{"id":194512,"date":"2024-10-19T12:20:35","date_gmt":"2024-10-19T12:20:35","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/ieee-1527-2018\/"},"modified":"2024-10-25T04:51:36","modified_gmt":"2024-10-25T04:51:36","slug":"ieee-1527-2018","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/ieee\/ieee-1527-2018\/","title":{"rendered":"IEEE 1527 2018"},"content":{"rendered":"
Revision Standard – Active. Recommended practices for the engineering and design of flexible and rigid bus connections for bus and equipment in electric power substations located in seismically active areas are provided in this document.<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
1<\/td>\n | IEEE Std 1527\u2122-2018 Front cover <\/td>\n<\/tr>\n | ||||||
2<\/td>\n | Title page <\/td>\n<\/tr>\n | ||||||
4<\/td>\n | Important Notices and Disclaimers Concerning IEEE Standards Documents <\/td>\n<\/tr>\n | ||||||
7<\/td>\n | Participants <\/td>\n<\/tr>\n | ||||||
9<\/td>\n | Introduction <\/td>\n<\/tr>\n | ||||||
10<\/td>\n | Contents <\/td>\n<\/tr>\n | ||||||
12<\/td>\n | List of Figures <\/td>\n<\/tr>\n | ||||||
14<\/td>\n | List of Tables <\/td>\n<\/tr>\n | ||||||
15<\/td>\n | IMPORTANT NOTICE 1.\u2002Overview 1.1\u2002Scope 1.2\u2002Purpose 1.3\u2002Application <\/td>\n<\/tr>\n | ||||||
16<\/td>\n | 2.\u2002Normative references 3.\u2002Definitions, acronyms, and abbreviations 3.1\u2002Definitions <\/td>\n<\/tr>\n | ||||||
18<\/td>\n | 3.2\u2002Acronyms and abbreviations 4.\u2002General design process 4.1\u2002Introduction <\/td>\n<\/tr>\n | ||||||
19<\/td>\n | 4.2\u2002Main design criteria <\/td>\n<\/tr>\n | ||||||
20<\/td>\n | 4.3\u2002Design process for seismic connections <\/td>\n<\/tr>\n | ||||||
21<\/td>\n | 5.\u2002Equipment movement and elongation demand 5.1\u2002Introduction <\/td>\n<\/tr>\n | ||||||
22<\/td>\n | 5.2\u2002Seismic input 5.3\u2002Foundation considerations 5.4\u2002Basic connection geometry <\/td>\n<\/tr>\n | ||||||
23<\/td>\n | 5.5\u2002Determination of the elongation demand <\/td>\n<\/tr>\n | ||||||
29<\/td>\n | 6.\u2002Design of flexible conductor 6.1\u2002Advantages and limitations of flexible connection <\/td>\n<\/tr>\n | ||||||
30<\/td>\n | 6.2\u2002Available shapes, required conductor length, and qualitative behavior <\/td>\n<\/tr>\n | ||||||
34<\/td>\n | 6.3\u2002Verification of clearances, flexibility, and stability using the nonlinear finite element method <\/td>\n<\/tr>\n | ||||||
40<\/td>\n | 6.4\u2002Verification of clearances, stability, and flexibility experimentally <\/td>\n<\/tr>\n | ||||||
42<\/td>\n | 6.5\u2002Spacers for bundled conductors <\/td>\n<\/tr>\n | ||||||
43<\/td>\n | 6.6\u2002Standardized configuration design <\/td>\n<\/tr>\n | ||||||
45<\/td>\n | 7.\u2002Design of rigid bus with flexible connector 7.1\u2002General description <\/td>\n<\/tr>\n | ||||||
47<\/td>\n | 7.2\u2002Advantages and limitations of RB-FCs <\/td>\n<\/tr>\n | ||||||
48<\/td>\n | 7.3\u2002Design principles of an RB-FC 7.4\u2002Available methods to evaluate the interaction effect <\/td>\n<\/tr>\n | ||||||
49<\/td>\n | 7.5\u2002Determination of RB-FC in-line load displacement properties <\/td>\n<\/tr>\n | ||||||
51<\/td>\n | 7.6\u2002Evaluation of interaction between equipment connected by rigid bus using a simplified analysis method <\/td>\n<\/tr>\n | ||||||
57<\/td>\n | 8.\u2002Methodology to account for the interaction effects of conductors in the seismic qualification of substation equipment 8.1\u2002Introduction 8.2\u2002Inclusion of interaction effects in the seismic qualification of equipment <\/td>\n<\/tr>\n | ||||||
59<\/td>\n | 9.\u2002Other considerations <\/td>\n<\/tr>\n | ||||||
60<\/td>\n | Annex A (informative) Bibliography <\/td>\n<\/tr>\n | ||||||
63<\/td>\n | Annex B (informative) Electrical clearances <\/td>\n<\/tr>\n | ||||||
65<\/td>\n | Annex C (informative) Generalized single-degree-of-freedom (SDOF) method <\/td>\n<\/tr>\n | ||||||
68<\/td>\n | Annex D (informative) Comparison between combination methods to obtain the elongation demand <\/td>\n<\/tr>\n | ||||||
70<\/td>\n | Annex E (informative) Effect of adding slack on the catenary configuration <\/td>\n<\/tr>\n | ||||||
73<\/td>\n | Annex F (informative) Examples of finite element calculations <\/td>\n<\/tr>\n | ||||||
75<\/td>\n | Annex G (informative) Common conductor input properties for finite element calculations <\/td>\n<\/tr>\n | ||||||
76<\/td>\n | Annex H (informative) Examples of flexibility calculations for flexible conductors <\/td>\n<\/tr>\n | ||||||
78<\/td>\n | Annex I (informative) Maximum horizontal forces measured during experiments <\/td>\n<\/tr>\n | ||||||
79<\/td>\n | Annex J (informative) Other considerations J.1\u2002Corona losses <\/td>\n<\/tr>\n | ||||||
80<\/td>\n | J.2\u2002Current-carrying capacity <\/td>\n<\/tr>\n | ||||||
82<\/td>\n | J.3\u2002High-current connections <\/td>\n<\/tr>\n | ||||||
86<\/td>\n | J.4\u2002Type of material to use\u2014copper versus aluminum <\/td>\n<\/tr>\n | ||||||
88<\/td>\n | J.5\u2002Fault conditions J.6\u2002Connection hardware <\/td>\n<\/tr>\n | ||||||
89<\/td>\n | J.7\u2002Bird caging of flexible conductors <\/td>\n<\/tr>\n | ||||||
90<\/td>\n | J.8\u2002Prevention of clearance violation with flexible bus using rigid bus extensions <\/td>\n<\/tr>\n | ||||||
91<\/td>\n | Back cover <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" IEEE Recommended Practice for the Design of Buswork Located in Seismically Active Areas<\/b><\/p>\n |