{"id":208509,"date":"2024-10-19T13:26:37","date_gmt":"2024-10-19T13:26:37","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/icc-structuralhandbook-2009-pdf\/"},"modified":"2024-10-25T06:09:21","modified_gmt":"2024-10-25T06:09:21","slug":"icc-structuralhandbook-2009-pdf","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/icc\/icc-structuralhandbook-2009-pdf\/","title":{"rendered":"ICC StructuralHandbook 2009.pdf"},"content":{"rendered":"

2020 City of Los Angeles amendment pages for integration with the 2019 California Building Code<\/p>\n

PDF Catalog<\/h4>\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
PDF Pages<\/th>\nPDF Title<\/th>\n<\/tr>\n
1<\/td>\n2009 IBC\u00ae HANDBOOK STRUCTURAL PROVISIONS <\/td>\n<\/tr>\n
2<\/td>\nCOPYRIGHT <\/td>\n<\/tr>\n
3<\/td>\nPREFACE <\/td>\n<\/tr>\n
5<\/td>\nDEDICATION <\/td>\n<\/tr>\n
7<\/td>\nFORWORD <\/td>\n<\/tr>\n
9<\/td>\nACKNOWLEDGEMENTS <\/td>\n<\/tr>\n
11<\/td>\nCONTENTS <\/td>\n<\/tr>\n
15<\/td>\nINTRODUCTION <\/td>\n<\/tr>\n
16<\/td>\nLEGACY MODEL CODES
FIGURE I-1 APPROXIMATE AREAS OF INFLUENCE OF EACH MODEL CODE PRIOR TO PUBLICATION OF THE IBC <\/td>\n<\/tr>\n
17<\/td>\nINTERNATIONAL BUILDING CODE
FIGURE I-2 DEVELOPMENT OF IBC <\/td>\n<\/tr>\n
18<\/td>\nSTRUCTURAL DESIGN (CHAPTER 16): NONSEISMIC <\/td>\n<\/tr>\n
19<\/td>\nFIGURE I-3 ORIGIN OF SEISMIC DESIGN PROVISIONS IN U.S. BUILDING CODES
STRUCTURAL DESIGN (CHAPTER 16): SEISMIC <\/td>\n<\/tr>\n
21<\/td>\nFIGURE I-4 DEVELOPMENT AND SUBSEQUESNT ASSIMILATION OF THE NEHRP SEISMIC PROVISIONS IN THE UBC AND IBC <\/td>\n<\/tr>\n
22<\/td>\nTABLE I-1. KEY TO SEISMIC DESIGN PROVISIONS OF MODEL CODES <\/td>\n<\/tr>\n
23<\/td>\nSTRUCTURAL DESIGN (CHAPTER 16): LOAD COMBINATIONS <\/td>\n<\/tr>\n
24<\/td>\nREFERENCES <\/td>\n<\/tr>\n
25<\/td>\nCHAPTER 16 – PART 1 STRUCTURAL DESIGN <\/td>\n<\/tr>\n
26<\/td>\nSECTION 1601 GENERAL <\/td>\n<\/tr>\n
27<\/td>\nSECTION 1602 DEFINITIONS
SECTION 1603 CONSTRUCTION DOCUMENTS <\/td>\n<\/tr>\n
28<\/td>\nSECTION 1604 GENERAL DESIGN REQUIREMENTS <\/td>\n<\/tr>\n
31<\/td>\nFIGURE 16-1 MINIMUM ANCHORAGE OF CONCRETE AND MASONRY WALLS <\/td>\n<\/tr>\n
32<\/td>\nFIGURE 16-2 APPLICATION OF LIVE\/SNOW LOAD ON A CANTILEVERED DECK <\/td>\n<\/tr>\n
33<\/td>\nFIGURE 16-3 BEHAVIOR OF BUILDING DURING AN EARTHQUAKE <\/td>\n<\/tr>\n
35<\/td>\nFIGURE 16-4 IDEALIZED FORCE-DISPLACEMENT RELATIONSHIP OF A BUILDING SUBJECTED TO THE DESIGN EARTHQUAKE OF THE IBC
FIGURE16-5 LOAD-DEFLECTION CURVES OF STRUCTURAL SUBASSEMBLIES SUBJECTED TO REVERSE CYCLIC DISPLACEMENTS
SECTION 1605 LOAD COMBINATIONS <\/td>\n<\/tr>\n
36<\/td>\nFIGURE 16-6 COLLECTOR ELEMENTS FOR DIAPHRAGMS AND DISCONTINUOUS SHEAR WALLS <\/td>\n<\/tr>\n
37<\/td>\nTABLE 16-1. STRENGTH DESIGN LOAD COMBINATIONS OF THE 2009 IBC AND ASCE 7-05 <\/td>\n<\/tr>\n
38<\/td>\nTABLE 16-2. ALLOWABLE STRESS DESIGN LOAD COMBINATIONS OF THE 2009 IBC AND ASCE 7-05 <\/td>\n<\/tr>\n
39<\/td>\nSECTION 1606 DEAD LOADS <\/td>\n<\/tr>\n
40<\/td>\nSECTION 1607 LIVE LOADS <\/td>\n<\/tr>\n
42<\/td>\nTABLE 16-3. COMPARISON BETWEEN 2009 IBC TABLE 1607.1 AND ASCE 7-05 TABLE 4-1 <\/td>\n<\/tr>\n
43<\/td>\nFIGURE 16-7 UNINHABITABLE ATTICS WITH LIMITED STORAGE <\/td>\n<\/tr>\n
45<\/td>\nFIGURE 16-8 TRIBUTARY AREAS <\/td>\n<\/tr>\n
46<\/td>\nFIGURE 16-9 INFLUENCE AREA <\/td>\n<\/tr>\n
47<\/td>\nFIGURE 16-10 TYPICAL TRIBUTARY AND INFLUENCE AREA <\/td>\n<\/tr>\n
49<\/td>\nFIGURE 16-11 LIVE LOAD REDUCTION EQUATION 16-23
FIGURE 16-12 ALTERNATE SPAN LOADING OF CONTINUOUS BEAMS <\/td>\n<\/tr>\n
51<\/td>\nFIGURE 16-13 APPLICATIONS OF FABRIC PARTITIONS <\/td>\n<\/tr>\n
52<\/td>\nSECTION 1608 SNOW LOADS <\/td>\n<\/tr>\n
53<\/td>\nFIGURE 16-14 SNOW LOADS PROVISIONS <\/td>\n<\/tr>\n
54<\/td>\nFIGURE 16-15 LIMITING ROOF SLOPE FOR HIP OR GABLE ROOFS
FIGURE 16-16 POTENTIAL SNOW ACCUMULATION, GABLE ROOFS WITH SIDESHEDS <\/td>\n<\/tr>\n
56<\/td>\nTABLE 16-4. ARRANGEMENT OF UNBALANCED SNOW LOAD ON HIP OR GABLE ROOFS
SECTION 1609 WIND LOADS <\/td>\n<\/tr>\n
58<\/td>\nFIGURE 16-17 “ROAD MAP” THROUGH THE IBC\/ASCE 7 WIND LOAD PROVISIONS <\/td>\n<\/tr>\n
59<\/td>\nTABLE 16-5. 3-SECOND GUST VELOCITY VERSUS FASTEST MILE WIND VELOCITY <\/td>\n<\/tr>\n
60<\/td>\nFIGURE 16-18 UPWIND SECTORS FOR DETERMINATION OF GOVERNING EXPOSURE CATEGORY <\/td>\n<\/tr>\n
63<\/td>\nEQUATION 1
EQUATION 2
EQUATION 3
EQUATION 4
EQUATION 5 <\/td>\n<\/tr>\n
65<\/td>\nSECTION 1610 SOIL LATERAL LOADS <\/td>\n<\/tr>\n
66<\/td>\nTABLE 16-6. SOIL LATERAL LOADS IN MODEL CODES AND STANDARDS <\/td>\n<\/tr>\n
67<\/td>\nTABLE 16-7. SOIL LATERAL LOADS\u2014CALCULATED VERSUS CODE AND STANDARD VALUES
SECTION 1611 RAIN LOADS <\/td>\n<\/tr>\n
68<\/td>\nSECTION 1612 FLOOD LOADS <\/td>\n<\/tr>\n
70<\/td>\nSECTION 1613 EARTHQUAKE LOADS <\/td>\n<\/tr>\n
71<\/td>\nTABLE 16-8. COMPARISON BETWEEN ORGANIZATIONS OF 1997 UBC AND THE 2000, 2003, 2006 AND 2009 IBC SEISMIC PROVISIONS <\/td>\n<\/tr>\n
72<\/td>\nTABLE 16-9 – COMPARISON OF SOIL-MODIFIED SEISMICITY BY THE 1997 UBC AND THE 2009 IBC FOR SITE CLASS D <\/td>\n<\/tr>\n
74<\/td>\nTABLE 16-10 – COMPARISON OF 1997 UBC SEISMIC ZONES AND SEISMIC DESIGN CATEGORIES OF THE 2009 IBC <\/td>\n<\/tr>\n
75<\/td>\nFIGURE 16-19 – AREAS OF THE CONTIGUOUS UNITED STATES <\/td>\n<\/tr>\n
77<\/td>\nFIGURE – 16-20 – ARES OF THE CONTIGUOUS UNITED STATES <\/td>\n<\/tr>\n
78<\/td>\nTABLE 16-11 – VALUES OF Fa AS A FUNCTION OF SITE CLASS AND SHAKING INTENSITY
TABLE 16-12 – VALUES OF Fv AS A FUNCTION OF SITE CLASS AND SHAKING INTENSITY
TABLE 16-13 – GROUND MOTION AMPLIFICATION THAT IS DUE TO SOIL: 1997 UBC SEISMIC COEFFICIENT <\/td>\n<\/tr>\n
79<\/td>\nTABLE 16-14 – GROUND MOTION AMPLIFICATION THAT IS DUE TO SOIL: 1997 UBC SEISMIC COEFFICIENT <\/td>\n<\/tr>\n
80<\/td>\nTABLE 16-15 – DESIGN GROUND MOTION OF ASCE 7-05 AND THE 2009 IBC <\/td>\n<\/tr>\n
81<\/td>\nTABLE 16-16 – OCCUPANCY CATERGORIES AND SEISMIC USE GROUPS <\/td>\n<\/tr>\n
82<\/td>\nTABLE 16-17 – CORRESPONDENCE BETWEEN UBC SEISMIC ZONES AND IBC SEISMIC DESIGN CATEGORIES <\/td>\n<\/tr>\n
84<\/td>\nTABLE 16-18 – DESIGN COEFFICIENTS AND FACTORS FOR AAC MASONRY SHEAR WALL SYSTEMS <\/td>\n<\/tr>\n
86<\/td>\nSECTION 1614 STRUCTURAL INTEGRITY
SEISMIC DESIGN PROVISIONS OF ASCE 7-05 <\/td>\n<\/tr>\n
87<\/td>\nCHAPTER 11 – SEISMIC DESIGN CRITERIA <\/td>\n<\/tr>\n
89<\/td>\nTABLE 16-19 – SOIL CLASSIFICATIONS OF ASCE 7-05 VERSUS SOIL CLASSIFICATIONS OF EARLIER CODES <\/td>\n<\/tr>\n
90<\/td>\nFIGURE 16-21 – DESIGN RESPONSE SPECTRUM IN ASCE 7-05 <\/td>\n<\/tr>\n
93<\/td>\nCHAPTER 12 – SEISMIC DESIGN REQUIREMENTS FOR BUILDING STRUCTURES <\/td>\n<\/tr>\n
95<\/td>\nFIGURE 16-22 – SEISMIC FORCE RESISTING STRUCTURAL SYSTEMS <\/td>\n<\/tr>\n
97<\/td>\nFIGURE 16-23 – TYPICAL CONFIGURATION OF AND LOAD-DISPLACEMENT BEHAVIOR OF BUCKLING RESTRAINED BRACE <\/td>\n<\/tr>\n
98<\/td>\nFIGURE 16-24 – SPECIAL STEEL PLATE SHEAR WALL <\/td>\n<\/tr>\n
99<\/td>\nFIGURE 16-25 – SPECIAL TRUSS MOMENT FRAMES <\/td>\n<\/tr>\n
102<\/td>\nFIGURE 16-26 INELASTIC FORCE-DISPLACEMENT RELATIONSHIP <\/td>\n<\/tr>\n
105<\/td>\nFIGURE 16-27 – IDEALIZED FORCE-DISPLACEMENT RELATIONSHIP OF A BUILDING SUBJECTED TO THE DESIGN EARTHQUQAKE OF THE IBC <\/td>\n<\/tr>\n
106<\/td>\nFIGURE 16-28 – SEISMIC RESISTANCE VERSUS SEISMIC DEMAND <\/td>\n<\/tr>\n
108<\/td>\nTABLE 16-20 – EARTHQUAKE FORCE-RESISTING STRUCTURAL SYSTEMS OF STEEL ASCE 7-05 <\/td>\n<\/tr>\n
109<\/td>\nTABLE 16-20 – EARTHQUAKE FORCE-RESISTING STRUCTURAL SYSTEMS OF STEEL – ASCE 7-05 <\/td>\n<\/tr>\n
110<\/td>\nTABLE 16-21 – EARTHQUAKE FORCE-RESISTING STRUCTURAL SYSTEMS OF CONCRETE – ASCE 7-05 <\/td>\n<\/tr>\n
111<\/td>\nTABLE 16-22 – EARTHQUAKE FORCE-RESISTING STRUCTURAL SYSTEMS OF MASONRY -ASCE 7-05 <\/td>\n<\/tr>\n
112<\/td>\nTABLE 16-23 – EARTHQUAKE FORCE-RESISTING STRUCTURAL SYSTEMS OF WOOD – ASCE 7-05
TABLE 16-24 – CONCRETE STRUCTURAL SYSTEMS FOR SEISMIC DESIGN CATEGORIES D, E AND F <\/td>\n<\/tr>\n
113<\/td>\nTABLE 16-25 – MASONRY STRUCTURAL SYSTEMS FOR SEISMIC DESIGN CATEGORIES D, E AND F
TABLE 16-26 – CONCRETE STRUCTURAL SYSTEMS FOR SEISMIC DESIGN CATEGORY NO HIGHER THAN C <\/td>\n<\/tr>\n
114<\/td>\nTABLE 16-27 – MASONRY STRUCTURAL SYSTEM FOR SEISMIC DESIGN CATEGORY NO HIGHER THAN C
TABLE 16-28 – CONCRETE STRUCTURAL SYSTEMS FOR SEISMIC DESIGN CATEGORY NO HIGHER THAN B <\/td>\n<\/tr>\n
115<\/td>\nTABLE 16-29 – MASONRY STRUCTURAL SYSTEM FOR SEISMIC DESIGN CATEGORY NO HIGHER THAN B <\/td>\n<\/tr>\n
116<\/td>\nFIGURE 16-29 – VERTICAL COMBINATIONS OF STRUCTURAL SYSTEMS <\/td>\n<\/tr>\n
118<\/td>\nFIGURE – 16-30 – HORIZONTAL COMBINATIONS OF STRUCTURAL SYSTEMS <\/td>\n<\/tr>\n
120<\/td>\nFIGURE 16-31 – CLASSIFICATION OF DIAPHRAGM BASED ON DEFLECTION CALCULATION <\/td>\n<\/tr>\n
121<\/td>\nFIGURE 16-32 – CLASSIFICATION OF DIAGPHRAGM BASED ON ASCE 7-05 SECTION 12.3.1 <\/td>\n<\/tr>\n
124<\/td>\nFIGURE 16-33A – PLAN IRREGULARITY TYPE 1A, TORSIONAL IRREGULARITY
FIGURE 16-33B – PLAN IRREGULARITY TYPE 1B, EXTREME TORSIONAL IRREGULARITY <\/td>\n<\/tr>\n
125<\/td>\nFIGURE 16-34 – PLAN IRREGULARITY TYPE 2, RE-ENTRANT CORNERS
FIGURE 16-35 – PLAN IRREGULARITY TYPE3,DIAPHRAGM DISCONTINUITY <\/td>\n<\/tr>\n
126<\/td>\nFIGURE 16-36 – PLAN IRREGULARITY TYPE 4, OUT OF PLANE OFFSETS
FIGURE 16-37 – PLAN IRREGULARITY TYPE 5, NONPARALLEL SYSTEMS <\/td>\n<\/tr>\n
128<\/td>\nFIGURE 16-38A – VERTICAL IRREGULARITY TYPE 1A, SOFT STORY
FIGURE 16-38B – VERTICAL IRREGULARITY TYPE 1B, EXTREME SOFT STORY <\/td>\n<\/tr>\n
129<\/td>\nFIGURE 16-39 – VERTICAL IRREGULARITY TYPE 2, WEIGHT IRREGULARITY
FIGURE 16-40 – VERTICAL IRREGULARITY TYPE 3, VERTICAL GEOMETRIC IRREGULARITY <\/td>\n<\/tr>\n
130<\/td>\nFIGURE 16-41 – VERTICAL IRREGULARITY TYPE 4, IN-PLAN DISCONTINUITY IN VERTICAL LATERAL FORCE-RESISTING ELEMENT IRREGULARITY
FIGURE 16-42A- VERTICAL IRREGULARITY TYPE 5A, WEAK STORY <\/td>\n<\/tr>\n
131<\/td>\nFIGURE 16-42B – VERTICAL IRREGULARITY TYPE 5B, EXTREME WEAK STORY <\/td>\n<\/tr>\n
133<\/td>\nFIGURE 16-43 – AN EXAMPLE PLAN VIEW OF BUILDING WITH P=1.0 <\/td>\n<\/tr>\n
135<\/td>\nTABLE 16-30 – SEISMIC STRENGTH DESIGN LOAD COMBINATIONS OF ASCE 7-05 <\/td>\n<\/tr>\n
136<\/td>\nTABLE 16-31 – CONSIDERATION OF VERTICAL SEISMIC GROUND ACCELERATION IN U.S. CODES AND RESOURCE DOCUMENTS <\/td>\n<\/tr>\n
137<\/td>\nTABLE 16-31 – CONSIDERATION OF VERTICAL SEISMIC GROUND ACCELERATION IN U.S. CODES AND RESOURCE DOCUMENTS
TABLE 16-32(A) – 1994 NEHRP DEAD LOAD FACTORSK INCLUDING EFFECTS OF VERTICAL GROUND ACCELERATION-DLF= 0.9 – 0.5 Ca
TABLE 16-32(B) – 1997 UBC DEAD LOAD FACTORS, INCLUDING EFFETS OF VERTICAL GROUND ACCELERATION, FOR SEISMIC ZONE 4-DLF= 0.9 – 0.5 Ca <\/td>\n<\/tr>\n
138<\/td>\nTABLE 16-32(C) – 1997, 2000, 2003 NEHRP\/2000,2003, 2006, 2009 IBC\/ASCE 7-98, ASCE 7-02, ASCE 7-05 DEAD LAOD FACTORS, INCLUDING EFFECTS OF VERTICAL GROUND ACCELERATION -DLF = 0.9 – 0.4 F
FIGURE 16-44 – COMBINATION OF EFFETS OF INDEPENDENTLY APPLIED ORTHOGONAL GROUND MOTIONS <\/td>\n<\/tr>\n
145<\/td>\nTABLE 16-33 -COMPARISON OF DESIGN BASE SHEAR EQUATIONS OF ASCE 7-05 AND THE 1997 UBC <\/td>\n<\/tr>\n
146<\/td>\nTABLE 16-34 – RESTRICTION ON RATIONALLY COMPUTED PERIOD EXPRESSED IN TERMS OF DESIGN BASE SHEAR FOR TS, T, TL <\/td>\n<\/tr>\n
148<\/td>\nFIGURE 16-45 – COMPARISON OF APPROXIMATE PERIOD FORMULA FROM THE 1997 AND 2003 NEHRP PROVISIONS <\/td>\n<\/tr>\n
153<\/td>\nFIGURE 16-46 – STORY DRIFT DETERMINATION <\/td>\n<\/tr>\n
154<\/td>\nFIGURE 16-47 – P-DELTA SYMBOLS AND NOTATION <\/td>\n<\/tr>\n
157<\/td>\nEQUATION 6
EQUATION 7 <\/td>\n<\/tr>\n
158<\/td>\nEQUATION 8
EQUATION 9
EQUATION 10
FIGURE 16-48 – MINIMUM ANCHORAGE OF WALLS TO DIAPHRAGMS OR OTHER ELEMENTS PROVIDING LATERAL SUPPORT <\/td>\n<\/tr>\n
160<\/td>\nFIGURE 16-49 – COMPARISON OF VARIOUS CRITERIA FOR OUT-OF-PLANE ANCHORAGE FORCE FOR CONCRETE AND MASONRY WALL WITH (A)HEIGHT= 10 FEET, (B) HEIGHT= 20 FEET <\/td>\n<\/tr>\n
161<\/td>\nEQUATION
EQUATION <\/td>\n<\/tr>\n
164<\/td>\nCHAPTER 13 – SEISMIC DESIGN REQUIREMENTS FOR NONSTRUCTURAL COMPONENTS <\/td>\n<\/tr>\n
171<\/td>\nCHAPTER 14 – MATERIAL-SPECIFIC SEISMIC DESIGN AND DETAILING REQUIREMENTS <\/td>\n<\/tr>\n
172<\/td>\nCHAPTER 15 – SEISMIC DESIGN REQUIREMENTS FOR NONBUILDING STRUCTURES <\/td>\n<\/tr>\n
173<\/td>\nEQUATION
FIGURE 16-50 – CODE REQUIREMENTS FOR NONBUILDING STRUCTURES SUPPORTED BY OTHER STRUCTURES <\/td>\n<\/tr>\n
174<\/td>\nTABLE 16-35 – MINIMUM SEISMIC DESIGN FORCES FOR NONBUILDING STRUCTURES <\/td>\n<\/tr>\n
176<\/td>\nFIGURE 16-51 – NONBUILDING STRUCTURE SIMILAR TO BUILDINGS
FIGURE 16-52 – NONBUILDING STRUCTURE NOT SIMILAR TO BUILDINGS <\/td>\n<\/tr>\n
177<\/td>\nCHAPTER 16 – SEISMIC RESPONSE HISTORY PROCEDURES <\/td>\n<\/tr>\n
179<\/td>\nCHAPTER 17 – SEISMIC DESIGN REQUIREMENTS FOR SEISMICALLY ISOLATED STRUCTURES <\/td>\n<\/tr>\n
180<\/td>\nFIGURE 16-53 – SEISMIC RESPONSE OF A CONVENTIONAL STRUCTURE AND A BASE-ISOLATED STRUCTURE
FIGURE 16-54 – EFFECTS OF PERIOD SHIFT AND INCREASED DAMPING <\/td>\n<\/tr>\n
181<\/td>\nFIGURE 16-55 – A MECHANICAL ENERGY DISSIPATOR <\/td>\n<\/tr>\n
182<\/td>\nFIGURE 16-56 – DESIGN PRINCIPLES OF SEISMIC ISOLATION <\/td>\n<\/tr>\n
184<\/td>\nFIGURE 16-57 – IDEALIZED FORCE-DISPLACEMENT RELATIONSHIP FOR ISOLATION SYSTEMS <\/td>\n<\/tr>\n
186<\/td>\nFIGURE 16-58 – DISPLACEMENT TERMINOLOGY USED IN THE IBC <\/td>\n<\/tr>\n
190<\/td>\nFIGURE 16-59 – ISOLATION SYSTEM TERMINOLOGY <\/td>\n<\/tr>\n
191<\/td>\nCHAPTER 18 – SEISMIC DESIGN REQUIREMENTS FOR STRUCTURES WITH DAMPING SYSTEMS <\/td>\n<\/tr>\n
193<\/td>\nCHAPTER 19 – SOIL STRUCTURE INTERACTION FOR SEISMIC DESIGN <\/td>\n<\/tr>\n
194<\/td>\nCHAPTER 20 – SITE CLASSIFICATION PROCEDURE FOR SEISMIC DESIGN <\/td>\n<\/tr>\n
195<\/td>\nCHAPTER 21 – SITE-SPECIFIC GROUND MOTION PROCEDURES FOR SEISMIC DESIGN <\/td>\n<\/tr>\n
196<\/td>\nCHAPTER 22 – SEISMIC GROUND MOTION AND LONG-PERIOD TRANSITION PERIOD MAPS <\/td>\n<\/tr>\n
197<\/td>\nCHAPTER 23 – SEISMIC DESIGN REFERENCE DOCUMENTS <\/td>\n<\/tr>\n
198<\/td>\nREFERENCES <\/td>\n<\/tr>\n
201<\/td>\nCHAPTER 16 PART 2 – STRUCTURAL DESIGN EXAMPLES <\/td>\n<\/tr>\n
202<\/td>\nEXAMPLE 1 – DESIGN AXIAL FORCE, SHEAR FORCE AND BENDING MOMENT FOR SHEAR WALL DUE TO LATERAL AND GRAVITY LOADS (STRENGTH DESIGN) <\/td>\n<\/tr>\n
203<\/td>\nEXAMPLE 2 – DESIGN AXIAL FORCE, SHEAR FORCE AND BENDING MOMENT FOR SHEAR WALL DUE TO LATERAL AND GRAVITY LOADS ( ALLOWABLE STRESS DESIGN USING BASIC LOAD COMBINATIONS) <\/td>\n<\/tr>\n
204<\/td>\nEXAMPLE 3 – DESIGN AXIAL FORCE, SHEAR FORCE AND BENDING MOMENT FOR SHEAR WALL DUE TO LATERAL AND <\/td>\n<\/tr>\n
205<\/td>\nEXAMPLE 4 – CALCULATION OF LIVE LOAD REDUCTION
FIGURE E4-1 – PLAN AND ELEVATION OF THE EXAMPLE BUILDING STUDIED <\/td>\n<\/tr>\n
206<\/td>\nEXAMPLE 4 – CONTINUED <\/td>\n<\/tr>\n
207<\/td>\nEXAMPLE 5 – DESIGN OF A 20-STORY REINFORCED CONCRETE BUIDLING FOR WIND FORCES <\/td>\n<\/tr>\n
209<\/td>\nEQUATION 6-8
EQUATION 6-9
EQUATION 6-5
EQUATION 6-6
EQUATION 6-7 <\/td>\n<\/tr>\n
210<\/td>\nEQUATION 6-10
EQUATION 6-11
EQUATION 6-12
EQUATION 6-13A
EQUATION 6-13B
EQUATION 6-14 <\/td>\n<\/tr>\n
213<\/td>\nTABLE E5-1 – COMPUTATION OF KZ, KH, AND QZ AFOR THE EXAMPLE BUILDING <\/td>\n<\/tr>\n
214<\/td>\nTABLE E5-2 – CALCULATION OF DESIGN WIND PRESSURE FOR THE EXAMPLE BUILDING <\/td>\n<\/tr>\n
215<\/td>\nTABLE E5-3 – CALCULATION OF DESIGN WIND LOADS FOR LATERAL ANALYSIS <\/td>\n<\/tr>\n
216<\/td>\nFIGURE E5-1 – PLAN OF EXAMPLE BUILDING CONSIDERED <\/td>\n<\/tr>\n
217<\/td>\nFIGURE E5-2 – ELEVATION OF EXAMPLE BUILDING CONSIDERED <\/td>\n<\/tr>\n
218<\/td>\nFIGURE E5-3 – LATERAL FORCES ON MWFRS FOR WIND (ADAPTED FROM ASCE 7-05 FIGURE 6-9, ONLY SHOWING CASE 1 AND 2) <\/td>\n<\/tr>\n
219<\/td>\nEXAMPLE 6 – DESIGN OF A 5-STORY REINFORCED CONCRETE BUILDING FOR WIND FORCES USING ALTERNATE ALL- HEIGHTS METHOD <\/td>\n<\/tr>\n
220<\/td>\nFIGURE E6-1 – PLAN OF EXAMPLE BUILDING CONSIDERED
FIGURE E6-2 – ELEVATION OF EXAMPLE BUILDING CONSIDERED <\/td>\n<\/tr>\n
223<\/td>\nTABLE E6-1 – COMPUTATION OF KZ
TABLE E6-2 – CALCULATION OF DESIGN WIND PRESSURE FOR THE EXAMPLE BUILDING <\/td>\n<\/tr>\n
224<\/td>\nTABLE E6-3 – CALCULATION OF DESIGN WIND LOADS FOR LATERAL ANALYSIS
EQUATION 16-34 <\/td>\n<\/tr>\n
225<\/td>\nFIGURE E6-3 – ZONES FOR COMPONENTS AND CLADDING <\/td>\n<\/tr>\n
226<\/td>\nTABLE E6-4 – KZ AND KZT FOR THE EXAMPLE BUILDING
TABLE E6-5 – NET PRESSURE COEFFICIENTS C NET ON MULLIONS AND PANELS
TABLE E6-6 – CALCULATION OF DESIGN WIND PRESSURE ON MULLION
TABLE E6-7 – CALCULATION OF DESIGN WIND PRESSURE ON PANEL <\/td>\n<\/tr>\n
227<\/td>\nEXAMPLE 7 – CALCULATION OF WIND PRESSURES FOR A LOW-RISE BUILDING <\/td>\n<\/tr>\n
229<\/td>\nTABLE E7-1 – CALCULATION OF WIND PRESSURE <\/td>\n<\/tr>\n
230<\/td>\nFIGURE E7-1 – DIMENSION AND FRAMING OF A LOW-RISE BUILDING
FIGURE E7-2 – MWF LOADING DIAGRAM <\/td>\n<\/tr>\n
231<\/td>\nFIGURE E7-3 (A) – APPLICATION OF MWFRS LOADS-LOADING IN TRANSVERSE DIRECTION <\/td>\n<\/tr>\n
232<\/td>\nFIGURE E7-3 (B) – APPLICATION OF MWFRS LOADS – LOADING IN LONGITUDIAL DIRECTION <\/td>\n<\/tr>\n
233<\/td>\nEXAMPLE 8 – REDUNDANCY (P) AND CONCRETE SHEAR WALLS <\/td>\n<\/tr>\n
234<\/td>\nEQUATION
FIGURE E8-1 – SHEAR WALL RESISTANCE <\/td>\n<\/tr>\n
235<\/td>\nEXAMPLE 9 – SIMPLIFIED DESIGN PROCEDURE
EQUATION 14-11
EQUATION 14-12 <\/td>\n<\/tr>\n
237<\/td>\nEXAMPLE 10 – DESIGN OF MULTISTORY REINFORCED CONCRETE BUILDING SUBJECTED TO EARTHQUAKE FORCES <\/td>\n<\/tr>\n
238<\/td>\nEQUATION 16-36
EQUATION 11.4-1
EQUATION 11.4-2
EQUATION 16-38
EQUATION 11.4-3
EQUATION 16-39
EQUATION 11.4-4
EQUATION 12.8-1
EQUATION 12.8-3
EQUATION 12.8-4
EQUATION 12.8-2
EQUATION 12.8-5 <\/td>\n<\/tr>\n
239<\/td>\nEQUATION 12.8-7
EQUATION 12.8-6
EQUATION 12.8-11
EQUATION 12.8-12 <\/td>\n<\/tr>\n
240<\/td>\nEQUATION 12.8-3
EQUATION 12.8-2
EQUATION 12.8-6
EQUATION 12.8-5
EQUATION 12.8-11
EQUATION 12.8-12 <\/td>\n<\/tr>\n
241<\/td>\nEQUATION 12.8-15
EQUATION 12.8-16 <\/td>\n<\/tr>\n
242<\/td>\nTABLE E10-1 – LATERAL FORCES BY EQUIVALENT LATERAL-FORCE PROCEDURE USING APPROXIMATE PERIOD <\/td>\n<\/tr>\n
243<\/td>\nTABLE E10-2 – CALCULATION OF PERIOD BY RATIONAL ANALYSIS (EQUIVALENT LATERAL-FORCE PROCEDURE) <\/td>\n<\/tr>\n
244<\/td>\nTABLE E10-3 – LATERAL FORCES BY EQUIVALENT LATERAL-FORCE PROCEDURE USING PERIOD FROM RATIONAL ANALYSIS <\/td>\n<\/tr>\n
245<\/td>\nTABLE E10-4 – LATERAL DISPLACEMENTS AND DRIFTS OF EXAMPLE BUILDING BY EQUIVALENT LATERAL -FORCE PROCEDURE (IN) ( ALONG OUTER FROAM LINE F) <\/td>\n<\/tr>\n
246<\/td>\nTABLE E10-5 – CALCULATION OF STABILITY COEFFICIENT <\/td>\n<\/tr>\n
247<\/td>\nFIGURE E10-1 – PLAN OF EXAMPLE OFFICE BUILDING <\/td>\n<\/tr>\n
248<\/td>\nFIGURE E10-2 – ELEVATION OF EXAMPLE OFFICE BUILDING <\/td>\n<\/tr>\n
249<\/td>\nFIGURE E10-3 – DESIGN RESPONCE SPECTRUM (FOR STRUCTURE LOCATED WHERE S1 IS EQUAL TO OR GREATER THAN 0.6G) <\/td>\n<\/tr>\n
250<\/td>\nEXAMPLE 11 – DYNAMIC ANALYSIS PROCEDURE (RESPONSE SPECTRUM ANALYSIS)
EQUATION 11.4-1
EQUATION 11.4-2
EQUATION 11.4-3
EQUATION 11.4-4 <\/td>\n<\/tr>\n
255<\/td>\nEQUATION 12.8-1
EQUATION 12.8-3
EQUATION 12.8-2
EQUATION 12.8-5 <\/td>\n<\/tr>\n
256<\/td>\nEQUATION 12.8-7 <\/td>\n<\/tr>\n
259<\/td>\nEXAMPLE 12 – CALCULATION OF DIAPHRAGM DESIGN FORCES <\/td>\n<\/tr>\n
260<\/td>\nEXAMPLE 13 – PARTIAL DIAPHRAGM DESIGN
FIGURE E13.1 – PLAN AND ELEVATION OF EXAMPLE BUILDING STUDIED <\/td>\n<\/tr>\n
262<\/td>\nEXAMPLE 14 – CALCULATON OF COLLECTOR STRENGTH
FIGURE 314-1 – ELEVATION AT SECTION X-X
EQUATION 12.8-7 <\/td>\n<\/tr>\n
264<\/td>\nEXAMPLE 15 – LATERAL FORCE ON ELEMENTS OF STRUCTURES
EQUATION 13.3-1
EQUATION 13.3-2
EQUATION 13.3-3 <\/td>\n<\/tr>\n
265<\/td>\nFIGURE E15-1 – SEISMIC FORCES FOR WALL DESIGN (PER FT WIDTH)
EQUATION 12.11-1 <\/td>\n<\/tr>\n
266<\/td>\nFIGURE E15-2 – SEISMIC FORCE FOR WALL ANCHORAGE DESIGN <\/td>\n<\/tr>\n
267<\/td>\nCHAPTER 17 – STRUCTURAL TESTS AND SPECIAL INSPECTIONS <\/td>\n<\/tr>\n
269<\/td>\nSECTION 1701 – GENERAL
SECTION 1702 – DEFINITIONS <\/td>\n<\/tr>\n
271<\/td>\nSECTION 1703 – APPROVALS <\/td>\n<\/tr>\n
273<\/td>\nFIGURE 17-1 – EXAMPLES OF LUMBER GRADE LABELS <\/td>\n<\/tr>\n
274<\/td>\nSECTION 1704 – SPECIAL INSPECTIONS <\/td>\n<\/tr>\n
288<\/td>\nSECTION 1705 – STATEMENT OF SPECIAL INSPECTIONS <\/td>\n<\/tr>\n
290<\/td>\nSECTION 1706 – SPECIAL INSPECTION OF WIND REQUIREMENTS <\/td>\n<\/tr>\n
291<\/td>\nTABLE 17-1 – SPECIAL INSPECTION FOR WIND RESISTANCE
SECTION 1707 – SPECIAL INSPECTIONS FOR SEISMIC RESISTANCE <\/td>\n<\/tr>\n
293<\/td>\nSECTION 1708 – STRUCTURAL TESTING FOR SEISMIC RESISTANCE <\/td>\n<\/tr>\n
295<\/td>\nFIGURE 17-2 – WELD SUSCEPTABLE TO SHRINKAGE STRESSES <\/td>\n<\/tr>\n
296<\/td>\nSECTION 1709 – CONTRACTOR RESPONSIBILITY <\/td>\n<\/tr>\n
297<\/td>\nSECTION 1710 – STRUCTURAL OBSERVATIONS <\/td>\n<\/tr>\n
300<\/td>\nSECTION 1711 – DESIGN STRENGTHS OF MATERIALS
SECTION 1712 – ALTERNATIVE TEST PROCEDURES
SECTION 1713 – TEST SAFE LOAD <\/td>\n<\/tr>\n
301<\/td>\nSECTION 1714 – IN-SITU LOAD TESTS
SECTION 1715 – PRECONSTRUCTION LOAD TESTS <\/td>\n<\/tr>\n
302<\/td>\nSECTION 1716 – MATERIAL AND TEST STANDARDS <\/td>\n<\/tr>\n
303<\/td>\nREFERENCES <\/td>\n<\/tr>\n
305<\/td>\nCHAPTER 18 – SOILS AND FOUNDATIONS <\/td>\n<\/tr>\n
306<\/td>\nSECTION 1801 – GENERAL <\/td>\n<\/tr>\n
307<\/td>\nSECTION 1802 – DEFINITIONS
SECTION 1803 – GEOTECHNICAL INVESTIGATIONS <\/td>\n<\/tr>\n
310<\/td>\nFIGURE 18-1 – LATERAL SUPPORT <\/td>\n<\/tr>\n
311<\/td>\nSECTION 1804 – EXCAVATION, GRADING AND FILL <\/td>\n<\/tr>\n
312<\/td>\nSECTION 1805 – DAMPPROOFING AND WATERPROOFING <\/td>\n<\/tr>\n
315<\/td>\nFIGURE 18-2 – A FOUNDATION DRAINAGE SYSTME
TABLE 18-1 – DAMPPROOFING MATERIALS <\/td>\n<\/tr>\n
317<\/td>\nFIGURE 18-3 – SAMPLE ICC-ES EVALUATION REPORT <\/td>\n<\/tr>\n
321<\/td>\nSECTION 1806 – PRESUMPTIVE LOAD-BEARING VALUES OF SOILS
TABLE 18-3 – PRESUMPTIVE LOAD-BEARING VALUES <\/td>\n<\/tr>\n
322<\/td>\nSECTION 1807 – FOUNDATION WALLS, RETAINING WALLS AND EMBEDDED POSTS AND POLES <\/td>\n<\/tr>\n
323<\/td>\nTABLE 18-4 – MAXIMUM PERMISSIBLE AXIAL LOAD FOR CONCRETE WALLS BASED ON 1.2TF POUNDS PER FOOT OF WALL <\/td>\n<\/tr>\n
324<\/td>\nTABLE 18-5 – MAXIMUM PERMISSIBLE AXIAL LOAD FOR MASONRY WALLS BASED ON 1.2TF IN POUNDS PER FOOT OF WALL <\/td>\n<\/tr>\n
325<\/td>\nTABLE 18-6 – SEISMIC REQUIREMENTS FOR MASONRY FOUNDATION WALLS <\/td>\n<\/tr>\n
326<\/td>\nFIGURE 18-4 – RETAINING WALL KEYWAY IN SOIL <\/td>\n<\/tr>\n
327<\/td>\nSECTION 1808 – FOUNDATIONS <\/td>\n<\/tr>\n
329<\/td>\nFIGURE 18-5 – BUILDINGS ADJACENT TO ASCENDING SLOPE EXCEEDING 1:1 <\/td>\n<\/tr>\n
330<\/td>\nFIGURE 18-6 – BUILDING ADJACENT TO DESCENDING SLOPE EXCEEDING 1:1
FIGURE 18-7 – SWIMMING POOL ADJACENT TO DESCENDING SLOPE
FIGURE 18-8 – FOOTING ELEVATION ON GRADED SITES <\/td>\n<\/tr>\n
332<\/td>\nSECTION 1809 – SHALLOW FOUNDATIONS <\/td>\n<\/tr>\n
333<\/td>\nFIGURE 18-9 – STEPPED FOUNDATIONS <\/td>\n<\/tr>\n
334<\/td>\nFIGURE 18-10 – FROST PENETRATION DEPTHS
FIGURE 18-11 – ISOLATED FOUNDATION <\/td>\n<\/tr>\n
335<\/td>\nTABLE 1809.7 – PRESCRIPTIVE FOOTINGS SUPPORTING WALLS OF LIGHT-FRAME CONSTRUCTION
FIGURE 18-12 – PLAIN CONCRETE FOOTING <\/td>\n<\/tr>\n
336<\/td>\nFIGURE 18-13 – BRICK FOOTING WALL OFFSETS <\/td>\n<\/tr>\n
337<\/td>\nSECTION 1810 – DEEP FOUNDATIONS <\/td>\n<\/tr>\n
342<\/td>\nFIGURE 18-14 – GROUP EFFECT <\/td>\n<\/tr>\n
360<\/td>\nFIGURE 18-15 – EFFECT OF OVERDRIVING TIMBER PILES <\/td>\n<\/tr>\n
363<\/td>\nFIGURE 18-16 – ENLARGED BASE PILE – CASED OR UNCASED SHAFTS <\/td>\n<\/tr>\n
364<\/td>\nREFERENCES
BIBLIOGRAPHY <\/td>\n<\/tr>\n
365<\/td>\n2006 TO 2009 CROSS-REFERENCE TABLE FOR IBC CHAPTER 18 <\/td>\n<\/tr>\n
374<\/td>\n2009 TO 2006 CROSS REFERENCE TABLE FOR IBC CHAPTER 18 <\/td>\n<\/tr>\n
385<\/td>\nCHAPTER 19 – PART 1 – 2009 IBC CONCRETE PROVISIONS <\/td>\n<\/tr>\n
388<\/td>\nSECTION 1901 – GENERAL
SECTION 1902 – DEFINITIONS
SECTION 1903 – SPECIFICATIONS FOR TESTS AND MATERIALS
SECTION 1901 – GENERAL <\/td>\n<\/tr>\n
391<\/td>\nTABLE 19-1 – DEFORMED REINFORCEMENT RECOGNIZED IN ACI 318 – 08 <\/td>\n<\/tr>\n
392<\/td>\nTABLE 19-2 – PLAIN REINFORCEMENT AND PRESTRESSING TENDONS RECOGNIZED BY ACI 318-08
TABLE 19-3 – STRUCTURAL STEEL, STEL PIPE OR TUBING RECOGNIZED BY ACI 318-08 FOR USE IN COMPOSITE MEMBER <\/td>\n<\/tr>\n
394<\/td>\nTABLE 19-4 – CONCRETE ADMIXTURES RECOGNIZED BY ACI 318-08
SECTION 1904 – DURABILITY REQUIREMENTS <\/td>\n<\/tr>\n
395<\/td>\nSECTION 1905 – CONCRETE QUALITY, MIXING AND PLACING <\/td>\n<\/tr>\n
397<\/td>\nEQUATION 5-1
EQUATION 5-2
EQUATION 5-1
EQUATION 5-3 <\/td>\n<\/tr>\n
401<\/td>\nSECTION 1906 – FORMWORK, EMBEDDED PIPES AND CONSTRUCTION JOINTS <\/td>\n<\/tr>\n
403<\/td>\nSECTION 1907 – DETAILS OF REINFORCEMENT
TABLE 19-5 – MINIMUM DIAMETERS OF BEND IN WELDED WIRE REINFORCEMENT <\/td>\n<\/tr>\n
404<\/td>\nFIGURE 19-1 – STANDARD HOOKS OF ACI 318 <\/td>\n<\/tr>\n
406<\/td>\nFIGURE 19-2 – DIMENSIONAL TOLERANCES FOR PLACING REINFORCEMENT
FIGURE 19-3 – CLEAR DISTANCE BETWEEN BARS, BAR BUNDLES OR TENDONS <\/td>\n<\/tr>\n
407<\/td>\nFIGURE 19-5 – SPECIAL COLUMN DETAILS <\/td>\n<\/tr>\n
408<\/td>\nFIGURE 19-6 – LATERAL SUPPORT OF COLUMN BARS BY HOOPS AND CROSS-TIES <\/td>\n<\/tr>\n
409<\/td>\nFIGURE 19-7 – TERMINATION OF COLUMN TIES
FIGURE 19-8 – TERMINATION OF COLUMN SPIRALS <\/td>\n<\/tr>\n
410<\/td>\nFIGURE 19-9 – CLOSED TIE OR STIRRUP <\/td>\n<\/tr>\n
411<\/td>\nFIGURE 19-10 – REQUIREMENTS FOR STRUCTURAL INTEGRITY <\/td>\n<\/tr>\n
412<\/td>\nSECTION 1908 – MODIFICATIONS TO ACI 318
TABLE 19-6 – ORGANIZATION OF MODIFICATIONS TO ACI 318 IN 2006 AND 2009 IBC <\/td>\n<\/tr>\n
413<\/td>\nTABLE 19-7 – 2009 IBC MODIFICATIONS TO ACI 318-08 <\/td>\n<\/tr>\n
415<\/td>\nFIGURE 19-11 – WALL PIERS AND WALL SEGMENTS
EQUATION 19-1 <\/td>\n<\/tr>\n
416<\/td>\nSECTION 1909 – STRUCTURAL PLAIN CONCRETE <\/td>\n<\/tr>\n
417<\/td>\nTABLE 19-8 – CORRELATION BETWEEN SECTION 1909 (STRUCTURAL PLAIN CONCRETE) OF THE 2009 IBC AND CHAPTER 22 OF ACI 318-08
SECTION 1910 – MINIMUM SLAB PROVISIONS <\/td>\n<\/tr>\n
418<\/td>\nSECTION 1911 – ANCHORAGE TO CONCRETE ALLOWABLE STRESS DESIGN <\/td>\n<\/tr>\n
419<\/td>\nSECTION 1912 – ANCHORAGE TO CONCRETE STRENGTH DESIGN <\/td>\n<\/tr>\n
420<\/td>\nSECTION 1913 – SHOTCRETE <\/td>\n<\/tr>\n
421<\/td>\nSECTION 1914 – REINFORCED GYPSUM CONCRETE
SECTION 1915 – CONCRETE-FILLED PIPE COLUMNS <\/td>\n<\/tr>\n
423<\/td>\nREFERENCE <\/td>\n<\/tr>\n
427<\/td>\nCHAPTER 19 – PART 2 – SIGNIFICANT CHANGES FROM ACI 318-05 TO ACI 318-08 <\/td>\n<\/tr>\n
428<\/td>\nCHAPTER 1 – GENERAL REQUIREMENTS <\/td>\n<\/tr>\n
429<\/td>\nCHAPTER 2 – NOTATION AND DEFINITIONS
CHAPTER 3 – MATERIALS <\/td>\n<\/tr>\n
431<\/td>\nCHAPTER 4 – DURABILITY REQUIREMENTS
TABLE 19A-1A – EXPOSURE CATEGORY F, BASED ON FREEZING AND THAWING EXPOSURE <\/td>\n<\/tr>\n
432<\/td>\nTABLE 19A-1B – EXPOSURE CATEGORY S, BASED ON SULFATE EXPOSURE
TABLE 19A-1C – EXPOSURE CATEGORY P, BASED ON REQUIREMENTS FOR LOW PERMEABILITY
TABLE 19A-1D – EXPOSURE CATEGORY C, BASED ON REQUIREMENTS FOR CORROSION PROTECTION OF REINFORCEMENT
CHAPTER 5 – CONCRETE QUALITY, MIXING AND PLACING <\/td>\n<\/tr>\n
434<\/td>\nCHAPTER 6 – FORMWORK, EMBEDDED PIPES AND CONSTRUCTION JOINTS
CHAPTER 7 – DETAILS OF REINFORCEMENT <\/td>\n<\/tr>\n
435<\/td>\nCHAPTER 8 – ANALYSIS AND DESIGN – GENERAL CONSIDERATIONS <\/td>\n<\/tr>\n
436<\/td>\nCHAPTER 9 – STRENGTH AND SERVICEABILITY REQUIREMENTS <\/td>\n<\/tr>\n
437<\/td>\nCHAPTER 10 – FLEXURE AND AXIAL LOADS <\/td>\n<\/tr>\n
438<\/td>\nCHAPTER 11 – SHEAR AND TORSION <\/td>\n<\/tr>\n
439<\/td>\nFIGURE 19A-1 – STUD RAILS AS SLAB SHEAR REINFORCEMENT
CHAPTER 12 – DEVELOPMENT AND SPLICES OF REINFORCEMENT <\/td>\n<\/tr>\n
440<\/td>\nFIGURE 19A-2 – TYPICAL ARRANGEMENTS OF HEADED SHEAR STUD REINFORCEMENT AND CRITICAL SECTIONS <\/td>\n<\/tr>\n
441<\/td>\nCHAPTER 13 – TWO-WAY SLAB SYSTEMS <\/td>\n<\/tr>\n
442<\/td>\nCHAPTER 14 – WALLS
CHAPTER 15 – FOOTINGS <\/td>\n<\/tr>\n
443<\/td>\nCHAPTER 16 – PRECAST CONCRETE
CHAPTER 17 – COMPOSITE CONCRETE FLEXURAL MEMBERS
CHAPTER 18 – PRESTRESSED CONCRETE <\/td>\n<\/tr>\n
444<\/td>\nCHAPTER 19 – SHELLS AND FOLDED FLATE MEMBERS
CHAPTER 20 – STRENGTH EVALUATION OF EXISTING STRUCTURES
CHAPTER 21 – SPECIAL PROVISIONS FOR SEISMIC DESIGN <\/td>\n<\/tr>\n
445<\/td>\nTABLE 19A-2 – ACI 318-05 AND THE CORRESPONDING ACI 318-08 CHAPTER 21 SECTION NUMBERS <\/td>\n<\/tr>\n
450<\/td>\nTABLE 19A-3 – REORGANIZATION OF ACI 318-5 SECTION 21.4.4 INTO ACI 318-08 SECTION 21.6.4 <\/td>\n<\/tr>\n
452<\/td>\nTABLE 19A-4 – COUPLING BEAMS DETAILING REQUIREMENTS OF ACI 318-05
TABLE 19A-5 – COUPLING BEAMS DETAILING REQUIREMENTS OF ACI 318-08 <\/td>\n<\/tr>\n
458<\/td>\nFIGURE 19A-3 – ANCHOR REINFORCEMENT FOR TENSION <\/td>\n<\/tr>\n
459<\/td>\nFIGURE 19A-4 – HAIRPIN ANCHOR REINFORCEMENT FOR SHEAR <\/td>\n<\/tr>\n
460<\/td>\nFIGURE 19A-5 – EDGE REINFORCEMENT AND ANCHOR REINFORCEMENT FOR SHEAR <\/td>\n<\/tr>\n
461<\/td>\nREFERENCES <\/td>\n<\/tr>\n
465<\/td>\nCHAPTER 19 – PART 3 – DESIGN EXAMPLES <\/td>\n<\/tr>\n
467<\/td>\nEXAMPLE 1 – UNIFIED DESIGN EXAMPLE OF A DOUBLY REINFORCED RECTANGULAR BEAM SECTION
FIGURE 192-1.1 – BEAM CROSS SECTION AND STRAIN PROFILE <\/td>\n<\/tr>\n
469<\/td>\nEXAMPLE 2 – DESIGN AXIAL LOAD-MOMENT INTERACTION DIAGRAM OF A COLUMN SECTION USING UNIFIED DESIGN
FIGURE 19E-2.1 – DETAILS OF THE COLUMN SECTION <\/td>\n<\/tr>\n
470<\/td>\nFIGURE 19E-2.2 – STRAIN PROFILE IN THE COLUMN SECTION AT (O,M) <\/td>\n<\/tr>\n
471<\/td>\nFIGURE 19E-2.3 – STRAIN PROFILE IN THE COLUMN SECTION <\/td>\n<\/tr>\n
472<\/td>\nFIGURE 19E-2.4 – STRAIN PROFILE IN THE COLUMN SECTION <\/td>\n<\/tr>\n
473<\/td>\nFIGURE 19E-2.5 – STRAIN PROFILE IN THE COLUMN SECTION <\/td>\n<\/tr>\n
474<\/td>\nFIGURE 19E-2.6 – STRAIN PROFILE IN THE COLUMN SECTION <\/td>\n<\/tr>\n
475<\/td>\nFIGURE 19E-3.7 – DESIGN AND NOMINAL STRENGTH INTERACTION DIAGRAM FOR THE COLUMN SECTION <\/td>\n<\/tr>\n
476<\/td>\nEXAMPLE 3 – DESIGN EXAMPLE OF A 12-STORY PRECAST FRAME BUILDING USING STRONG CONNECTIONS <\/td>\n<\/tr>\n
477<\/td>\nFIGURE 19E-3.1 – TYPICAL FLOOR PLAN OF EXAMPLE BUILDING
FIGURE 19E-3.2 – ELEVATION OF EXAMPLE BUILDING <\/td>\n<\/tr>\n
478<\/td>\nTABLE 19E-3.1 – DESIGN FORCES FOR THE THIRD FLOOR BEAM FORMING PART OF AN INTERIOR LONGITUDINAL FRAM OF THE BUILDING <\/td>\n<\/tr>\n
479<\/td>\nFIGURE 19E-3.3 – CROSS SECTION OF BEAM DESIGNED <\/td>\n<\/tr>\n
480<\/td>\nFIGURE 19E-3.4 – REINFORCING BAR CUTOFF <\/td>\n<\/tr>\n
481<\/td>\nFIGURE 19E-3.5 -CONNECTION STRENGTH <\/td>\n<\/tr>\n
482<\/td>\nFIGURE 19E-3.6 – BEAM-TO-BEAM STRONG CONNECTION NEAR MIDSPAN OF THIRD FLOOR VEAM FORMING PART OF INTERIOR LONGITUDINAL FRAME
TABLE 19E-3.2 – DESIGN FORCES FOR THE INTERIOR COLUMN BETWEEN THE SECOND AND THIRD FLOORS, FORMING PART OF AN INTERIOR LONGITUDINAL FRAM OF THE BUILDING <\/td>\n<\/tr>\n
484<\/td>\nFIGURE 19E-3.7 – COLUMN TO COLUMN STRONG CONNECTION AT MIDHEIGHT OF INTERIOR COLUMN BETWEEN SECOND AND THIRD FLOORS, FORMING PART OF INTERIOR LONGITUDINAL FRAME
FIGURE 19E-3.8 – BEAM SPAN BETWEEN CRITICAL SECTIONS <\/td>\n<\/tr>\n
486<\/td>\nFIGURE 19E-3.9 -BEAM TO CONTINUOUS COLUMN STRONG CONNECTION AT EXTERIOR SPAN OF TRANSVERSE FRAME AT SECOND FLOOR LEVEL <\/td>\n<\/tr>\n
487<\/td>\nEXAMPLE 4 – ALLOWABLE STRESS DESIGN CHECK ON ANCHOR BOLT <\/td>\n<\/tr>\n
488<\/td>\nEXAMPLE 5 – ANCHORING TO CONCRETE PER APPENDIX D OF ACI 318-08
FIGURE 19E-5.1 – FASTENER SUBJECTED TO TENSION AND SHEAR <\/td>\n<\/tr>\n
489<\/td>\nTABLE 19E-5.1 – STRENGTH REDUCTION FACTORS OF APPENDIX D <\/td>\n<\/tr>\n
490<\/td>\nFIGURE 19E-5.2 – CALCULATION OF A PER SECTION D.5.2.1 OF ACI 318-08
FIGURE 19E-5.3 – CALCULATION OF A PER SECTION D.5.2.1 OF ACI 318-08 <\/td>\n<\/tr>\n
492<\/td>\nFIGURE 19E-5.4 – CALCULATION OF A PER SECTION D.6.2.1 OF ACI 318-08 <\/td>\n<\/tr>\n
494<\/td>\nEXAMPLE 6 – RELATIVE STRENGTHS OF COLUMNS AND BEAMS AT JOINT
FIGURE 19E-6.1 – ELEVATION OF EXAMPLE BUILDING <\/td>\n<\/tr>\n
495<\/td>\nFIGURE 19E-6.2 – REINFORCEMENT DETAILS AT THE BEAM-COLUMN JOINT
FIGURE 19E-6.3 – DESIGN AND NOMINAL STRENGTH INTERACTION DIAGRAMS FOR INTERIOR COLUMNS C1 AND C2 <\/td>\n<\/tr>\n
497<\/td>\nEXAMPLE 7 – DESIGN OF RC SHEAR WALL PER 2009 IBC
TABLE E19-7.1 – SUMMARY OF DESIGN AXIAL FORCE, SHEAR FORCE AND BENDING MOMENT FOR SHEAR WALL BETWEEN GRADE AND LEVEL 2 <\/td>\n<\/tr>\n
498<\/td>\nFIGURE 19E-7.1 – PLAN OF EXAMPLE BUILDING CONSIDERED
FIGURE 19E-7.2 – ELEVATION OF EXAMPLE BUILDING CONSIDERED <\/td>\n<\/tr>\n
499<\/td>\nFIGURE 19E-7.3 – REINFORCEMENT DETAILS FOR A SHEAR WALL <\/td>\n<\/tr>\n
500<\/td>\nFIGURE 19E-7.4 – DESIGN AND NOMINAL STRENGTH INTERACTION DIAGRAMS FOR A SHEAR WALL
EQUATION 21-7 <\/td>\n<\/tr>\n
501<\/td>\nEQUATION 21-8
EQUATION 21-5 <\/td>\n<\/tr>\n
502<\/td>\nEQUATION 21-2 <\/td>\n<\/tr>\n
503<\/td>\nEXAMPLE 8 – DESIGN OF RC SHEAR WALL PER 2009 IBC
TABLE E19E-8.1 – SUMMARY OF DESIGN AXIAL FORCE, SHEAR FORCE AND BENDING MOMENT FOR SHEAR WALL BETWEEN GRAD AND LEVEL 2 <\/td>\n<\/tr>\n
504<\/td>\nFIGURE 19E-8.1 – PLAN AND ELEVATION OF EXAMPLE BUILDING <\/td>\n<\/tr>\n
505<\/td>\nEQUATION 21-7 <\/td>\n<\/tr>\n
506<\/td>\nFIGURE 19E-8.2 – DESIGN AND NOMINAL STRENGTH INTERACTION DIAGRAMS FOR THE SHEAR WALL ON COLUMN LINE 4
EQUATION 21-8 <\/td>\n<\/tr>\n
507<\/td>\nFIGURE 19E-8.3 – DETERMINATION OF REINFORCEMENT RATIO AT THE END OF THE SHEAR WALL <\/td>\n<\/tr>\n
508<\/td>\nFIGURE 19E-8.4 – REINFORCEMENT DETAILS FOR THE SHEAR WALL ON COLUMN LINE 4 <\/td>\n<\/tr>\n
509<\/td>\nEXAMPLE 9 – STRUT AND TIE MODEL PER APPENDIX A OF ACI 318-08
FIGURE 19E-9.1 – EXAMPLE OF DEEP BEAM <\/td>\n<\/tr>\n
510<\/td>\nFIGURE 19E-9.2 – STRUT AND TIE MODEL
EQUATION (A-3)
EQUATION (A-8)
EQUATION (A-6)
EQUATION (A-7) <\/td>\n<\/tr>\n
511<\/td>\nFIGURE 19E9.3 -DETERMINATION OF STRUT AND TIE WIDTHS <\/td>\n<\/tr>\n
512<\/td>\nFIGURE 19E-9.4 – DEVELOPMENT OF TIE REINFORCEMENT IN THE EXTENDED NODAL ZONE <\/td>\n<\/tr>\n
515<\/td>\nCHAPTER 20 – ALUMINUM <\/td>\n<\/tr>\n
517<\/td>\nCHAPTER 21 – MASONRY <\/td>\n<\/tr>\n
519<\/td>\nSECTION 2101 – GENERAL <\/td>\n<\/tr>\n
520<\/td>\nTABLE 21-1 – IBC CHAPTER 21-MSJC CROSS-REFERENCE <\/td>\n<\/tr>\n
521<\/td>\nTABLE 21-2 – AAC MASONRY SEISMIC DESIGN COEFFICIENTS AND HEIGHT LIMITATIONS <\/td>\n<\/tr>\n
522<\/td>\nSECTION 2102 – DEFINITIONS AND NOTATIONS
SECTION 2103 – MASONRY CONSTRUCTION MATERIALS <\/td>\n<\/tr>\n
523<\/td>\nTABLE 21-3 – CONCRETE MASONRY UNIT SPECIFICATIONS
TABLE 21-4 – CLAY OR SHALE MASONRY UNIT SPECIFICATIONS
TABLE 21-1 – STONE MASONRY UNIT SPECIFICATIONS <\/td>\n<\/tr>\n
525<\/td>\nTABLE 21-6 – ASTM STANDARDS FOR METAL REINFORCEMENT AND ACCESSORIES <\/td>\n<\/tr>\n
526<\/td>\nSECTION 2104 – CONSTRUCTIOIN
SECTION 2105 – QUALITY ASSURANCE <\/td>\n<\/tr>\n
527<\/td>\nSECTION 2106 – SEISMIC DESIGN <\/td>\n<\/tr>\n
529<\/td>\nTABLE 21-7 – SUMMARY OF STRUCTURAL WALL ANCHORAGE REQUIREMENTS IN 2009 IBC\/ASCE\/SEI 7-05 <\/td>\n<\/tr>\n
531<\/td>\nTABLE 21-8 – SHEAR WALL TYPES AND REQUIREMENTS <\/td>\n<\/tr>\n
532<\/td>\nSECTION 2107 – ALLOWABLE STRESS DESIGN <\/td>\n<\/tr>\n
534<\/td>\nSECTION 2108 – STRENGTH DESIGN OF MASONRY <\/td>\n<\/tr>\n
537<\/td>\nSECTION 2109 – EMPIRICAL DESIGN OF MASONRY
SECTION 2110 – GLASS UNIT MASONRY <\/td>\n<\/tr>\n
538<\/td>\nSECTION 2111 – MASONRY FIREPLACES
SECTION 2112 – MASONRY HEATERS
SECTION 2113 – MASONRY CHIMNEYS <\/td>\n<\/tr>\n
539<\/td>\nREFERENCES
BIBLIOGRAPHY <\/td>\n<\/tr>\n
541<\/td>\nCHAPTER 22 – STEEL <\/td>\n<\/tr>\n
542<\/td>\nSECTION 2201 – GENERAL
SECTION 2202 – DEFINITIONS
SECTION 2203 – IDENTIFICATION AND PROTECTION OF STEEL FOR STRUCTURAL PURPOSES <\/td>\n<\/tr>\n
543<\/td>\nSECTION 2204 – CONNECTIONS <\/td>\n<\/tr>\n
544<\/td>\nSECTION 2205 – STRUCTURAL STEEL <\/td>\n<\/tr>\n
546<\/td>\nSECTION 2206 – STEEL JOISTS <\/td>\n<\/tr>\n
547<\/td>\nSECTION 2207 – STEEL CABLE STRUCTURES <\/td>\n<\/tr>\n
548<\/td>\nSECTION 2208 – STEEL STORAGE RACKS
SECTION 2209 – COLD-FORMED STEEL <\/td>\n<\/tr>\n
551<\/td>\nSECTION 2210 – COLD-FORMED STEEL LIGHT FRAMED CONSTRUCTION <\/td>\n<\/tr>\n
558<\/td>\nREFERENCES
BIBLIOGRAPHY <\/td>\n<\/tr>\n
559<\/td>\nCHAPTER 23 – WOOD <\/td>\n<\/tr>\n
560<\/td>\nSECTION 2301 – GENERAL <\/td>\n<\/tr>\n
562<\/td>\nSECTION 2302 – DEFINITIONS <\/td>\n<\/tr>\n
564<\/td>\nSECTION 2303 – MINIMUM STANDARDS AND QUALITY <\/td>\n<\/tr>\n
565<\/td>\nFIGURE 23-1 – TYPICAL LUMBER GRADE STAMPS <\/td>\n<\/tr>\n
566<\/td>\nFIGURE 23-2 – FINGER-JOINT END JOINT <\/td>\n<\/tr>\n
574<\/td>\nSECTION 2304 – GENERAL CONSTRUCTION REQUIREMENTS
FIGURE 23-3 – HEADERS OVER WALL OPENINGS <\/td>\n<\/tr>\n
581<\/td>\nFIGURE 23-4 – UNDER-FLOOR CLEARANCE
FIGURE 23-5 – CLEARANCE BETWEEN WOOD FRAMING, WOOD SIDING AND EARTH <\/td>\n<\/tr>\n
582<\/td>\nFIGURE 23-6 – POSTS AND COLUMNS <\/td>\n<\/tr>\n
584<\/td>\nSECTION 2305 – GENERAL DESIGN REQUIREMENTS FOR LATERAL FORCE-RESISTING SYSTEMS
TABLE 23-1 – 2006 IBC SECTION 2305 – 2008 AF & PA SDPWS CROSS REFERENCE <\/td>\n<\/tr>\n
585<\/td>\nTABLE 23-1 – CONTINUED <\/td>\n<\/tr>\n
586<\/td>\nTABLE 23-1 – CONTINUED <\/td>\n<\/tr>\n
587<\/td>\nTABLE 23-1 – CONTINUED <\/td>\n<\/tr>\n
588<\/td>\nSECTION 2306 – ALLOWABLE STRESS DESIGN <\/td>\n<\/tr>\n
593<\/td>\nTABLE 23-2 – FIBERBOARD SHEAR WALL ASPECT RATIO FACTORS FOR 8 FOOT SHEAR WALL HEIGHT <\/td>\n<\/tr>\n
594<\/td>\nSECTION 2307 – LOAD AND RESISTANCE FACTOR DESIGN <\/td>\n<\/tr>\n
595<\/td>\nSECTION 2308 – CONVENTIONAL LIGHT-FRAME CONSTRUCTION <\/td>\n<\/tr>\n
596<\/td>\nFIGURE 23-7 – TYPICAL FRAMING DETAILS <\/td>\n<\/tr>\n
597<\/td>\nFIGURE 23-8 – TYPICAL DETAILS <\/td>\n<\/tr>\n
598<\/td>\nFIGURE 23-9 – TYPICAL DETAILS-FLOOR OR CEILING JOISTS <\/td>\n<\/tr>\n
599<\/td>\nFIGURE 23-10 – TYPICAL DETAILS <\/td>\n<\/tr>\n
600<\/td>\nFIGURE 23-11 – PLYWOOD SUBFLOOR TYPICAL DETAILS <\/td>\n<\/tr>\n
602<\/td>\nFIGURE 23-12 – MAXIMUM FLOOR TO FLOOR STUD HEIGHT
FIGURE 23-13 – INTERIOR BRACED WALL AT PERPENDICULAR JOIST <\/td>\n<\/tr>\n
603<\/td>\nFIGURE 23-14 – OFFSET AT INTERIOR BRACED WALL
FIGURE 23-15 – DIAPHRAGM CONNECTION TO BRACED WALL BELOW <\/td>\n<\/tr>\n
604<\/td>\nFIGURE 23-16 – OFFSET AT INTERIOR BRACED WALL
FIGURE 23-17 – INTERIOR BRACED WALL AT PERPENDICULAR JOIST <\/td>\n<\/tr>\n
605<\/td>\nFIGURE 23-18 – INTERIOR BRACED WALL AT PARALLEL JOIST
FIGURE 23-19 – SUGGESTED METHOD FOR TRANSFERRING ROOF DIAPHRAGM LOADS TO BRACED WALL PANELS <\/td>\n<\/tr>\n
606<\/td>\nFIGURE 23-20 – ALTERNATE GABLE AND BRACE
FIGURE 23-21 – WALL PARALLEL TO TRUSS BRACING DETAIL <\/td>\n<\/tr>\n
607<\/td>\nFIGURE 23-22 – WALL PARALLEL TO TRUSS ALTERNATE BRACING DETAIL <\/td>\n<\/tr>\n
608<\/td>\nFIGURE 23-23 – POST TO GIRDER CONNECTION
FIGURE 23-24 – POST TO GIRDER CONNECTION <\/td>\n<\/tr>\n
609<\/td>\nFIGURE 23-25 – BEARING REQUIREMENTS
FIGURE 23-26 – BEARING REQUIREMENTS <\/td>\n<\/tr>\n
610<\/td>\nFIGURE 23-27 – FRAMING DETAILS
FIGURE 23-28 – CUTTING NOTCHING OR BORED HOLES <\/td>\n<\/tr>\n
611<\/td>\nFIGURE 23-29 – FLOOR JOISTS TIED OVER WOOD BEAM, GIRDER OR PARTITION <\/td>\n<\/tr>\n
612<\/td>\nFIGURE 23-20 – FRAMING AROUND OPENINGS – HEADER SPAN
FIGURE 23-31 – FRAMING AROUND OPENINGS HEADER <\/td>\n<\/tr>\n
613<\/td>\nFIGURE 23-32 – FRAMING AROUND OPENING – HEADER SPAN
FIGURE 23-33 – SUPPORTING BEARING PARTITIONS <\/td>\n<\/tr>\n
614<\/td>\nFIGURE 23-34 – LATERAL SUPPORT REQUIREMENTS <\/td>\n<\/tr>\n
616<\/td>\nFIGURE 23-35 – STUD REQUIREMENTS
FIGURE 23-36 – DOUBLE TOP PLACE SPLICE <\/td>\n<\/tr>\n
617<\/td>\nFIGURE 23-37 – VAULTED CEILING AT GABLE END WALL <\/td>\n<\/tr>\n
618<\/td>\nFIGURE 23-38 – SINGLE TOP PLATE SPLICE – BEARING AND EXTERIOR WALLS <\/td>\n<\/tr>\n
619<\/td>\nFIGURE 23-39 – TOP PLATE LIMITATIONS BEARING <\/td>\n<\/tr>\n
620<\/td>\nFIGURE 23-40 – WALL BRACING PANEL
FIGURE 23-41 – WALL BRACING PANEL LOCATION <\/td>\n<\/tr>\n
621<\/td>\nFIGURE 23-42 – BASIC COMPONENTS OF THE LATERAL BRACING SYSTEM ONE STORY <\/td>\n<\/tr>\n
623<\/td>\nFIGURE 23-43 – BASIC COMPONENTS OF THE LATERAL BRACING SYSTEM TWO STORIES <\/td>\n<\/tr>\n
624<\/td>\nFIGURE 23-44 – ALTERNATE BRACED PANELS <\/td>\n<\/tr>\n
625<\/td>\nFIGURE 23-45 – ALTERNATE BRACED WALL PANEL ADJACENT TO A DOOR OR WINDOW OPENING
FIGURE 23-46 – HEADER OVER WALL OPENING <\/td>\n<\/tr>\n
626<\/td>\nFIGURE 23-47 – PIPES IN WALLS
FIGURE 23-48 – CUTTING AND NOTCHING OF STUDS <\/td>\n<\/tr>\n
627<\/td>\nFIGURE 23-49 – BORED HOLES IN STUDS
FIGURE 23-50 – ROOF FRAMING <\/td>\n<\/tr>\n
628<\/td>\nFIGURE 23-51 – ROOF FRAMING THRUSTS-TRUSS ACTION <\/td>\n<\/tr>\n
629<\/td>\nFIGURE 23-52 – CEILING AND RAFTER FRAMING <\/td>\n<\/tr>\n
630<\/td>\nFIGURE 23-53 – RAFTER AND PURLIN FRAMING <\/td>\n<\/tr>\n
635<\/td>\nREFERENCES
BIBLIOGRAPHY <\/td>\n<\/tr>\n
637<\/td>\nAPPENDIX 1 – BACKGROUND TO SEISMIC STRENGTH DESIGN LOAD COMBINATIONS <\/td>\n<\/tr>\n
639<\/td>\nTABLE 1-1 – SEISMIC STRENGTH DESIGN LOAD COMBINATIONS IN VARIOUS CODES AND STANDARD THROUGH THE 2009 IBC <\/td>\n<\/tr>\n
641<\/td>\nTABLE 1-2 – A COMPARISON OF SEISMIC STRENGTH DESIGN LOAD COMBINATIONS OF ASCE 7-95 ( 1997 UBC) AND ACI 318-95 <\/td>\n<\/tr>\n
642<\/td>\nTABLE 1-2 – A COMPARISON OF SEISMIC STRENGTH DESIGN LOAD COMBINATIONS OF ASCE 7-95 (1997 UBC) AND ACI 318-95 (CONT’D)
REFERENCES <\/td>\n<\/tr>\n
643<\/td>\nAPPENDIX 2 – BACKGROUND TO THE WIND LOAD PROVISIONS OF MODEL CODES AND STANDARDS <\/td>\n<\/tr>\n
646<\/td>\nTABLE 2-1 – SURFACE ROUGHNESS CATEGORIES OF ASCE 7-02 AND 7-05
TABLE 2-2 – EXPOSURE CATEGORIES OF ASCE 7-02 AND 7-05 <\/td>\n<\/tr>\n
648<\/td>\nFIGURE 2-1 – FLUCTUATIONS OF WIND VELOCITY
FIGURE 2-2 – RELATIONSHIP BETWEEN HOURLY MEAN VELOCITY OF WIND AND VELOCITY OF WIND AVERAGED OVER A SHORTER PERIOD, T <\/td>\n<\/tr>\n
653<\/td>\nFIGURE 2 -3 – PLAN OF EXAMPLE CONCRETE BUILDING <\/td>\n<\/tr>\n
654<\/td>\nFIGURE 2-4 – ELEVATION OF EXAMPLE CONCRETE BUILDING <\/td>\n<\/tr>\n
655<\/td>\nTABLE 2-3 – COMPARISON OF COMPUTED WIND FORCES FOR EXAMPLE BUILDING <\/td>\n<\/tr>\n
656<\/td>\nREFERENCES <\/td>\n<\/tr>\n
657<\/td>\nAPPENDIX 3 – BACK GROUND TO SEISMIC GROUND MOTION IN SEISMIC DESIGN <\/td>\n<\/tr>\n
659<\/td>\nFIGURE 3-1 – SCHEMATIC REPRESENTATION OF EFFECTIVE PEAK ACCELERATION AND EFFECTIVE PEAK VELOCITY <\/td>\n<\/tr>\n
660<\/td>\nTABLE 3-1 – RELATIONSHIP BETWEEN EPV AND A <\/td>\n<\/tr>\n
664<\/td>\nFIGURE 3-2 – HAZARD CURVES FOR SELECTED CITIES
FIGURE 3-3 – COMPARISON OF EARTHQUAKES WITH LONG AND SHORT RETURN PERIODS IN COASTAL CALIFORNIA AND EASTERN UNITED STATES <\/td>\n<\/tr>\n
667<\/td>\nFIGURE 3-4 – DEFINITION OF DESIGN EARTHQUAKE SCHEMATIC <\/td>\n<\/tr>\n
669<\/td>\nREFERENCES <\/td>\n<\/tr>\n
671<\/td>\nAPPENDIX 4 – CONSIDERATION OF SITE SOIL CHARACTERISTICS <\/td>\n<\/tr>\n
672<\/td>\nFIGURE 4 -1 – SITE COEFFICIENT S, OF 1985 AND EARLIER UBC EDITIONS <\/td>\n<\/tr>\n
674<\/td>\nFIGURE 4 -2 – TWO FACTOR APPROAD TO LOCAL SITE RESPONSE <\/td>\n<\/tr>\n
677<\/td>\nREFERENCES <\/td>\n<\/tr>\n
679<\/td>\nMETRIC CONVERSION TABLE <\/td>\n<\/tr>\n
687<\/td>\nINDEX <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":"

2009 IBC Handbook: Structural Provisions<\/b><\/p>\n\n\n\n\n
Published By<\/td>\nPublication Date<\/td>\nNumber of Pages<\/td>\n<\/tr>\n
ICC<\/b><\/a><\/td>\n2009<\/td>\n702<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n","protected":false},"featured_media":208510,"template":"","meta":{"rank_math_lock_modified_date":false,"ep_exclude_from_search":false},"product_cat":[2670],"product_tag":[],"class_list":{"0":"post-208509","1":"product","2":"type-product","3":"status-publish","4":"has-post-thumbnail","6":"product_cat-icc","8":"first","9":"instock","10":"sold-individually","11":"shipping-taxable","12":"purchasable","13":"product-type-simple"},"_links":{"self":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product\/208509","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product"}],"about":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/types\/product"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media\/208510"}],"wp:attachment":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media?parent=208509"}],"wp:term":[{"taxonomy":"product_cat","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_cat?post=208509"},{"taxonomy":"product_tag","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_tag?post=208509"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}