\/td>\n<\/tr>\n
174<\/td>\n32.1.2.1 Physical coding sublayer (PCS)
32.1.2.2 Physical medium attachment (PMA) sublayer
32.1.2.3 PHY Control function <\/td>\n<\/tr>\n
175<\/td>\n32.1.3 Application of 100BASE-T2
32.1.3.1 Compatibility considerations
32.1.3.2 Incorporating the 100BASE-T2 PHY into a DTE
32.1.3.3 Use of 100BASE-T2 PHY for point-to-point communication
32.1.3.4 Auto-Negotiation requirement
32.1.4 State diagram conventions
32.2 PHY Control functional specifications and service interface
32.2.1 PHY Control function <\/td>\n<\/tr>\n
176<\/td>\n32.2.2 PHY Control Service interface
32.2.2.1 PHYC_CONFIG.indicate
32.2.2.1.1 Semantics of the primitive <\/td>\n<\/tr>\n
177<\/td>\n32.2.2.1.2 When generated
32.2.2.1.3 Effect of receipt
32.2.2.2 PHYC_TXMODE.indicate
32.2.2.2.1 Semantics of the primitive
32.2.2.2.2 When generated
32.2.2.2.3 Effect of receipt
32.2.2.3 PHYC_RXSTATUS.request
32.2.2.3.1 Semantics of the primitive <\/td>\n<\/tr>\n
178<\/td>\n32.2.2.3.2 When generated
32.2.2.3.3 Effect of receipt
32.2.2.4 PHYC_REMRXSTATUS.request
32.2.2.4.1 Semantics of the primitive
32.2.2.4.2 When generated
32.2.2.4.3 Effect of receipt
32.2.3 State diagram variables <\/td>\n<\/tr>\n
179<\/td>\n32.2.4 State diagram timers <\/td>\n<\/tr>\n
180<\/td>\n32.2.5 PHY Control state diagram
Figure 21-5\u2014 PMA control state diagram for master PHY
32.3 PCS functional specifications <\/td>\n<\/tr>\n
181<\/td>\nFigure 32-6\u2014 PCS reference diagram
32.3.1 PCS functions
32.3.1.1 PCS Reset function
32.3.1.2 PCS Transmit function <\/td>\n<\/tr>\n
182<\/td>\nFigure 32-7\u2014 PCS Transmit reference diagram <\/td>\n<\/tr>\n
183<\/td>\n32.3.1.2.1 Side-stream scrambler polynomials
Figure 32-8\u2014 Realization of side-stream scramblers by linear feedback shift registers
32.3.1.2.2 Generation of bits San[2:0] and Sbn[2:0] <\/td>\n<\/tr>\n
184<\/td>\n32.3.1.2.3 Generation of sequences An and Bn <\/td>\n<\/tr>\n
186<\/td>\nFigure 32-9\u2014 Symbol mapping and encoding rule summary
Figure 32-10\u2014 Symbol constellations in idle and data modes
32.3.1.3 PCS Receive function <\/td>\n<\/tr>\n
187<\/td>\n32.3.1.3.1 Receiver descrambler polynomials
32.3.1.3.2 Decoding of quinary symbols
Table 32-1\u2014 \ufffdInverse quinary symbol mapping
32.3.1.4 PCS Carrier Sense function <\/td>\n<\/tr>\n
188<\/td>\n32.3.1.5 PCS Collision Presence function
32.3.2 PCS interfaces
32.3.2.1 PCS\u2013MII interface signals
Table 32-2\u2014 \ufffdMII interface signals
32.3.2.2 PCS\u2013management entity signals
32.3.3 Frame structure <\/td>\n<\/tr>\n
189<\/td>\nFigure 32-11\u2014 PCS sublayer to PMA sublayer frame structure
32.3.4 State variables
32.3.4.1 Variables <\/td>\n<\/tr>\n
191<\/td>\n32.3.4.2 Timer
32.3.4.3 Messages
32.3.5 State diagrams
32.3.5.1 PCS Transmit
32.3.5.2 PCS Receive <\/td>\n<\/tr>\n
192<\/td>\n32.3.5.3 PCS Carrier Sense
32.3.6 PCS electrical specifications <\/td>\n<\/tr>\n
193<\/td>\nFigure 32-12\u2014 PCS Transmit state diagram <\/td>\n<\/tr>\n
194<\/td>\nFigure 32-13\u2014 PCS Receive state diagram <\/td>\n<\/tr>\n
195<\/td>\nFigure 32-14\u2014 PCS Carrier Sense state diagram
32.4 PMA functional specifications and service interface
32.4.1 PMA functional specifications
Figure 32-15\u2014 PMA reference diagram <\/td>\n<\/tr>\n
196<\/td>\n32.4.1.1 PMA functions
32.4.1.1.1 PMA Reset function
32.4.1.1.2 PMA Transmit function
32.4.1.1.3 PMA Receive function
32.4.1.1.4 Link Monitor function
a) the pma_type variable that indicates whether the remote station is of type 100BASE-T2 or not,
b) the link_status variable that is sent across the PMA Service interface. <\/td>\n<\/tr>\n
197<\/td>\n32.4.1.1.5 Clock Recovery function
32.4.1.2 PMA interface messages
32.4.1.2.1 MDI signals transmitted by the PHY
32.4.1.2.2 Signals received at the MDI
32.4.1.3 PMA state diagram
32.4.1.3.1 State diagram variables <\/td>\n<\/tr>\n
198<\/td>\n32.4.1.3.2 Timers
32.4.1.3.3 Link Monitor state diagram\ufffd\ufffd\ufffd\ufffd\ufffd\ufffd\ufffd\ufffd
Figure 32-16\u2014 Link Monitor state diagram
32.4.2 PMA service interface <\/td>\n<\/tr>\n
199<\/td>\n32.4.2.1 PMA_TYPE.indicate
32.4.2.1.1 Semantics of the primitive
32.4.2.1.2 When generated
32.4.2.1.3 Effect of receipt
32.4.2.2 PMA_UNITDATA.request
32.4.2.2.1 Semantics of the primitive <\/td>\n<\/tr>\n
200<\/td>\n32.4.2.2.2 When generated
32.4.2.2.3 Effect of receipt
32.4.2.3 PMA_UNITDATA.indicate
32.4.2.3.1 Semantics of the primitive
32.4.2.3.2 When generated
32.4.2.3.3 Effect of receipt
32.4.2.4 PMA_LINK.request
32.4.2.4.1 Semantics of the primitive <\/td>\n<\/tr>\n
201<\/td>\n32.4.2.4.2 When generated
32.4.2.4.3 Effect of receipt
32.4.2.5 PMA_LINK.indicate
32.4.2.5.1 Semantics of the primitive
32.4.2.5.2 When generated
32.4.2.5.3 Effect of receipt
32.4.2.6 PMA_CARRIER.indicate
32.4.2.7 PMA_RXERROR.indicate <\/td>\n<\/tr>\n
202<\/td>\n32.4.2.8 PMA_RXSTATUS.request
32.5 Management functions
32.5.1 100BASE-T2 Use of Auto-Negotiation and MII registers 8, 9, and 10 <\/td>\n<\/tr>\n
203<\/td>\n32.5.2 Management functions
Table 32-3\u2014 100BASE-T2 Control and Status registers
32.5.3 PHY specific registers for 100BASE-T2 <\/td>\n<\/tr>\n
204<\/td>\n32.5.3.1 100BASE-T2 Control register (register 9)
Table 32-4\u2014 100BASE-T2 Control register (MII management register 9) bit definition
32.5.3.1.1 Transmitter test mode
32.5.3.1.2 Receive test mode
32.5.3.1.3 MASTER-SLAVE Manual Configuration Enable <\/td>\n<\/tr>\n
205<\/td>\n32.5.3.1.4 MASTER-SLAVE Manual Configuration Value
32.5.3.1.5 T2_Repeater\/DTE Bit
32.5.3.1.6 Reserved bits
32.5.3.2 100BASE-T2 Status register (register 10)
Table 32-5\u2014 100BASE-T2 Status register (MII management register 10) bit definition
32.5.3.2.1 MASTER-SLAVE Manual Configuration Fault <\/td>\n<\/tr>\n
206<\/td>\n32.5.3.2.2 MASTER-SLAVE Configuration Resolution Complete
32.5.3.2.3 Local Receiver Status
32.5.3.2.4 Remote Receiver Status
32.5.3.2.5 Reserved bits
32.5.3.2.6 Idle Error count
32.5.4 Changes and additions to Auto-Negotiation (28) <\/td>\n<\/tr>\n
207<\/td>\nTable 32-6\u2014 Link Partner Next Page Ability register bit definitions (MII Management register 8)\ufffd\ufffd
32.5.4.3 Use of Auto-Negotiation Next Page codes for 100BASE-T2 PHYs <\/td>\n<\/tr>\n
208<\/td>\nTable 32-7\u2014 Bit assignments for Unformatted Next Pages containing 100BASE-T2 Technology Ability F… <\/td>\n<\/tr>\n
209<\/td>\nTable 32-8\u2014 100BASE-T2 MASTER-SLAVE Configuration Resolution table <\/td>\n<\/tr>\n
210<\/td>\n32.6 PMA electrical specifications
32.6.1 PMA-to-MDI interface characteristics
32.6.1.1 Isolation requirement
a) 1500 V rms at 50\u201360 Hz for 60 s, applied as specified in Section 5.3.2 of IEC 950
b) 2250 Vdc for 60 s, applied as specified in Section 5.3.2 of IEC 950
c) A sequence of ten 2400 V impulses of alternating polarity, applied at intervals of not less th…
32.6.1.2 Transmitter electrical specifications
32.6.1.2.1 Transmitter test modes <\/td>\n<\/tr>\n
211<\/td>\nTable 32-9\u2014 \ufffdMII management register set <\/td>\n<\/tr>\n
212<\/td>\nFigure 32-17\u2014 Example Transmitter Test Mode Transmitter <\/td>\n<\/tr>\n
213<\/td>\n32.6.1.2.2 Peak differential output voltage and level distortion
32.6.1.2.3 Maximum output droop
32.6.1.2.4 Differential output templates <\/td>\n<\/tr>\n
214<\/td>\nFigure 32-18\u2014 Normalized transmit templates as measured at MDI through preprocessing filter <\/td>\n<\/tr>\n
215<\/td>\nTable 32-10\u2014 \ufffdNormalized time domain voltage template (continued) <\/td>\n<\/tr>\n
216<\/td>\nTable 32-11\u2014 Normalized frequency domain amplitude spectrum template (continued) <\/td>\n<\/tr>\n
217<\/td>\n32.6.1.2.5 Transmitter timing jitter
32.6.1.2.6 Transmit clock frequency
32.6.1.3 Receiver electrical specifications
32.6.1.3.1 Test channel <\/td>\n<\/tr>\n
218<\/td>\nFigure 32-19\u2014 Conceptual diagram of test channel <\/td>\n<\/tr>\n
219<\/td>\nFigure 32-20\u2014 Test channel responses <\/td>\n<\/tr>\n
220<\/td>\nTable 32-12 \u2014Coefficients for Worst Case Channel and T2 Alien NEXT Model (continued) <\/td>\n<\/tr>\n
230<\/td>\n32.6.1.3.2 Receiver test mode
32.6.1.3.3 Receiver differential input signals
32.6.1.3.4 Receiver alien NEXT tolerance
Table 32-12\u2014 Receiver Alien NEXT test cases
32.6.1.3.5 Receiver timing jitter <\/td>\n<\/tr>\n
231<\/td>\n32.6.1.3.6 Common-mode noise rejection
Figure 32-21\u2014 Receiver common-mode noise rejection test circuit
32.6.1.3.7 Receiver frequency tolerance
32.6.1.4 MDI Specifications
32.6.1.4.1 MDI differential impedance <\/td>\n<\/tr>\n
232<\/td>\n32.6.1.4.2 MDI impedance balance
Figure 32-22\u2014 MDI impedance balance test circuit
32.6.1.4.3 MDI common-mode output voltage <\/td>\n<\/tr>\n
233<\/td>\nFigure 32-23\u2014 Common-mode output voltage test circuit
32.6.1.4.4 MDI fault tolerance
Figure 32-24\u2014 MDI fault tolerance test circuit
32.6.2 Power consumption <\/td>\n<\/tr>\n
234<\/td>\n32.7 Link segment characteristics
a) 100BASE-T2
b) 10BASE-T
c) Digital Phone services compliant with the ITU-T Recommendation I.430 and ANSI T1.605 and T1.601
32.7.1 Cabling
a) 100BASE-T2 uses a star topology. Balanced cabling is used to connect PHY entities.
b) 100BASE-T2 is an ISO 11801 class C application, with additional installation requirements and …
c) 100BASE-T2 shall use 2 pairs of balanced cabling, category 3 or better, with a nominal charact…
d) When using category 3 cabling for the link segment, clause 32 recommends, but does not require…
e) The use of shielding is outside the scope of this standard.
f) The use of other cabling systems is discussed in annex 32A.
32.7.2 Link transmission parameters
32.7.2.1 Insertion loss <\/td>\n<\/tr>\n
235<\/td>\n32.7.2.2 Differential characteristic impedance
32.7.2.3 Coupling parameters
32.7.2.3.1 Differential near-end crosstalk (NEXT) loss
32.7.2.3.2 Multiple-disturber NEXT (MDNEXT) loss
32.7.2.3.3 Equal level far-end crosstalk loss (ELFEXT) <\/td>\n<\/tr>\n
236<\/td>\n32.7.2.3.4 Multiple-disturber ELFEXT (MDELFEXT) loss
32.7.2.3.5 10BASE-T NEXT loss to insertion loss ratio requirement
32.7.2.4 Delay
32.7.2.4.1 Maximum link delay
32.7.2.4.2 Difference in link delays <\/td>\n<\/tr>\n
237<\/td>\n32.7.3 Noise
a) Echo from the local transmitter on the same pair (duplex channel). Echo is caused by the hybri…
b) Near-end crosstalk (NEXT) noise from the local transmitter on the other pair (duplex channel) …
c) Far-end crosstalk (FEXT) noise from the remote transmitters on the other pair (duplex channel)…
d) Noise from non-idealities in the duplex channels, transmitters and receivers; for example, DAC…
e) Noise from sources outside the cabling which couple into the link segment via electric and mag…
f) Noise from services in adjacent wire pairs in the same cable sheath. These services generate n… <\/td>\n<\/tr>\n
238<\/td>\n32.7.3.1 Near end crosstalk noise
a) Two disturbing alien pairs with a NEXT loss greater than 22.0 dB at 16 MHz
b) All disturbers combined on a power sum basis
32.7.3.2 Far end crosstalk noise
a) One disturbing pair with ELFEXT (Equal Level Far End Crosstalk) loss greater than 20.9 dB at 1…
b) Two additional disturbers with ELFEXT (Equal Level Far End Crosstalk) loss greater than 27.0 d…
c) All disturbers combined on a power sum basis
32.7.3.3 External coupled noise <\/td>\n<\/tr>\n
239<\/td>\n32.7.4 Installation practice
32.7.4.1 Connector installation practices
32.7.4.2 Restrictions on use of category 3 cabling with more than four pairs
32.7.4.3 Restrictions on use of category 5 cabling with up to 25 pairs
32.8 MDI specification
32.8.1 MDI connectors
Figure 32-25\u2014 MDI connector
32.8.2 Crossover function <\/td>\n<\/tr>\n
240<\/td>\nFigure 32-26\u2014 Balanced cabling connector
Table 32-14\u2014 Assignment of PMA signals to MDI pin-outs
32.9 System considerations <\/td>\n<\/tr>\n
241<\/td>\n32.10 Environmental specifications
32.10.1 General safety
32.10.2 Network safety
a) Direct contact between LAN components and power, lighting, or communications circuits
b) Static charge buildup on LAN cabling and components
c) High-energy transients coupled onto the LAN cabling system
d) Voltage potential differences between safety grounds to which various LAN components are con\ufffdn…
32.10.2.1 Installation
32.10.2.2 Grounding
32.10.2.3 Installation and maintenance guidelines
32.10.2.4 Telephony voltages <\/td>\n<\/tr>\n
242<\/td>\n32.10.3 Environment
32.10.3.1 Electromagnetic emission
32.10.3.2 Temperature and humidity
32.10.4 Cabling specifications
32.11 PHY labeling
a) Data rate capability in Mb\/s
b) Power level in terms of maximum current drain (for external PHYs)
c) Port type (i.e., 100BASE-T2)
d) Any applicable safety warnings
32.12 Delay constraints <\/td>\n<\/tr>\n
243<\/td>\n32.12.1 PHY delay constraints (exposed MII)
Table 32-15\u2014 \ufffdMDI to MII delay constraints (exposed MII)
32.12.2 DTE delay constraints (unexposed MII)
Table 32-16\u2014 \ufffdDTE delay constraints (unexposed MII) <\/td>\n<\/tr>\n
244<\/td>\n32.13 Protocol Implementation Conformance Statement (PICS) proforma for clause 32, Physical Codin…
32.13.1 Identification
32.13.1.1 Implementation identification
32.13.1.2 Protocol summary <\/td>\n<\/tr>\n
245<\/td>\n32.13.2 Major capabilities\/options
32.13.3 Compatibility considerations <\/td>\n<\/tr>\n
246<\/td>\n32.13.4 PHY control function <\/td>\n<\/tr>\n
247<\/td>\n32.13.5 Physical Coding Sublayer (PCS) or Physical Medium Attachment sublayer (PMA)
32.13.5.1 PCS transmit functions
32.13.5.2 PCS receive functions\ufffd\ufffd
32.13.5.3 <\/td>\n<\/tr>\n
248<\/td>\n32.13.5.4 Other PCS functions <\/td>\n<\/tr>\n
249<\/td>\n32.13.5.5 PMA functions <\/td>\n<\/tr>\n
250<\/td>\n32.13.5.6 PMA service interface <\/td>\n<\/tr>\n
251<\/td>\n32.13.5.7 Management functions <\/td>\n<\/tr>\n
253<\/td>\n32.13.5.8 100BASE-T2 specific Auto-Negotiation requirements <\/td>\n<\/tr>\n
254<\/td>\n32.13.5.9 PMA electrical specifications <\/td>\n<\/tr>\n
260<\/td>\n32.13.5.10 Characteristics of the link segment <\/td>\n<\/tr>\n
262<\/td>\n32.13.5.11 MDI requirements
32.13.5.12 General safety and environmental requirements <\/td>\n<\/tr>\n
263<\/td>\n32.13.5.13 Timing requirements exposed MII :
32.13.5.14 Timing requirements unexposed MII :
32.13.5.15 Timing requirements: carrier assertion\/deassertion constraint : <\/td>\n<\/tr>\n
264<\/td>\nAnnex C \ufffd[from the 1996 Edition (Appendix B in prior Edition)]
(informative)
State Diagram, MAC sublayer <\/td>\n<\/tr>\n
265<\/td>\nAnnex 28B
(normative)
Physical Layer link signaling for 10 Mb\/s and 100 Mb\/s Auto- Negotiation on twisted pair
a) 100BASE-T2 full duplex
b) 100BASE-TX full duplex
c) 100BASE-T2
d) 100BASE-T4
e) 100BASE-TX
f) 10BASE-T full duplex
g) 10BASE-T <\/td>\n<\/tr>\n
267<\/td>\nAnnex 28C
(normative)
Next Page Message Code Field definitions
Table 28C-1\u2014 Message code field values <\/td>\n<\/tr>\n
268<\/td>\nAnnex 28D
(normative)
Description of extensions to clause 28 and associated annexes
28D.1 Introduction
28D.2 Extensions to clause 28
28D.2.1 Extensions required for clause 31 (full duplex)
28D.2.2 Extensions required for clause 32 (100BASE-T2)
28D.3 Extensions for clause 31 <\/td>\n<\/tr>\n
269<\/td>\n28D.4 Extensions for clause 32 (100BASE-T2) <\/td>\n<\/tr>\n
270<\/td>\nAnnex 30A
30A.1 DTE MAC entity managed object class
30A.1.1 DTE MAC entity formal definition <\/td>\n<\/tr>\n
272<\/td>\n30A.1.2 DTE MAC entity attributes <\/td>\n<\/tr>\n
280<\/td>\n30A.1.3 DTE MAC entity actions <\/td>\n<\/tr>\n
281<\/td>\n30A.2 DTE physical entity managed object class
30A.2.1 DTE physical entity formal definition <\/td>\n<\/tr>\n
282<\/td>\n30A.2.2 DTE physical entity attributes <\/td>\n<\/tr>\n
284<\/td>\n30A.2.3 DTE physical entity actions <\/td>\n<\/tr>\n
285<\/td>\n30A.3 DTE MAC control entity managed object class
30A.3.1 DTE MAC control entity formal definition
30A.3.2 DTE MAC Control entity attributes <\/td>\n<\/tr>\n
286<\/td>\n30A.4 DTE MAC Control function entity managed object class
30A.4.1 DTE MAC Control function entity formal definition <\/td>\n<\/tr>\n
287<\/td>\n30A.4.2 DTE MAC Control function entity attributes <\/td>\n<\/tr>\n
288<\/td>\n30A.5 Repeater managed object class
30A.5.1 Repeater, formal definition <\/td>\n<\/tr>\n
289<\/td>\n30A.5.2 Repeater attributes <\/td>\n<\/tr>\n
291<\/td>\n30A.5.3 Repeater actions
30A.5.4 Repeater notifications <\/td>\n<\/tr>\n
292<\/td>\n30A.6 Group managed object class
30A.6.1 Group, formal definition
30A.6.2 Group attributes <\/td>\n<\/tr>\n
293<\/td>\n30A.6.3 Group notifications
30A.7 Repeater port managed object class
30A.7.1 Port, formal definition <\/td>\n<\/tr>\n
294<\/td>\n30A.7.2 Port attributes <\/td>\n<\/tr>\n
299<\/td>\n30A.7.3 Port actions
30A.8 MAU managed object class
30A.8.1 MAU, formal definition <\/td>\n<\/tr>\n
301<\/td>\n30A.8.2 MAU attributes <\/td>\n<\/tr>\n
303<\/td>\n30A.8.3 MAU actions <\/td>\n<\/tr>\n
304<\/td>\n30A.8.4 MAU notifications
30A.9 AutoNegotiation managed object class
30A.9.1 AutoNegotiation, formal definition <\/td>\n<\/tr>\n
305<\/td>\n30A.9.2 Auto-Negotiation attributes <\/td>\n<\/tr>\n
307<\/td>\n30A.9.3 AutoNegotiation actions <\/td>\n<\/tr>\n
308<\/td>\n30A.10 ResourceTypeID managed object class
30A.10.1 ResourceTypeID, formal definition <\/td>\n<\/tr>\n
309<\/td>\nAnnex 30B (normative)
30B.1 Common attributes template
30B.2 ASN.1 module for CSMA\/CD managed objects <\/td>\n<\/tr>\n
314<\/td>\nAnnex 31A
(normative)
MAC Control opcode assignments
Table 31A-1\u2014 MAC Control opcodes
Table 31A-2\u2014 MAC Control indications <\/td>\n<\/tr>\n
315<\/td>\nAnnex 31B
(normative)
MAC Control PAUSE operation
31B.1 PAUSE description
a) The globally-assigned 48 bit multicast address 01-80-C2-00-00-01,
b) The PAUSE opcode,
c) A request_operand indicating the length of time for which it wishes to inhibit data frame tran…
31B.2 Parameter semantics <\/td>\n<\/tr>\n
316<\/td>\n31B.3 Detailed specification of PAUSE operation
31B.3.1 Transmit operation
a) The destinationParam is set equal to the destination_address parameter of the MA_DATA.request …
b) The sourceParam is set equal to the 48 bit individual address of the station.
c) The lengthOrTypeParam is set to the reserved 802.3_MAC_Control value specified in 31.4.1.3.
d) The dataParam is set equal to the concatenation of the PAUSE opcode encoding (see Annex 31A), …
a) The destinationParam is set equal to the destination_address parameter of the MA_CONTROL.reque…
b) The sourceParam is set equal to the 48 bit individual address of the station.
c) The lengthOrTypeParam and dataParam are set from the m_sdu field of the MA_DATA.request primit…
31B.3.2 Transmit state diagram for PAUSE operation
31B.3.2.1 Constants
31B.3.2.2 Variables <\/td>\n<\/tr>\n
317<\/td>\n31B.3.2.3 Functions
31B.3.2.4 Timers
31B.3.2.5 Messages
31B.3.2.6 Transmit state diagram for PAUSE operation <\/td>\n<\/tr>\n
318<\/td>\nFigure 31B-1\u2014 PAUSE Operation transmit state diagram <\/td>\n<\/tr>\n
319<\/td>\n31B.3.3 Receive operation
31B.3.4 Receive state diagram for PAUSE operation
31B.3.4.1 Constants
31B.3.4.2 Variables <\/td>\n<\/tr>\n
320<\/td>\n31B.3.4.3 Timers
31B.3.4.4 Receive state diagram (INITIATE MAC CONTROL FUNCTION) for PAUSE operation
Figure 31B-2\u2014 PAUSE operation receive state diagram
30B.3.5 Status indication operation
31B.3.6 Indication state diagram for pause operation
31B.3.6.1 Constants
31B.3.6.2 Variables <\/td>\n<\/tr>\n
321<\/td>\n31B.3.6.3 Messages
31B.3.6.4 Indication state diagram for PAUSE operation
Figure 31B-3\u2014 PAUSE operation indication state diagram
31B.3.7 Timing considerations for PAUSE operation <\/td>\n<\/tr>\n
322<\/td>\n31B.4 Protocol Implementation Conformance Statement (PICS) proforma for PAUSE operation
31B.4.1 Introduction
31B.4.2 Identification
31B.4.2.1 Implementation identification
31B.4.2.2 Protocol summary <\/td>\n<\/tr>\n
323<\/td>\n31B.4.3 Major capabilities\/options\ufffd\ufffd\ufffd\ufffd\ufffd\ufffd
31B.4.4 PAUSE command requirements
31B.4.5 PAUSE command state diagram requirements
31B.4.6 PAUSE command MAC timing considerations\ufffd\ufffd\ufffd\ufffd\ufffd\ufffd <\/td>\n<\/tr>\n
324<\/td>\nAnnex 32 A
(informative)
Use of cabling systems with nominal differential characteristic impedance of 120 \u00bd or 150 \u00bd
a) increased echo due primarily to poorer hybrid performance
b) increased cabling attenuation roughness due to increased reflections
c) increased transmitter launch amplitude
d) possible non-linearities in transmitter <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":"

IEEE Standards for Local and Metropolitan Area Networks: Specification for 802.3 Full Duplex Operation<\/b><\/p>\n\n\n\n\n
Published By<\/td>\nPublication Date<\/td>\nNumber of Pages<\/td>\n<\/tr>\n
IEEE<\/b><\/a><\/td>\n1997<\/td>\n325<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n","protected":false},"featured_media":129356,"template":"","meta":{"rank_math_lock_modified_date":false,"ep_exclude_from_search":false},"product_cat":[2644],"product_tag":[],"class_list":{"0":"post-129349","1":"product","2":"type-product","3":"status-publish","4":"has-post-thumbnail","6":"product_cat-ieee","8":"first","9":"instock","10":"sold-individually","11":"shipping-taxable","12":"purchasable","13":"product-type-simple"},"_links":{"self":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product\/129349","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product"}],"about":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/types\/product"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media\/129356"}],"wp:attachment":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media?parent=129349"}],"wp:term":[{"taxonomy":"product_cat","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_cat?post=129349"},{"taxonomy":"product_tag","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_tag?post=129349"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}