{"id":208509,"date":"2024-10-19T13:26:37","date_gmt":"2024-10-19T13:26:37","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/icc-structuralhandbook-2009-pdf\/"},"modified":"2024-10-25T06:09:21","modified_gmt":"2024-10-25T06:09:21","slug":"icc-structuralhandbook-2009-pdf","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/icc\/icc-structuralhandbook-2009-pdf\/","title":{"rendered":"ICC StructuralHandbook 2009.pdf"},"content":{"rendered":"
2020 City of Los Angeles amendment pages for integration with the 2019 California Building Code<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
1<\/td>\n | 2009 IBC\u00ae HANDBOOK STRUCTURAL PROVISIONS <\/td>\n<\/tr>\n | ||||||
2<\/td>\n | COPYRIGHT <\/td>\n<\/tr>\n | ||||||
3<\/td>\n | PREFACE <\/td>\n<\/tr>\n | ||||||
5<\/td>\n | DEDICATION <\/td>\n<\/tr>\n | ||||||
7<\/td>\n | FORWORD <\/td>\n<\/tr>\n | ||||||
9<\/td>\n | ACKNOWLEDGEMENTS <\/td>\n<\/tr>\n | ||||||
11<\/td>\n | CONTENTS <\/td>\n<\/tr>\n | ||||||
15<\/td>\n | INTRODUCTION <\/td>\n<\/tr>\n | ||||||
16<\/td>\n | LEGACY MODEL CODES FIGURE I-1 APPROXIMATE AREAS OF INFLUENCE OF EACH MODEL CODE PRIOR TO PUBLICATION OF THE IBC <\/td>\n<\/tr>\n | ||||||
17<\/td>\n | INTERNATIONAL BUILDING CODE FIGURE I-2 DEVELOPMENT OF IBC <\/td>\n<\/tr>\n | ||||||
18<\/td>\n | STRUCTURAL DESIGN (CHAPTER 16): NONSEISMIC <\/td>\n<\/tr>\n | ||||||
19<\/td>\n | FIGURE I-3 ORIGIN OF SEISMIC DESIGN PROVISIONS IN U.S. BUILDING CODES STRUCTURAL DESIGN (CHAPTER 16): SEISMIC <\/td>\n<\/tr>\n | ||||||
21<\/td>\n | FIGURE I-4 DEVELOPMENT AND SUBSEQUESNT ASSIMILATION OF THE NEHRP SEISMIC PROVISIONS IN THE UBC AND IBC <\/td>\n<\/tr>\n | ||||||
22<\/td>\n | TABLE I-1. KEY TO SEISMIC DESIGN PROVISIONS OF MODEL CODES <\/td>\n<\/tr>\n | ||||||
23<\/td>\n | STRUCTURAL DESIGN (CHAPTER 16): LOAD COMBINATIONS <\/td>\n<\/tr>\n | ||||||
24<\/td>\n | REFERENCES <\/td>\n<\/tr>\n | ||||||
25<\/td>\n | CHAPTER 16 – PART 1 STRUCTURAL DESIGN <\/td>\n<\/tr>\n | ||||||
26<\/td>\n | SECTION 1601 GENERAL <\/td>\n<\/tr>\n | ||||||
27<\/td>\n | SECTION 1602 DEFINITIONS SECTION 1603 CONSTRUCTION DOCUMENTS <\/td>\n<\/tr>\n | ||||||
28<\/td>\n | SECTION 1604 GENERAL DESIGN REQUIREMENTS <\/td>\n<\/tr>\n | ||||||
31<\/td>\n | FIGURE 16-1 MINIMUM ANCHORAGE OF CONCRETE AND MASONRY WALLS <\/td>\n<\/tr>\n | ||||||
32<\/td>\n | FIGURE 16-2 APPLICATION OF LIVE\/SNOW LOAD ON A CANTILEVERED DECK <\/td>\n<\/tr>\n | ||||||
33<\/td>\n | FIGURE 16-3 BEHAVIOR OF BUILDING DURING AN EARTHQUAKE <\/td>\n<\/tr>\n | ||||||
35<\/td>\n | FIGURE 16-4 IDEALIZED FORCE-DISPLACEMENT RELATIONSHIP OF A BUILDING SUBJECTED TO THE DESIGN EARTHQUAKE OF THE IBC FIGURE16-5 LOAD-DEFLECTION CURVES OF STRUCTURAL SUBASSEMBLIES SUBJECTED TO REVERSE CYCLIC DISPLACEMENTS SECTION 1605 LOAD COMBINATIONS <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | FIGURE 16-6 COLLECTOR ELEMENTS FOR DIAPHRAGMS AND DISCONTINUOUS SHEAR WALLS <\/td>\n<\/tr>\n | ||||||
37<\/td>\n | TABLE 16-1. STRENGTH DESIGN LOAD COMBINATIONS OF THE 2009 IBC AND ASCE 7-05 <\/td>\n<\/tr>\n | ||||||
38<\/td>\n | TABLE 16-2. ALLOWABLE STRESS DESIGN LOAD COMBINATIONS OF THE 2009 IBC AND ASCE 7-05 <\/td>\n<\/tr>\n | ||||||
39<\/td>\n | SECTION 1606 DEAD LOADS <\/td>\n<\/tr>\n | ||||||
40<\/td>\n | SECTION 1607 LIVE LOADS <\/td>\n<\/tr>\n | ||||||
42<\/td>\n | TABLE 16-3. COMPARISON BETWEEN 2009 IBC TABLE 1607.1 AND ASCE 7-05 TABLE 4-1 <\/td>\n<\/tr>\n | ||||||
43<\/td>\n | FIGURE 16-7 UNINHABITABLE ATTICS WITH LIMITED STORAGE <\/td>\n<\/tr>\n | ||||||
45<\/td>\n | FIGURE 16-8 TRIBUTARY AREAS <\/td>\n<\/tr>\n | ||||||
46<\/td>\n | FIGURE 16-9 INFLUENCE AREA <\/td>\n<\/tr>\n | ||||||
47<\/td>\n | FIGURE 16-10 TYPICAL TRIBUTARY AND INFLUENCE AREA <\/td>\n<\/tr>\n | ||||||
49<\/td>\n | FIGURE 16-11 LIVE LOAD REDUCTION EQUATION 16-23 FIGURE 16-12 ALTERNATE SPAN LOADING OF CONTINUOUS BEAMS <\/td>\n<\/tr>\n | ||||||
51<\/td>\n | FIGURE 16-13 APPLICATIONS OF FABRIC PARTITIONS <\/td>\n<\/tr>\n | ||||||
52<\/td>\n | SECTION 1608 SNOW LOADS <\/td>\n<\/tr>\n | ||||||
53<\/td>\n | FIGURE 16-14 SNOW LOADS PROVISIONS <\/td>\n<\/tr>\n | ||||||
54<\/td>\n | FIGURE 16-15 LIMITING ROOF SLOPE FOR HIP OR GABLE ROOFS FIGURE 16-16 POTENTIAL SNOW ACCUMULATION, GABLE ROOFS WITH SIDESHEDS <\/td>\n<\/tr>\n | ||||||
56<\/td>\n | TABLE 16-4. ARRANGEMENT OF UNBALANCED SNOW LOAD ON HIP OR GABLE ROOFS SECTION 1609 WIND LOADS <\/td>\n<\/tr>\n | ||||||
58<\/td>\n | FIGURE 16-17 “ROAD MAP” THROUGH THE IBC\/ASCE 7 WIND LOAD PROVISIONS <\/td>\n<\/tr>\n | ||||||
59<\/td>\n | TABLE 16-5. 3-SECOND GUST VELOCITY VERSUS FASTEST MILE WIND VELOCITY <\/td>\n<\/tr>\n | ||||||
60<\/td>\n | FIGURE 16-18 UPWIND SECTORS FOR DETERMINATION OF GOVERNING EXPOSURE CATEGORY <\/td>\n<\/tr>\n | ||||||
63<\/td>\n | EQUATION 1 EQUATION 2 EQUATION 3 EQUATION 4 EQUATION 5 <\/td>\n<\/tr>\n | ||||||
65<\/td>\n | SECTION 1610 SOIL LATERAL LOADS <\/td>\n<\/tr>\n | ||||||
66<\/td>\n | TABLE 16-6. SOIL LATERAL LOADS IN MODEL CODES AND STANDARDS <\/td>\n<\/tr>\n | ||||||
67<\/td>\n | TABLE 16-7. SOIL LATERAL LOADS\u2014CALCULATED VERSUS CODE AND STANDARD VALUES SECTION 1611 RAIN LOADS <\/td>\n<\/tr>\n | ||||||
68<\/td>\n | SECTION 1612 FLOOD LOADS <\/td>\n<\/tr>\n | ||||||
70<\/td>\n | SECTION 1613 EARTHQUAKE LOADS <\/td>\n<\/tr>\n | ||||||
71<\/td>\n | TABLE 16-8. COMPARISON BETWEEN ORGANIZATIONS OF 1997 UBC AND THE 2000, 2003, 2006 AND 2009 IBC SEISMIC PROVISIONS <\/td>\n<\/tr>\n | ||||||
72<\/td>\n | TABLE 16-9 – COMPARISON OF SOIL-MODIFIED SEISMICITY BY THE 1997 UBC AND THE 2009 IBC FOR SITE CLASS D <\/td>\n<\/tr>\n | ||||||
74<\/td>\n | TABLE 16-10 – COMPARISON OF 1997 UBC SEISMIC ZONES AND SEISMIC DESIGN CATEGORIES OF THE 2009 IBC <\/td>\n<\/tr>\n | ||||||
75<\/td>\n | FIGURE 16-19 – AREAS OF THE CONTIGUOUS UNITED STATES <\/td>\n<\/tr>\n | ||||||
77<\/td>\n | FIGURE – 16-20 – ARES OF THE CONTIGUOUS UNITED STATES <\/td>\n<\/tr>\n | ||||||
78<\/td>\n | TABLE 16-11 – VALUES OF Fa AS A FUNCTION OF SITE CLASS AND SHAKING INTENSITY TABLE 16-12 – VALUES OF Fv AS A FUNCTION OF SITE CLASS AND SHAKING INTENSITY TABLE 16-13 – GROUND MOTION AMPLIFICATION THAT IS DUE TO SOIL: 1997 UBC SEISMIC COEFFICIENT <\/td>\n<\/tr>\n | ||||||
79<\/td>\n | TABLE 16-14 – GROUND MOTION AMPLIFICATION THAT IS DUE TO SOIL: 1997 UBC SEISMIC COEFFICIENT <\/td>\n<\/tr>\n | ||||||
80<\/td>\n | TABLE 16-15 – DESIGN GROUND MOTION OF ASCE 7-05 AND THE 2009 IBC <\/td>\n<\/tr>\n | ||||||
81<\/td>\n | TABLE 16-16 – OCCUPANCY CATERGORIES AND SEISMIC USE GROUPS <\/td>\n<\/tr>\n | ||||||
82<\/td>\n | TABLE 16-17 – CORRESPONDENCE BETWEEN UBC SEISMIC ZONES AND IBC SEISMIC DESIGN CATEGORIES <\/td>\n<\/tr>\n | ||||||
84<\/td>\n | TABLE 16-18 – DESIGN COEFFICIENTS AND FACTORS FOR AAC MASONRY SHEAR WALL SYSTEMS <\/td>\n<\/tr>\n | ||||||
86<\/td>\n | SECTION 1614 STRUCTURAL INTEGRITY SEISMIC DESIGN PROVISIONS OF ASCE 7-05 <\/td>\n<\/tr>\n | ||||||
87<\/td>\n | CHAPTER 11 – SEISMIC DESIGN CRITERIA <\/td>\n<\/tr>\n | ||||||
89<\/td>\n | TABLE 16-19 – SOIL CLASSIFICATIONS OF ASCE 7-05 VERSUS SOIL CLASSIFICATIONS OF EARLIER CODES <\/td>\n<\/tr>\n | ||||||
90<\/td>\n | FIGURE 16-21 – DESIGN RESPONSE SPECTRUM IN ASCE 7-05 <\/td>\n<\/tr>\n | ||||||
93<\/td>\n | CHAPTER 12 – SEISMIC DESIGN REQUIREMENTS FOR BUILDING STRUCTURES <\/td>\n<\/tr>\n | ||||||
95<\/td>\n | FIGURE 16-22 – SEISMIC FORCE RESISTING STRUCTURAL SYSTEMS <\/td>\n<\/tr>\n | ||||||
97<\/td>\n | FIGURE 16-23 – TYPICAL CONFIGURATION OF AND LOAD-DISPLACEMENT BEHAVIOR OF BUCKLING RESTRAINED BRACE <\/td>\n<\/tr>\n | ||||||
98<\/td>\n | FIGURE 16-24 – SPECIAL STEEL PLATE SHEAR WALL <\/td>\n<\/tr>\n | ||||||
99<\/td>\n | FIGURE 16-25 – SPECIAL TRUSS MOMENT FRAMES <\/td>\n<\/tr>\n | ||||||
102<\/td>\n | FIGURE 16-26 INELASTIC FORCE-DISPLACEMENT RELATIONSHIP <\/td>\n<\/tr>\n | ||||||
105<\/td>\n | FIGURE 16-27 – IDEALIZED FORCE-DISPLACEMENT RELATIONSHIP OF A BUILDING SUBJECTED TO THE DESIGN EARTHQUQAKE OF THE IBC <\/td>\n<\/tr>\n | ||||||
106<\/td>\n | FIGURE 16-28 – SEISMIC RESISTANCE VERSUS SEISMIC DEMAND <\/td>\n<\/tr>\n | ||||||
108<\/td>\n | TABLE 16-20 – EARTHQUAKE FORCE-RESISTING STRUCTURAL SYSTEMS OF STEEL ASCE 7-05 <\/td>\n<\/tr>\n | ||||||
109<\/td>\n | TABLE 16-20 – EARTHQUAKE FORCE-RESISTING STRUCTURAL SYSTEMS OF STEEL – ASCE 7-05 <\/td>\n<\/tr>\n | ||||||
110<\/td>\n | TABLE 16-21 – EARTHQUAKE FORCE-RESISTING STRUCTURAL SYSTEMS OF CONCRETE – ASCE 7-05 <\/td>\n<\/tr>\n | ||||||
111<\/td>\n | TABLE 16-22 – EARTHQUAKE FORCE-RESISTING STRUCTURAL SYSTEMS OF MASONRY -ASCE 7-05 <\/td>\n<\/tr>\n | ||||||
112<\/td>\n | TABLE 16-23 – EARTHQUAKE FORCE-RESISTING STRUCTURAL SYSTEMS OF WOOD – ASCE 7-05 TABLE 16-24 – CONCRETE STRUCTURAL SYSTEMS FOR SEISMIC DESIGN CATEGORIES D, E AND F <\/td>\n<\/tr>\n | ||||||
113<\/td>\n | TABLE 16-25 – MASONRY STRUCTURAL SYSTEMS FOR SEISMIC DESIGN CATEGORIES D, E AND F TABLE 16-26 – CONCRETE STRUCTURAL SYSTEMS FOR SEISMIC DESIGN CATEGORY NO HIGHER THAN C <\/td>\n<\/tr>\n | ||||||
114<\/td>\n | TABLE 16-27 – MASONRY STRUCTURAL SYSTEM FOR SEISMIC DESIGN CATEGORY NO HIGHER THAN C TABLE 16-28 – CONCRETE STRUCTURAL SYSTEMS FOR SEISMIC DESIGN CATEGORY NO HIGHER THAN B <\/td>\n<\/tr>\n | ||||||
115<\/td>\n | TABLE 16-29 – MASONRY STRUCTURAL SYSTEM FOR SEISMIC DESIGN CATEGORY NO HIGHER THAN B <\/td>\n<\/tr>\n | ||||||
116<\/td>\n | FIGURE 16-29 – VERTICAL COMBINATIONS OF STRUCTURAL SYSTEMS <\/td>\n<\/tr>\n | ||||||
118<\/td>\n | FIGURE – 16-30 – HORIZONTAL COMBINATIONS OF STRUCTURAL SYSTEMS <\/td>\n<\/tr>\n | ||||||
120<\/td>\n | FIGURE 16-31 – CLASSIFICATION OF DIAPHRAGM BASED ON DEFLECTION CALCULATION <\/td>\n<\/tr>\n | ||||||
121<\/td>\n | FIGURE 16-32 – CLASSIFICATION OF DIAGPHRAGM BASED ON ASCE 7-05 SECTION 12.3.1 <\/td>\n<\/tr>\n | ||||||
124<\/td>\n | FIGURE 16-33A – PLAN IRREGULARITY TYPE 1A, TORSIONAL IRREGULARITY FIGURE 16-33B – PLAN IRREGULARITY TYPE 1B, EXTREME TORSIONAL IRREGULARITY <\/td>\n<\/tr>\n | ||||||
125<\/td>\n | FIGURE 16-34 – PLAN IRREGULARITY TYPE 2, RE-ENTRANT CORNERS FIGURE 16-35 – PLAN IRREGULARITY TYPE3,DIAPHRAGM DISCONTINUITY <\/td>\n<\/tr>\n | ||||||
126<\/td>\n | FIGURE 16-36 – PLAN IRREGULARITY TYPE 4, OUT OF PLANE OFFSETS FIGURE 16-37 – PLAN IRREGULARITY TYPE 5, NONPARALLEL SYSTEMS <\/td>\n<\/tr>\n | ||||||
128<\/td>\n | FIGURE 16-38A – VERTICAL IRREGULARITY TYPE 1A, SOFT STORY FIGURE 16-38B – VERTICAL IRREGULARITY TYPE 1B, EXTREME SOFT STORY <\/td>\n<\/tr>\n | ||||||
129<\/td>\n | FIGURE 16-39 – VERTICAL IRREGULARITY TYPE 2, WEIGHT IRREGULARITY FIGURE 16-40 – VERTICAL IRREGULARITY TYPE 3, VERTICAL GEOMETRIC IRREGULARITY <\/td>\n<\/tr>\n | ||||||
130<\/td>\n | FIGURE 16-41 – VERTICAL IRREGULARITY TYPE 4, IN-PLAN DISCONTINUITY IN VERTICAL LATERAL FORCE-RESISTING ELEMENT IRREGULARITY FIGURE 16-42A- VERTICAL IRREGULARITY TYPE 5A, WEAK STORY <\/td>\n<\/tr>\n | ||||||
131<\/td>\n | FIGURE 16-42B – VERTICAL IRREGULARITY TYPE 5B, EXTREME WEAK STORY <\/td>\n<\/tr>\n | ||||||
133<\/td>\n | FIGURE 16-43 – AN EXAMPLE PLAN VIEW OF BUILDING WITH P=1.0 <\/td>\n<\/tr>\n | ||||||
135<\/td>\n | TABLE 16-30 – SEISMIC STRENGTH DESIGN LOAD COMBINATIONS OF ASCE 7-05 <\/td>\n<\/tr>\n | ||||||
136<\/td>\n | TABLE 16-31 – CONSIDERATION OF VERTICAL SEISMIC GROUND ACCELERATION IN U.S. CODES AND RESOURCE DOCUMENTS <\/td>\n<\/tr>\n | ||||||
137<\/td>\n | TABLE 16-31 – CONSIDERATION OF VERTICAL SEISMIC GROUND ACCELERATION IN U.S. CODES AND RESOURCE DOCUMENTS TABLE 16-32(A) – 1994 NEHRP DEAD LOAD FACTORSK INCLUDING EFFECTS OF VERTICAL GROUND ACCELERATION-DLF= 0.9 – 0.5 Ca TABLE 16-32(B) – 1997 UBC DEAD LOAD FACTORS, INCLUDING EFFETS OF VERTICAL GROUND ACCELERATION, FOR SEISMIC ZONE 4-DLF= 0.9 – 0.5 Ca <\/td>\n<\/tr>\n | ||||||
138<\/td>\n | TABLE 16-32(C) – 1997, 2000, 2003 NEHRP\/2000,2003, 2006, 2009 IBC\/ASCE 7-98, ASCE 7-02, ASCE 7-05 DEAD LAOD FACTORS, INCLUDING EFFECTS OF VERTICAL GROUND ACCELERATION -DLF = 0.9 – 0.4 F FIGURE 16-44 – COMBINATION OF EFFETS OF INDEPENDENTLY APPLIED ORTHOGONAL GROUND MOTIONS <\/td>\n<\/tr>\n | ||||||
145<\/td>\n | TABLE 16-33 -COMPARISON OF DESIGN BASE SHEAR EQUATIONS OF ASCE 7-05 AND THE 1997 UBC <\/td>\n<\/tr>\n | ||||||
146<\/td>\n | TABLE 16-34 – RESTRICTION ON RATIONALLY COMPUTED PERIOD EXPRESSED IN TERMS OF DESIGN BASE SHEAR FOR TS, T, TL <\/td>\n<\/tr>\n | ||||||
148<\/td>\n | FIGURE 16-45 – COMPARISON OF APPROXIMATE PERIOD FORMULA FROM THE 1997 AND 2003 NEHRP PROVISIONS <\/td>\n<\/tr>\n | ||||||
153<\/td>\n | FIGURE 16-46 – STORY DRIFT DETERMINATION <\/td>\n<\/tr>\n | ||||||
154<\/td>\n | FIGURE 16-47 – P-DELTA SYMBOLS AND NOTATION <\/td>\n<\/tr>\n | ||||||
157<\/td>\n | EQUATION 6 EQUATION 7 <\/td>\n<\/tr>\n | ||||||
158<\/td>\n | EQUATION 8 EQUATION 9 EQUATION 10 FIGURE 16-48 – MINIMUM ANCHORAGE OF WALLS TO DIAPHRAGMS OR OTHER ELEMENTS PROVIDING LATERAL SUPPORT <\/td>\n<\/tr>\n | ||||||
160<\/td>\n | FIGURE 16-49 – COMPARISON OF VARIOUS CRITERIA FOR OUT-OF-PLANE ANCHORAGE FORCE FOR CONCRETE AND MASONRY WALL WITH (A)HEIGHT= 10 FEET, (B) HEIGHT= 20 FEET <\/td>\n<\/tr>\n | ||||||
161<\/td>\n | EQUATION EQUATION <\/td>\n<\/tr>\n | ||||||
164<\/td>\n | CHAPTER 13 – SEISMIC DESIGN REQUIREMENTS FOR NONSTRUCTURAL COMPONENTS <\/td>\n<\/tr>\n | ||||||
171<\/td>\n | CHAPTER 14 – MATERIAL-SPECIFIC SEISMIC DESIGN AND DETAILING REQUIREMENTS <\/td>\n<\/tr>\n | ||||||
172<\/td>\n | CHAPTER 15 – SEISMIC DESIGN REQUIREMENTS FOR NONBUILDING STRUCTURES <\/td>\n<\/tr>\n | ||||||
173<\/td>\n | EQUATION FIGURE 16-50 – CODE REQUIREMENTS FOR NONBUILDING STRUCTURES SUPPORTED BY OTHER STRUCTURES <\/td>\n<\/tr>\n | ||||||
174<\/td>\n | TABLE 16-35 – MINIMUM SEISMIC DESIGN FORCES FOR NONBUILDING STRUCTURES <\/td>\n<\/tr>\n | ||||||
176<\/td>\n | FIGURE 16-51 – NONBUILDING STRUCTURE SIMILAR TO BUILDINGS FIGURE 16-52 – NONBUILDING STRUCTURE NOT SIMILAR TO BUILDINGS <\/td>\n<\/tr>\n | ||||||
177<\/td>\n | CHAPTER 16 – SEISMIC RESPONSE HISTORY PROCEDURES <\/td>\n<\/tr>\n | ||||||
179<\/td>\n | CHAPTER 17 – SEISMIC DESIGN REQUIREMENTS FOR SEISMICALLY ISOLATED STRUCTURES <\/td>\n<\/tr>\n | ||||||
180<\/td>\n | FIGURE 16-53 – SEISMIC RESPONSE OF A CONVENTIONAL STRUCTURE AND A BASE-ISOLATED STRUCTURE FIGURE 16-54 – EFFECTS OF PERIOD SHIFT AND INCREASED DAMPING <\/td>\n<\/tr>\n | ||||||
181<\/td>\n | FIGURE 16-55 – A MECHANICAL ENERGY DISSIPATOR <\/td>\n<\/tr>\n | ||||||
182<\/td>\n | FIGURE 16-56 – DESIGN PRINCIPLES OF SEISMIC ISOLATION <\/td>\n<\/tr>\n | ||||||
184<\/td>\n | FIGURE 16-57 – IDEALIZED FORCE-DISPLACEMENT RELATIONSHIP FOR ISOLATION SYSTEMS <\/td>\n<\/tr>\n | ||||||
186<\/td>\n | FIGURE 16-58 – DISPLACEMENT TERMINOLOGY USED IN THE IBC <\/td>\n<\/tr>\n | ||||||
190<\/td>\n | FIGURE 16-59 – ISOLATION SYSTEM TERMINOLOGY <\/td>\n<\/tr>\n | ||||||
191<\/td>\n | CHAPTER 18 – SEISMIC DESIGN REQUIREMENTS FOR STRUCTURES WITH DAMPING SYSTEMS <\/td>\n<\/tr>\n | ||||||
193<\/td>\n | CHAPTER 19 – SOIL STRUCTURE INTERACTION FOR SEISMIC DESIGN <\/td>\n<\/tr>\n | ||||||
194<\/td>\n | CHAPTER 20 – SITE CLASSIFICATION PROCEDURE FOR SEISMIC DESIGN <\/td>\n<\/tr>\n | ||||||
195<\/td>\n | CHAPTER 21 – SITE-SPECIFIC GROUND MOTION PROCEDURES FOR SEISMIC DESIGN <\/td>\n<\/tr>\n | ||||||
196<\/td>\n | CHAPTER 22 – SEISMIC GROUND MOTION AND LONG-PERIOD TRANSITION PERIOD MAPS <\/td>\n<\/tr>\n | ||||||
197<\/td>\n | CHAPTER 23 – SEISMIC DESIGN REFERENCE DOCUMENTS <\/td>\n<\/tr>\n | ||||||
198<\/td>\n | REFERENCES <\/td>\n<\/tr>\n | ||||||
201<\/td>\n | CHAPTER 16 PART 2 – STRUCTURAL DESIGN EXAMPLES <\/td>\n<\/tr>\n | ||||||
202<\/td>\n | EXAMPLE 1 – DESIGN AXIAL FORCE, SHEAR FORCE AND BENDING MOMENT FOR SHEAR WALL DUE TO LATERAL AND GRAVITY LOADS (STRENGTH DESIGN) <\/td>\n<\/tr>\n | ||||||
203<\/td>\n | EXAMPLE 2 – DESIGN AXIAL FORCE, SHEAR FORCE AND BENDING MOMENT FOR SHEAR WALL DUE TO LATERAL AND GRAVITY LOADS ( ALLOWABLE STRESS DESIGN USING BASIC LOAD COMBINATIONS) <\/td>\n<\/tr>\n | ||||||
204<\/td>\n | EXAMPLE 3 – DESIGN AXIAL FORCE, SHEAR FORCE AND BENDING MOMENT FOR SHEAR WALL DUE TO LATERAL AND <\/td>\n<\/tr>\n | ||||||
205<\/td>\n | EXAMPLE 4 – CALCULATION OF LIVE LOAD REDUCTION FIGURE E4-1 – PLAN AND ELEVATION OF THE EXAMPLE BUILDING STUDIED <\/td>\n<\/tr>\n | ||||||
206<\/td>\n | EXAMPLE 4 – CONTINUED <\/td>\n<\/tr>\n | ||||||
207<\/td>\n | EXAMPLE 5 – DESIGN OF A 20-STORY REINFORCED CONCRETE BUIDLING FOR WIND FORCES <\/td>\n<\/tr>\n | ||||||
209<\/td>\n | EQUATION 6-8 EQUATION 6-9 EQUATION 6-5 EQUATION 6-6 EQUATION 6-7 <\/td>\n<\/tr>\n | ||||||
210<\/td>\n | EQUATION 6-10 EQUATION 6-11 EQUATION 6-12 EQUATION 6-13A EQUATION 6-13B EQUATION 6-14 <\/td>\n<\/tr>\n | ||||||
213<\/td>\n | TABLE E5-1 – COMPUTATION OF KZ, KH, AND QZ AFOR THE EXAMPLE BUILDING <\/td>\n<\/tr>\n | ||||||
214<\/td>\n | TABLE E5-2 – CALCULATION OF DESIGN WIND PRESSURE FOR THE EXAMPLE BUILDING <\/td>\n<\/tr>\n | ||||||
215<\/td>\n | TABLE E5-3 – CALCULATION OF DESIGN WIND LOADS FOR LATERAL ANALYSIS <\/td>\n<\/tr>\n | ||||||
216<\/td>\n | FIGURE E5-1 – PLAN OF EXAMPLE BUILDING CONSIDERED <\/td>\n<\/tr>\n | ||||||
217<\/td>\n | FIGURE E5-2 – ELEVATION OF EXAMPLE BUILDING CONSIDERED <\/td>\n<\/tr>\n | ||||||
218<\/td>\n | FIGURE E5-3 – LATERAL FORCES ON MWFRS FOR WIND (ADAPTED FROM ASCE 7-05 FIGURE 6-9, ONLY SHOWING CASE 1 AND 2) <\/td>\n<\/tr>\n | ||||||
219<\/td>\n | EXAMPLE 6 – DESIGN OF A 5-STORY REINFORCED CONCRETE BUILDING FOR WIND FORCES USING ALTERNATE ALL- HEIGHTS METHOD <\/td>\n<\/tr>\n | ||||||
220<\/td>\n | FIGURE E6-1 – PLAN OF EXAMPLE BUILDING CONSIDERED FIGURE E6-2 – ELEVATION OF EXAMPLE BUILDING CONSIDERED <\/td>\n<\/tr>\n | ||||||
223<\/td>\n | TABLE E6-1 – COMPUTATION OF KZ TABLE E6-2 – CALCULATION OF DESIGN WIND PRESSURE FOR THE EXAMPLE BUILDING <\/td>\n<\/tr>\n | ||||||
224<\/td>\n | TABLE E6-3 – CALCULATION OF DESIGN WIND LOADS FOR LATERAL ANALYSIS EQUATION 16-34 <\/td>\n<\/tr>\n | ||||||
225<\/td>\n | FIGURE E6-3 – ZONES FOR COMPONENTS AND CLADDING <\/td>\n<\/tr>\n | ||||||
226<\/td>\n | TABLE E6-4 – KZ AND KZT FOR THE EXAMPLE BUILDING TABLE E6-5 – NET PRESSURE COEFFICIENTS C NET ON MULLIONS AND PANELS TABLE E6-6 – CALCULATION OF DESIGN WIND PRESSURE ON MULLION TABLE E6-7 – CALCULATION OF DESIGN WIND PRESSURE ON PANEL <\/td>\n<\/tr>\n | ||||||
227<\/td>\n | EXAMPLE 7 – CALCULATION OF WIND PRESSURES FOR A LOW-RISE BUILDING <\/td>\n<\/tr>\n | ||||||
229<\/td>\n | TABLE E7-1 – CALCULATION OF WIND PRESSURE <\/td>\n<\/tr>\n | ||||||
230<\/td>\n | FIGURE E7-1 – DIMENSION AND FRAMING OF A LOW-RISE BUILDING FIGURE E7-2 – MWF LOADING DIAGRAM <\/td>\n<\/tr>\n | ||||||
231<\/td>\n | FIGURE E7-3 (A) – APPLICATION OF MWFRS LOADS-LOADING IN TRANSVERSE DIRECTION <\/td>\n<\/tr>\n | ||||||
232<\/td>\n | FIGURE E7-3 (B) – APPLICATION OF MWFRS LOADS – LOADING IN LONGITUDIAL DIRECTION <\/td>\n<\/tr>\n | ||||||
233<\/td>\n | EXAMPLE 8 – REDUNDANCY (P) AND CONCRETE SHEAR WALLS <\/td>\n<\/tr>\n | ||||||
234<\/td>\n | EQUATION FIGURE E8-1 – SHEAR WALL RESISTANCE <\/td>\n<\/tr>\n | ||||||
235<\/td>\n | EXAMPLE 9 – SIMPLIFIED DESIGN PROCEDURE EQUATION 14-11 EQUATION 14-12 <\/td>\n<\/tr>\n | ||||||
237<\/td>\n | EXAMPLE 10 – DESIGN OF MULTISTORY REINFORCED CONCRETE BUILDING SUBJECTED TO EARTHQUAKE FORCES <\/td>\n<\/tr>\n | ||||||
238<\/td>\n | EQUATION 16-36 EQUATION 11.4-1 EQUATION 11.4-2 EQUATION 16-38 EQUATION 11.4-3 EQUATION 16-39 EQUATION 11.4-4 EQUATION 12.8-1 EQUATION 12.8-3 EQUATION 12.8-4 EQUATION 12.8-2 EQUATION 12.8-5 <\/td>\n<\/tr>\n | ||||||
239<\/td>\n | EQUATION 12.8-7 EQUATION 12.8-6 EQUATION 12.8-11 EQUATION 12.8-12 <\/td>\n<\/tr>\n | ||||||
240<\/td>\n | EQUATION 12.8-3 EQUATION 12.8-2 EQUATION 12.8-6 EQUATION 12.8-5 EQUATION 12.8-11 EQUATION 12.8-12 <\/td>\n<\/tr>\n | ||||||
241<\/td>\n | EQUATION 12.8-15 EQUATION 12.8-16 <\/td>\n<\/tr>\n | ||||||
242<\/td>\n | TABLE E10-1 – LATERAL FORCES BY EQUIVALENT LATERAL-FORCE PROCEDURE USING APPROXIMATE PERIOD <\/td>\n<\/tr>\n | ||||||
243<\/td>\n | TABLE E10-2 – CALCULATION OF PERIOD BY RATIONAL ANALYSIS (EQUIVALENT LATERAL-FORCE PROCEDURE) <\/td>\n<\/tr>\n | ||||||
244<\/td>\n | TABLE E10-3 – LATERAL FORCES BY EQUIVALENT LATERAL-FORCE PROCEDURE USING PERIOD FROM RATIONAL ANALYSIS <\/td>\n<\/tr>\n | ||||||
245<\/td>\n | TABLE E10-4 – LATERAL DISPLACEMENTS AND DRIFTS OF EXAMPLE BUILDING BY EQUIVALENT LATERAL -FORCE PROCEDURE (IN) ( ALONG OUTER FROAM LINE F) <\/td>\n<\/tr>\n | ||||||
246<\/td>\n | TABLE E10-5 – CALCULATION OF STABILITY COEFFICIENT <\/td>\n<\/tr>\n | ||||||
247<\/td>\n | FIGURE E10-1 – PLAN OF EXAMPLE OFFICE BUILDING <\/td>\n<\/tr>\n | ||||||
248<\/td>\n | FIGURE E10-2 – ELEVATION OF EXAMPLE OFFICE BUILDING <\/td>\n<\/tr>\n | ||||||
249<\/td>\n | FIGURE E10-3 – DESIGN RESPONCE SPECTRUM (FOR STRUCTURE LOCATED WHERE S1 IS EQUAL TO OR GREATER THAN 0.6G) <\/td>\n<\/tr>\n | ||||||
250<\/td>\n | EXAMPLE 11 – DYNAMIC ANALYSIS PROCEDURE (RESPONSE SPECTRUM ANALYSIS) EQUATION 11.4-1 EQUATION 11.4-2 EQUATION 11.4-3 EQUATION 11.4-4 <\/td>\n<\/tr>\n | ||||||
255<\/td>\n | EQUATION 12.8-1 EQUATION 12.8-3 EQUATION 12.8-2 EQUATION 12.8-5 <\/td>\n<\/tr>\n | ||||||
256<\/td>\n | EQUATION 12.8-7 <\/td>\n<\/tr>\n | ||||||
259<\/td>\n | EXAMPLE 12 – CALCULATION OF DIAPHRAGM DESIGN FORCES <\/td>\n<\/tr>\n | ||||||
260<\/td>\n | EXAMPLE 13 – PARTIAL DIAPHRAGM DESIGN FIGURE E13.1 – PLAN AND ELEVATION OF EXAMPLE BUILDING STUDIED <\/td>\n<\/tr>\n | ||||||
262<\/td>\n | EXAMPLE 14 – CALCULATON OF COLLECTOR STRENGTH FIGURE 314-1 – ELEVATION AT SECTION X-X EQUATION 12.8-7 <\/td>\n<\/tr>\n | ||||||
264<\/td>\n | EXAMPLE 15 – LATERAL FORCE ON ELEMENTS OF STRUCTURES EQUATION 13.3-1 EQUATION 13.3-2 EQUATION 13.3-3 <\/td>\n<\/tr>\n | ||||||
265<\/td>\n | FIGURE E15-1 – SEISMIC FORCES FOR WALL DESIGN (PER FT WIDTH) EQUATION 12.11-1 <\/td>\n<\/tr>\n | ||||||
266<\/td>\n | FIGURE E15-2 – SEISMIC FORCE FOR WALL ANCHORAGE DESIGN <\/td>\n<\/tr>\n | ||||||
267<\/td>\n | CHAPTER 17 – STRUCTURAL TESTS AND SPECIAL INSPECTIONS <\/td>\n<\/tr>\n | ||||||
269<\/td>\n | SECTION 1701 – GENERAL SECTION 1702 – DEFINITIONS <\/td>\n<\/tr>\n | ||||||
271<\/td>\n | SECTION 1703 – APPROVALS <\/td>\n<\/tr>\n | ||||||
273<\/td>\n | FIGURE 17-1 – EXAMPLES OF LUMBER GRADE LABELS <\/td>\n<\/tr>\n | ||||||
274<\/td>\n | SECTION 1704 – SPECIAL INSPECTIONS <\/td>\n<\/tr>\n | ||||||
288<\/td>\n | SECTION 1705 – STATEMENT OF SPECIAL INSPECTIONS <\/td>\n<\/tr>\n | ||||||
290<\/td>\n | SECTION 1706 – SPECIAL INSPECTION OF WIND REQUIREMENTS <\/td>\n<\/tr>\n | ||||||
291<\/td>\n | TABLE 17-1 – SPECIAL INSPECTION FOR WIND RESISTANCE SECTION 1707 – SPECIAL INSPECTIONS FOR SEISMIC RESISTANCE <\/td>\n<\/tr>\n | ||||||
293<\/td>\n | SECTION 1708 – STRUCTURAL TESTING FOR SEISMIC RESISTANCE <\/td>\n<\/tr>\n | ||||||
295<\/td>\n | FIGURE 17-2 – WELD SUSCEPTABLE TO SHRINKAGE STRESSES <\/td>\n<\/tr>\n | ||||||
296<\/td>\n | SECTION 1709 – CONTRACTOR RESPONSIBILITY <\/td>\n<\/tr>\n | ||||||
297<\/td>\n | SECTION 1710 – STRUCTURAL OBSERVATIONS <\/td>\n<\/tr>\n | ||||||
300<\/td>\n | SECTION 1711 – DESIGN STRENGTHS OF MATERIALS SECTION 1712 – ALTERNATIVE TEST PROCEDURES SECTION 1713 – TEST SAFE LOAD <\/td>\n<\/tr>\n | ||||||
301<\/td>\n | SECTION 1714 – IN-SITU LOAD TESTS SECTION 1715 – PRECONSTRUCTION LOAD TESTS <\/td>\n<\/tr>\n | ||||||
302<\/td>\n | SECTION 1716 – MATERIAL AND TEST STANDARDS <\/td>\n<\/tr>\n | ||||||
303<\/td>\n | REFERENCES <\/td>\n<\/tr>\n | ||||||
305<\/td>\n | CHAPTER 18 – SOILS AND FOUNDATIONS <\/td>\n<\/tr>\n | ||||||
306<\/td>\n | SECTION 1801 – GENERAL <\/td>\n<\/tr>\n | ||||||
307<\/td>\n | SECTION 1802 – DEFINITIONS SECTION 1803 – GEOTECHNICAL INVESTIGATIONS <\/td>\n<\/tr>\n | ||||||
310<\/td>\n | FIGURE 18-1 – LATERAL SUPPORT <\/td>\n<\/tr>\n | ||||||
311<\/td>\n | SECTION 1804 – EXCAVATION, GRADING AND FILL <\/td>\n<\/tr>\n | ||||||
312<\/td>\n | SECTION 1805 – DAMPPROOFING AND WATERPROOFING <\/td>\n<\/tr>\n | ||||||
315<\/td>\n | FIGURE 18-2 – A FOUNDATION DRAINAGE SYSTME TABLE 18-1 – DAMPPROOFING MATERIALS <\/td>\n<\/tr>\n | ||||||
317<\/td>\n | FIGURE 18-3 – SAMPLE ICC-ES EVALUATION REPORT <\/td>\n<\/tr>\n | ||||||
321<\/td>\n | SECTION 1806 – PRESUMPTIVE LOAD-BEARING VALUES OF SOILS TABLE 18-3 – PRESUMPTIVE LOAD-BEARING VALUES <\/td>\n<\/tr>\n | ||||||
322<\/td>\n | SECTION 1807 – FOUNDATION WALLS, RETAINING WALLS AND EMBEDDED POSTS AND POLES <\/td>\n<\/tr>\n | ||||||
323<\/td>\n | TABLE 18-4 – MAXIMUM PERMISSIBLE AXIAL LOAD FOR CONCRETE WALLS BASED ON 1.2TF POUNDS PER FOOT OF WALL <\/td>\n<\/tr>\n | ||||||
324<\/td>\n | TABLE 18-5 – MAXIMUM PERMISSIBLE AXIAL LOAD FOR MASONRY WALLS BASED ON 1.2TF IN POUNDS PER FOOT OF WALL <\/td>\n<\/tr>\n | ||||||
325<\/td>\n | TABLE 18-6 – SEISMIC REQUIREMENTS FOR MASONRY FOUNDATION WALLS <\/td>\n<\/tr>\n | ||||||
326<\/td>\n | FIGURE 18-4 – RETAINING WALL KEYWAY IN SOIL <\/td>\n<\/tr>\n | ||||||
327<\/td>\n | SECTION 1808 – FOUNDATIONS <\/td>\n<\/tr>\n | ||||||
329<\/td>\n | FIGURE 18-5 – BUILDINGS ADJACENT TO ASCENDING SLOPE EXCEEDING 1:1 <\/td>\n<\/tr>\n | ||||||
330<\/td>\n | FIGURE 18-6 – BUILDING ADJACENT TO DESCENDING SLOPE EXCEEDING 1:1 FIGURE 18-7 – SWIMMING POOL ADJACENT TO DESCENDING SLOPE FIGURE 18-8 – FOOTING ELEVATION ON GRADED SITES <\/td>\n<\/tr>\n | ||||||
332<\/td>\n | SECTION 1809 – SHALLOW FOUNDATIONS <\/td>\n<\/tr>\n | ||||||
333<\/td>\n | FIGURE 18-9 – STEPPED FOUNDATIONS <\/td>\n<\/tr>\n | ||||||
334<\/td>\n | FIGURE 18-10 – FROST PENETRATION DEPTHS FIGURE 18-11 – ISOLATED FOUNDATION <\/td>\n<\/tr>\n | ||||||
335<\/td>\n | TABLE 1809.7 – PRESCRIPTIVE FOOTINGS SUPPORTING WALLS OF LIGHT-FRAME CONSTRUCTION FIGURE 18-12 – PLAIN CONCRETE FOOTING <\/td>\n<\/tr>\n | ||||||
336<\/td>\n | FIGURE 18-13 – BRICK FOOTING WALL OFFSETS <\/td>\n<\/tr>\n | ||||||
337<\/td>\n | SECTION 1810 – DEEP FOUNDATIONS <\/td>\n<\/tr>\n | ||||||
342<\/td>\n | FIGURE 18-14 – GROUP EFFECT <\/td>\n<\/tr>\n | ||||||
360<\/td>\n | FIGURE 18-15 – EFFECT OF OVERDRIVING TIMBER PILES <\/td>\n<\/tr>\n | ||||||
363<\/td>\n | FIGURE 18-16 – ENLARGED BASE PILE – CASED OR UNCASED SHAFTS <\/td>\n<\/tr>\n | ||||||
364<\/td>\n | REFERENCES BIBLIOGRAPHY <\/td>\n<\/tr>\n | ||||||
365<\/td>\n | 2006 TO 2009 CROSS-REFERENCE TABLE FOR IBC CHAPTER 18 <\/td>\n<\/tr>\n | ||||||
374<\/td>\n | 2009 TO 2006 CROSS REFERENCE TABLE FOR IBC CHAPTER 18 <\/td>\n<\/tr>\n | ||||||
385<\/td>\n | CHAPTER 19 – PART 1 – 2009 IBC CONCRETE PROVISIONS <\/td>\n<\/tr>\n | ||||||
388<\/td>\n | SECTION 1901 – GENERAL SECTION 1902 – DEFINITIONS SECTION 1903 – SPECIFICATIONS FOR TESTS AND MATERIALS SECTION 1901 – GENERAL <\/td>\n<\/tr>\n | ||||||
391<\/td>\n | TABLE 19-1 – DEFORMED REINFORCEMENT RECOGNIZED IN ACI 318 – 08 <\/td>\n<\/tr>\n | ||||||
392<\/td>\n | TABLE 19-2 – PLAIN REINFORCEMENT AND PRESTRESSING TENDONS RECOGNIZED BY ACI 318-08 TABLE 19-3 – STRUCTURAL STEEL, STEL PIPE OR TUBING RECOGNIZED BY ACI 318-08 FOR USE IN COMPOSITE MEMBER <\/td>\n<\/tr>\n | ||||||
394<\/td>\n | TABLE 19-4 – CONCRETE ADMIXTURES RECOGNIZED BY ACI 318-08 SECTION 1904 – DURABILITY REQUIREMENTS <\/td>\n<\/tr>\n | ||||||
395<\/td>\n | SECTION 1905 – CONCRETE QUALITY, MIXING AND PLACING <\/td>\n<\/tr>\n | ||||||
397<\/td>\n | EQUATION 5-1 EQUATION 5-2 EQUATION 5-1 EQUATION 5-3 <\/td>\n<\/tr>\n | ||||||
401<\/td>\n | SECTION 1906 – FORMWORK, EMBEDDED PIPES AND CONSTRUCTION JOINTS <\/td>\n<\/tr>\n | ||||||
403<\/td>\n | SECTION 1907 – DETAILS OF REINFORCEMENT TABLE 19-5 – MINIMUM DIAMETERS OF BEND IN WELDED WIRE REINFORCEMENT <\/td>\n<\/tr>\n | ||||||
404<\/td>\n | FIGURE 19-1 – STANDARD HOOKS OF ACI 318 <\/td>\n<\/tr>\n | ||||||
406<\/td>\n | FIGURE 19-2 – DIMENSIONAL TOLERANCES FOR PLACING REINFORCEMENT FIGURE 19-3 – CLEAR DISTANCE BETWEEN BARS, BAR BUNDLES OR TENDONS <\/td>\n<\/tr>\n | ||||||
407<\/td>\n | FIGURE 19-5 – SPECIAL COLUMN DETAILS <\/td>\n<\/tr>\n | ||||||
408<\/td>\n | FIGURE 19-6 – LATERAL SUPPORT OF COLUMN BARS BY HOOPS AND CROSS-TIES <\/td>\n<\/tr>\n | ||||||
409<\/td>\n | FIGURE 19-7 – TERMINATION OF COLUMN TIES FIGURE 19-8 – TERMINATION OF COLUMN SPIRALS <\/td>\n<\/tr>\n | ||||||
410<\/td>\n | FIGURE 19-9 – CLOSED TIE OR STIRRUP <\/td>\n<\/tr>\n | ||||||
411<\/td>\n | FIGURE 19-10 – REQUIREMENTS FOR STRUCTURAL INTEGRITY <\/td>\n<\/tr>\n | ||||||
412<\/td>\n | SECTION 1908 – MODIFICATIONS TO ACI 318 TABLE 19-6 – ORGANIZATION OF MODIFICATIONS TO ACI 318 IN 2006 AND 2009 IBC <\/td>\n<\/tr>\n | ||||||
413<\/td>\n | TABLE 19-7 – 2009 IBC MODIFICATIONS TO ACI 318-08 <\/td>\n<\/tr>\n | ||||||
415<\/td>\n | FIGURE 19-11 – WALL PIERS AND WALL SEGMENTS EQUATION 19-1 <\/td>\n<\/tr>\n | ||||||
416<\/td>\n | SECTION 1909 – STRUCTURAL PLAIN CONCRETE <\/td>\n<\/tr>\n | ||||||
417<\/td>\n | TABLE 19-8 – CORRELATION BETWEEN SECTION 1909 (STRUCTURAL PLAIN CONCRETE) OF THE 2009 IBC AND CHAPTER 22 OF ACI 318-08 SECTION 1910 – MINIMUM SLAB PROVISIONS <\/td>\n<\/tr>\n | ||||||
418<\/td>\n | SECTION 1911 – ANCHORAGE TO CONCRETE ALLOWABLE STRESS DESIGN <\/td>\n<\/tr>\n | ||||||
419<\/td>\n | SECTION 1912 – ANCHORAGE TO CONCRETE STRENGTH DESIGN <\/td>\n<\/tr>\n | ||||||
420<\/td>\n | SECTION 1913 – SHOTCRETE <\/td>\n<\/tr>\n | ||||||
421<\/td>\n | SECTION 1914 – REINFORCED GYPSUM CONCRETE SECTION 1915 – CONCRETE-FILLED PIPE COLUMNS <\/td>\n<\/tr>\n | ||||||
423<\/td>\n | REFERENCE <\/td>\n<\/tr>\n | ||||||
427<\/td>\n | CHAPTER 19 – PART 2 – SIGNIFICANT CHANGES FROM ACI 318-05 TO ACI 318-08 <\/td>\n<\/tr>\n | ||||||
428<\/td>\n | CHAPTER 1 – GENERAL REQUIREMENTS <\/td>\n<\/tr>\n | ||||||
429<\/td>\n | CHAPTER 2 – NOTATION AND DEFINITIONS CHAPTER 3 – MATERIALS <\/td>\n<\/tr>\n | ||||||
431<\/td>\n | CHAPTER 4 – DURABILITY REQUIREMENTS TABLE 19A-1A – EXPOSURE CATEGORY F, BASED ON FREEZING AND THAWING EXPOSURE <\/td>\n<\/tr>\n | ||||||
432<\/td>\n | TABLE 19A-1B – EXPOSURE CATEGORY S, BASED ON SULFATE EXPOSURE TABLE 19A-1C – EXPOSURE CATEGORY P, BASED ON REQUIREMENTS FOR LOW PERMEABILITY TABLE 19A-1D – EXPOSURE CATEGORY C, BASED ON REQUIREMENTS FOR CORROSION PROTECTION OF REINFORCEMENT CHAPTER 5 – CONCRETE QUALITY, MIXING AND PLACING <\/td>\n<\/tr>\n | ||||||
434<\/td>\n | CHAPTER 6 – FORMWORK, EMBEDDED PIPES AND CONSTRUCTION JOINTS CHAPTER 7 – DETAILS OF REINFORCEMENT <\/td>\n<\/tr>\n | ||||||
435<\/td>\n | CHAPTER 8 – ANALYSIS AND DESIGN – GENERAL CONSIDERATIONS <\/td>\n<\/tr>\n | ||||||
436<\/td>\n | CHAPTER 9 – STRENGTH AND SERVICEABILITY REQUIREMENTS <\/td>\n<\/tr>\n | ||||||
437<\/td>\n | CHAPTER 10 – FLEXURE AND AXIAL LOADS <\/td>\n<\/tr>\n | ||||||
438<\/td>\n | CHAPTER 11 – SHEAR AND TORSION <\/td>\n<\/tr>\n | ||||||
439<\/td>\n | FIGURE 19A-1 – STUD RAILS AS SLAB SHEAR REINFORCEMENT CHAPTER 12 – DEVELOPMENT AND SPLICES OF REINFORCEMENT <\/td>\n<\/tr>\n | ||||||
440<\/td>\n | FIGURE 19A-2 – TYPICAL ARRANGEMENTS OF HEADED SHEAR STUD REINFORCEMENT AND CRITICAL SECTIONS <\/td>\n<\/tr>\n | ||||||
441<\/td>\n | CHAPTER 13 – TWO-WAY SLAB SYSTEMS <\/td>\n<\/tr>\n | ||||||
442<\/td>\n | CHAPTER 14 – WALLS CHAPTER 15 – FOOTINGS <\/td>\n<\/tr>\n | ||||||
443<\/td>\n | CHAPTER 16 – PRECAST CONCRETE CHAPTER 17 – COMPOSITE CONCRETE FLEXURAL MEMBERS CHAPTER 18 – PRESTRESSED CONCRETE <\/td>\n<\/tr>\n | ||||||
444<\/td>\n | CHAPTER 19 – SHELLS AND FOLDED FLATE MEMBERS CHAPTER 20 – STRENGTH EVALUATION OF EXISTING STRUCTURES CHAPTER 21 – SPECIAL PROVISIONS FOR SEISMIC DESIGN <\/td>\n<\/tr>\n | ||||||
445<\/td>\n | TABLE 19A-2 – ACI 318-05 AND THE CORRESPONDING ACI 318-08 CHAPTER 21 SECTION NUMBERS <\/td>\n<\/tr>\n | ||||||
450<\/td>\n | TABLE 19A-3 – REORGANIZATION OF ACI 318-5 SECTION 21.4.4 INTO ACI 318-08 SECTION 21.6.4 <\/td>\n<\/tr>\n | ||||||
452<\/td>\n | TABLE 19A-4 – COUPLING BEAMS DETAILING REQUIREMENTS OF ACI 318-05 TABLE 19A-5 – COUPLING BEAMS DETAILING REQUIREMENTS OF ACI 318-08 <\/td>\n<\/tr>\n | ||||||
458<\/td>\n | FIGURE 19A-3 – ANCHOR REINFORCEMENT FOR TENSION <\/td>\n<\/tr>\n | ||||||
459<\/td>\n | FIGURE 19A-4 – HAIRPIN ANCHOR REINFORCEMENT FOR SHEAR <\/td>\n<\/tr>\n | ||||||
460<\/td>\n | FIGURE 19A-5 – EDGE REINFORCEMENT AND ANCHOR REINFORCEMENT FOR SHEAR <\/td>\n<\/tr>\n | ||||||
461<\/td>\n | REFERENCES <\/td>\n<\/tr>\n | ||||||
465<\/td>\n | CHAPTER 19 – PART 3 – DESIGN EXAMPLES <\/td>\n<\/tr>\n | ||||||
467<\/td>\n | EXAMPLE 1 – UNIFIED DESIGN EXAMPLE OF A DOUBLY REINFORCED RECTANGULAR BEAM SECTION FIGURE 192-1.1 – BEAM CROSS SECTION AND STRAIN PROFILE <\/td>\n<\/tr>\n | ||||||
469<\/td>\n | EXAMPLE 2 – DESIGN AXIAL LOAD-MOMENT INTERACTION DIAGRAM OF A COLUMN SECTION USING UNIFIED DESIGN FIGURE 19E-2.1 – DETAILS OF THE COLUMN SECTION <\/td>\n<\/tr>\n | ||||||
470<\/td>\n | FIGURE 19E-2.2 – STRAIN PROFILE IN THE COLUMN SECTION AT (O,M) <\/td>\n<\/tr>\n | ||||||
471<\/td>\n | FIGURE 19E-2.3 – STRAIN PROFILE IN THE COLUMN SECTION <\/td>\n<\/tr>\n | ||||||
472<\/td>\n | FIGURE 19E-2.4 – STRAIN PROFILE IN THE COLUMN SECTION <\/td>\n<\/tr>\n | ||||||
473<\/td>\n | FIGURE 19E-2.5 – STRAIN PROFILE IN THE COLUMN SECTION <\/td>\n<\/tr>\n | ||||||
474<\/td>\n | FIGURE 19E-2.6 – STRAIN PROFILE IN THE COLUMN SECTION <\/td>\n<\/tr>\n | ||||||
475<\/td>\n | FIGURE 19E-3.7 – DESIGN AND NOMINAL STRENGTH INTERACTION DIAGRAM FOR THE COLUMN SECTION <\/td>\n<\/tr>\n | ||||||
476<\/td>\n | EXAMPLE 3 – DESIGN EXAMPLE OF A 12-STORY PRECAST FRAME BUILDING USING STRONG CONNECTIONS <\/td>\n<\/tr>\n | ||||||
477<\/td>\n | FIGURE 19E-3.1 – TYPICAL FLOOR PLAN OF EXAMPLE BUILDING FIGURE 19E-3.2 – ELEVATION OF EXAMPLE BUILDING <\/td>\n<\/tr>\n | ||||||
478<\/td>\n | TABLE 19E-3.1 – DESIGN FORCES FOR THE THIRD FLOOR BEAM FORMING PART OF AN INTERIOR LONGITUDINAL FRAM OF THE BUILDING <\/td>\n<\/tr>\n | ||||||
479<\/td>\n | FIGURE 19E-3.3 – CROSS SECTION OF BEAM DESIGNED <\/td>\n<\/tr>\n | ||||||
480<\/td>\n | FIGURE 19E-3.4 – REINFORCING BAR CUTOFF <\/td>\n<\/tr>\n | ||||||
481<\/td>\n | FIGURE 19E-3.5 -CONNECTION STRENGTH <\/td>\n<\/tr>\n | ||||||
482<\/td>\n | FIGURE 19E-3.6 – BEAM-TO-BEAM STRONG CONNECTION NEAR MIDSPAN OF THIRD FLOOR VEAM FORMING PART OF INTERIOR LONGITUDINAL FRAME TABLE 19E-3.2 – DESIGN FORCES FOR THE INTERIOR COLUMN BETWEEN THE SECOND AND THIRD FLOORS, FORMING PART OF AN INTERIOR LONGITUDINAL FRAM OF THE BUILDING <\/td>\n<\/tr>\n | ||||||
484<\/td>\n | FIGURE 19E-3.7 – COLUMN TO COLUMN STRONG CONNECTION AT MIDHEIGHT OF INTERIOR COLUMN BETWEEN SECOND AND THIRD FLOORS, FORMING PART OF INTERIOR LONGITUDINAL FRAME FIGURE 19E-3.8 – BEAM SPAN BETWEEN CRITICAL SECTIONS <\/td>\n<\/tr>\n | ||||||
486<\/td>\n | FIGURE 19E-3.9 -BEAM TO CONTINUOUS COLUMN STRONG CONNECTION AT EXTERIOR SPAN OF TRANSVERSE FRAME AT SECOND FLOOR LEVEL <\/td>\n<\/tr>\n | ||||||
487<\/td>\n | EXAMPLE 4 – ALLOWABLE STRESS DESIGN CHECK ON ANCHOR BOLT <\/td>\n<\/tr>\n | ||||||
488<\/td>\n | EXAMPLE 5 – ANCHORING TO CONCRETE PER APPENDIX D OF ACI 318-08 FIGURE 19E-5.1 – FASTENER SUBJECTED TO TENSION AND SHEAR <\/td>\n<\/tr>\n | ||||||
489<\/td>\n | TABLE 19E-5.1 – STRENGTH REDUCTION FACTORS OF APPENDIX D <\/td>\n<\/tr>\n | ||||||
490<\/td>\n | FIGURE 19E-5.2 – CALCULATION OF A PER SECTION D.5.2.1 OF ACI 318-08 FIGURE 19E-5.3 – CALCULATION OF A PER SECTION D.5.2.1 OF ACI 318-08 <\/td>\n<\/tr>\n | ||||||
492<\/td>\n | FIGURE 19E-5.4 – CALCULATION OF A PER SECTION D.6.2.1 OF ACI 318-08 <\/td>\n<\/tr>\n | ||||||
494<\/td>\n | EXAMPLE 6 – RELATIVE STRENGTHS OF COLUMNS AND BEAMS AT JOINT FIGURE 19E-6.1 – ELEVATION OF EXAMPLE BUILDING <\/td>\n<\/tr>\n | ||||||
495<\/td>\n | FIGURE 19E-6.2 – REINFORCEMENT DETAILS AT THE BEAM-COLUMN JOINT FIGURE 19E-6.3 – DESIGN AND NOMINAL STRENGTH INTERACTION DIAGRAMS FOR INTERIOR COLUMNS C1 AND C2 <\/td>\n<\/tr>\n | ||||||
497<\/td>\n | EXAMPLE 7 – DESIGN OF RC SHEAR WALL PER 2009 IBC TABLE E19-7.1 – SUMMARY OF DESIGN AXIAL FORCE, SHEAR FORCE AND BENDING MOMENT FOR SHEAR WALL BETWEEN GRADE AND LEVEL 2 <\/td>\n<\/tr>\n | ||||||
498<\/td>\n | FIGURE 19E-7.1 – PLAN OF EXAMPLE BUILDING CONSIDERED FIGURE 19E-7.2 – ELEVATION OF EXAMPLE BUILDING CONSIDERED <\/td>\n<\/tr>\n | ||||||
499<\/td>\n | FIGURE 19E-7.3 – REINFORCEMENT DETAILS FOR A SHEAR WALL <\/td>\n<\/tr>\n | ||||||
500<\/td>\n | FIGURE 19E-7.4 – DESIGN AND NOMINAL STRENGTH INTERACTION DIAGRAMS FOR A SHEAR WALL EQUATION 21-7 <\/td>\n<\/tr>\n | ||||||
501<\/td>\n | EQUATION 21-8 EQUATION 21-5 <\/td>\n<\/tr>\n | ||||||
502<\/td>\n | EQUATION 21-2 <\/td>\n<\/tr>\n | ||||||
503<\/td>\n | EXAMPLE 8 – DESIGN OF RC SHEAR WALL PER 2009 IBC TABLE E19E-8.1 – SUMMARY OF DESIGN AXIAL FORCE, SHEAR FORCE AND BENDING MOMENT FOR SHEAR WALL BETWEEN GRAD AND LEVEL 2 <\/td>\n<\/tr>\n | ||||||
504<\/td>\n | FIGURE 19E-8.1 – PLAN AND ELEVATION OF EXAMPLE BUILDING <\/td>\n<\/tr>\n | ||||||
505<\/td>\n | EQUATION 21-7 <\/td>\n<\/tr>\n | ||||||
506<\/td>\n | FIGURE 19E-8.2 – DESIGN AND NOMINAL STRENGTH INTERACTION DIAGRAMS FOR THE SHEAR WALL ON COLUMN LINE 4 EQUATION 21-8 <\/td>\n<\/tr>\n | ||||||
507<\/td>\n | FIGURE 19E-8.3 – DETERMINATION OF REINFORCEMENT RATIO AT THE END OF THE SHEAR WALL <\/td>\n<\/tr>\n | ||||||
508<\/td>\n | FIGURE 19E-8.4 – REINFORCEMENT DETAILS FOR THE SHEAR WALL ON COLUMN LINE 4 <\/td>\n<\/tr>\n | ||||||
509<\/td>\n | EXAMPLE 9 – STRUT AND TIE MODEL PER APPENDIX A OF ACI 318-08 FIGURE 19E-9.1 – EXAMPLE OF DEEP BEAM <\/td>\n<\/tr>\n | ||||||
510<\/td>\n | FIGURE 19E-9.2 – STRUT AND TIE MODEL EQUATION (A-3) EQUATION (A-8) EQUATION (A-6) EQUATION (A-7) <\/td>\n<\/tr>\n | ||||||
511<\/td>\n | FIGURE 19E9.3 -DETERMINATION OF STRUT AND TIE WIDTHS <\/td>\n<\/tr>\n | ||||||
512<\/td>\n | FIGURE 19E-9.4 – DEVELOPMENT OF TIE REINFORCEMENT IN THE EXTENDED NODAL ZONE <\/td>\n<\/tr>\n | ||||||
515<\/td>\n | CHAPTER 20 – ALUMINUM <\/td>\n<\/tr>\n | ||||||
517<\/td>\n | CHAPTER 21 – MASONRY <\/td>\n<\/tr>\n | ||||||
519<\/td>\n | SECTION 2101 – GENERAL <\/td>\n<\/tr>\n | ||||||
520<\/td>\n | TABLE 21-1 – IBC CHAPTER 21-MSJC CROSS-REFERENCE <\/td>\n<\/tr>\n | ||||||
521<\/td>\n | TABLE 21-2 – AAC MASONRY SEISMIC DESIGN COEFFICIENTS AND HEIGHT LIMITATIONS <\/td>\n<\/tr>\n | ||||||
522<\/td>\n | SECTION 2102 – DEFINITIONS AND NOTATIONS SECTION 2103 – MASONRY CONSTRUCTION MATERIALS <\/td>\n<\/tr>\n | ||||||
523<\/td>\n | TABLE 21-3 – CONCRETE MASONRY UNIT SPECIFICATIONS TABLE 21-4 – CLAY OR SHALE MASONRY UNIT SPECIFICATIONS TABLE 21-1 – STONE MASONRY UNIT SPECIFICATIONS <\/td>\n<\/tr>\n | ||||||
525<\/td>\n | TABLE 21-6 – ASTM STANDARDS FOR METAL REINFORCEMENT AND ACCESSORIES <\/td>\n<\/tr>\n | ||||||
526<\/td>\n | SECTION 2104 – CONSTRUCTIOIN SECTION 2105 – QUALITY ASSURANCE <\/td>\n<\/tr>\n | ||||||
527<\/td>\n | SECTION 2106 – SEISMIC DESIGN <\/td>\n<\/tr>\n | ||||||
529<\/td>\n | TABLE 21-7 – SUMMARY OF STRUCTURAL WALL ANCHORAGE REQUIREMENTS IN 2009 IBC\/ASCE\/SEI 7-05 <\/td>\n<\/tr>\n | ||||||
531<\/td>\n | TABLE 21-8 – SHEAR WALL TYPES AND REQUIREMENTS <\/td>\n<\/tr>\n | ||||||
532<\/td>\n | SECTION 2107 – ALLOWABLE STRESS DESIGN <\/td>\n<\/tr>\n | ||||||
534<\/td>\n | SECTION 2108 – STRENGTH DESIGN OF MASONRY <\/td>\n<\/tr>\n | ||||||
537<\/td>\n | SECTION 2109 – EMPIRICAL DESIGN OF MASONRY SECTION 2110 – GLASS UNIT MASONRY <\/td>\n<\/tr>\n | ||||||
538<\/td>\n | SECTION 2111 – MASONRY FIREPLACES SECTION 2112 – MASONRY HEATERS SECTION 2113 – MASONRY CHIMNEYS <\/td>\n<\/tr>\n | ||||||
539<\/td>\n | REFERENCES BIBLIOGRAPHY <\/td>\n<\/tr>\n | ||||||
541<\/td>\n | CHAPTER 22 – STEEL <\/td>\n<\/tr>\n | ||||||
542<\/td>\n | SECTION 2201 – GENERAL SECTION 2202 – DEFINITIONS SECTION 2203 – IDENTIFICATION AND PROTECTION OF STEEL FOR STRUCTURAL PURPOSES <\/td>\n<\/tr>\n | ||||||
543<\/td>\n | SECTION 2204 – CONNECTIONS <\/td>\n<\/tr>\n | ||||||
544<\/td>\n | SECTION 2205 – STRUCTURAL STEEL <\/td>\n<\/tr>\n | ||||||
546<\/td>\n | SECTION 2206 – STEEL JOISTS <\/td>\n<\/tr>\n | ||||||
547<\/td>\n | SECTION 2207 – STEEL CABLE STRUCTURES <\/td>\n<\/tr>\n | ||||||
548<\/td>\n | SECTION 2208 – STEEL STORAGE RACKS SECTION 2209 – COLD-FORMED STEEL <\/td>\n<\/tr>\n | ||||||
551<\/td>\n | SECTION 2210 – COLD-FORMED STEEL LIGHT FRAMED CONSTRUCTION <\/td>\n<\/tr>\n | ||||||
558<\/td>\n | REFERENCES BIBLIOGRAPHY <\/td>\n<\/tr>\n | ||||||
559<\/td>\n | CHAPTER 23 – WOOD <\/td>\n<\/tr>\n | ||||||
560<\/td>\n | SECTION 2301 – GENERAL <\/td>\n<\/tr>\n | ||||||
562<\/td>\n | SECTION 2302 – DEFINITIONS <\/td>\n<\/tr>\n | ||||||
564<\/td>\n | SECTION 2303 – MINIMUM STANDARDS AND QUALITY <\/td>\n<\/tr>\n | ||||||
565<\/td>\n | FIGURE 23-1 – TYPICAL LUMBER GRADE STAMPS <\/td>\n<\/tr>\n | ||||||
566<\/td>\n | FIGURE 23-2 – FINGER-JOINT END JOINT <\/td>\n<\/tr>\n | ||||||
574<\/td>\n | SECTION 2304 – GENERAL CONSTRUCTION REQUIREMENTS FIGURE 23-3 – HEADERS OVER WALL OPENINGS <\/td>\n<\/tr>\n | ||||||
581<\/td>\n | FIGURE 23-4 – UNDER-FLOOR CLEARANCE FIGURE 23-5 – CLEARANCE BETWEEN WOOD FRAMING, WOOD SIDING AND EARTH <\/td>\n<\/tr>\n | ||||||
582<\/td>\n | FIGURE 23-6 – POSTS AND COLUMNS <\/td>\n<\/tr>\n | ||||||
584<\/td>\n | SECTION 2305 – GENERAL DESIGN REQUIREMENTS FOR LATERAL FORCE-RESISTING SYSTEMS TABLE 23-1 – 2006 IBC SECTION 2305 – 2008 AF & PA SDPWS CROSS REFERENCE <\/td>\n<\/tr>\n | ||||||
585<\/td>\n | TABLE 23-1 – CONTINUED <\/td>\n<\/tr>\n | ||||||
586<\/td>\n | TABLE 23-1 – CONTINUED <\/td>\n<\/tr>\n | ||||||
587<\/td>\n | TABLE 23-1 – CONTINUED <\/td>\n<\/tr>\n | ||||||
588<\/td>\n | SECTION 2306 – ALLOWABLE STRESS DESIGN <\/td>\n<\/tr>\n | ||||||
593<\/td>\n | TABLE 23-2 – FIBERBOARD SHEAR WALL ASPECT RATIO FACTORS FOR 8 FOOT SHEAR WALL HEIGHT <\/td>\n<\/tr>\n | ||||||
594<\/td>\n | SECTION 2307 – LOAD AND RESISTANCE FACTOR DESIGN <\/td>\n<\/tr>\n | ||||||
595<\/td>\n | SECTION 2308 – CONVENTIONAL LIGHT-FRAME CONSTRUCTION <\/td>\n<\/tr>\n | ||||||
596<\/td>\n | FIGURE 23-7 – TYPICAL FRAMING DETAILS <\/td>\n<\/tr>\n | ||||||
597<\/td>\n | FIGURE 23-8 – TYPICAL DETAILS <\/td>\n<\/tr>\n | ||||||
598<\/td>\n | FIGURE 23-9 – TYPICAL DETAILS-FLOOR OR CEILING JOISTS <\/td>\n<\/tr>\n | ||||||
599<\/td>\n | FIGURE 23-10 – TYPICAL DETAILS <\/td>\n<\/tr>\n | ||||||
600<\/td>\n | FIGURE 23-11 – PLYWOOD SUBFLOOR TYPICAL DETAILS <\/td>\n<\/tr>\n | ||||||
602<\/td>\n | FIGURE 23-12 – MAXIMUM FLOOR TO FLOOR STUD HEIGHT FIGURE 23-13 – INTERIOR BRACED WALL AT PERPENDICULAR JOIST <\/td>\n<\/tr>\n | ||||||
603<\/td>\n | FIGURE 23-14 – OFFSET AT INTERIOR BRACED WALL FIGURE 23-15 – DIAPHRAGM CONNECTION TO BRACED WALL BELOW <\/td>\n<\/tr>\n | ||||||
604<\/td>\n | FIGURE 23-16 – OFFSET AT INTERIOR BRACED WALL FIGURE 23-17 – INTERIOR BRACED WALL AT PERPENDICULAR JOIST <\/td>\n<\/tr>\n | ||||||
605<\/td>\n | FIGURE 23-18 – INTERIOR BRACED WALL AT PARALLEL JOIST FIGURE 23-19 – SUGGESTED METHOD FOR TRANSFERRING ROOF DIAPHRAGM LOADS TO BRACED WALL PANELS <\/td>\n<\/tr>\n | ||||||
606<\/td>\n | FIGURE 23-20 – ALTERNATE GABLE AND BRACE FIGURE 23-21 – WALL PARALLEL TO TRUSS BRACING DETAIL <\/td>\n<\/tr>\n | ||||||
607<\/td>\n | FIGURE 23-22 – WALL PARALLEL TO TRUSS ALTERNATE BRACING DETAIL <\/td>\n<\/tr>\n | ||||||
608<\/td>\n | FIGURE 23-23 – POST TO GIRDER CONNECTION FIGURE 23-24 – POST TO GIRDER CONNECTION <\/td>\n<\/tr>\n | ||||||
609<\/td>\n | FIGURE 23-25 – BEARING REQUIREMENTS FIGURE 23-26 – BEARING REQUIREMENTS <\/td>\n<\/tr>\n | ||||||
610<\/td>\n | FIGURE 23-27 – FRAMING DETAILS FIGURE 23-28 – CUTTING NOTCHING OR BORED HOLES <\/td>\n<\/tr>\n | ||||||
611<\/td>\n | FIGURE 23-29 – FLOOR JOISTS TIED OVER WOOD BEAM, GIRDER OR PARTITION <\/td>\n<\/tr>\n | ||||||
612<\/td>\n | FIGURE 23-20 – FRAMING AROUND OPENINGS – HEADER SPAN FIGURE 23-31 – FRAMING AROUND OPENINGS HEADER <\/td>\n<\/tr>\n | ||||||
613<\/td>\n | FIGURE 23-32 – FRAMING AROUND OPENING – HEADER SPAN FIGURE 23-33 – SUPPORTING BEARING PARTITIONS <\/td>\n<\/tr>\n | ||||||
614<\/td>\n | FIGURE 23-34 – LATERAL SUPPORT REQUIREMENTS <\/td>\n<\/tr>\n | ||||||
616<\/td>\n | FIGURE 23-35 – STUD REQUIREMENTS FIGURE 23-36 – DOUBLE TOP PLACE SPLICE <\/td>\n<\/tr>\n | ||||||
617<\/td>\n | FIGURE 23-37 – VAULTED CEILING AT GABLE END WALL <\/td>\n<\/tr>\n | ||||||
618<\/td>\n | FIGURE 23-38 – SINGLE TOP PLATE SPLICE – BEARING AND EXTERIOR WALLS <\/td>\n<\/tr>\n | ||||||
619<\/td>\n | FIGURE 23-39 – TOP PLATE LIMITATIONS BEARING <\/td>\n<\/tr>\n | ||||||
620<\/td>\n | FIGURE 23-40 – WALL BRACING PANEL FIGURE 23-41 – WALL BRACING PANEL LOCATION <\/td>\n<\/tr>\n | ||||||
621<\/td>\n | FIGURE 23-42 – BASIC COMPONENTS OF THE LATERAL BRACING SYSTEM ONE STORY <\/td>\n<\/tr>\n | ||||||
623<\/td>\n | FIGURE 23-43 – BASIC COMPONENTS OF THE LATERAL BRACING SYSTEM TWO STORIES <\/td>\n<\/tr>\n | ||||||
624<\/td>\n | FIGURE 23-44 – ALTERNATE BRACED PANELS <\/td>\n<\/tr>\n | ||||||
625<\/td>\n | FIGURE 23-45 – ALTERNATE BRACED WALL PANEL ADJACENT TO A DOOR OR WINDOW OPENING FIGURE 23-46 – HEADER OVER WALL OPENING <\/td>\n<\/tr>\n | ||||||
626<\/td>\n | FIGURE 23-47 – PIPES IN WALLS FIGURE 23-48 – CUTTING AND NOTCHING OF STUDS <\/td>\n<\/tr>\n | ||||||
627<\/td>\n | FIGURE 23-49 – BORED HOLES IN STUDS FIGURE 23-50 – ROOF FRAMING <\/td>\n<\/tr>\n | ||||||
628<\/td>\n | FIGURE 23-51 – ROOF FRAMING THRUSTS-TRUSS ACTION <\/td>\n<\/tr>\n | ||||||
629<\/td>\n | FIGURE 23-52 – CEILING AND RAFTER FRAMING <\/td>\n<\/tr>\n | ||||||
630<\/td>\n | FIGURE 23-53 – RAFTER AND PURLIN FRAMING <\/td>\n<\/tr>\n | ||||||
635<\/td>\n | REFERENCES BIBLIOGRAPHY <\/td>\n<\/tr>\n | ||||||
637<\/td>\n | APPENDIX 1 – BACKGROUND TO SEISMIC STRENGTH DESIGN LOAD COMBINATIONS <\/td>\n<\/tr>\n | ||||||
639<\/td>\n | TABLE 1-1 – SEISMIC STRENGTH DESIGN LOAD COMBINATIONS IN VARIOUS CODES AND STANDARD THROUGH THE 2009 IBC <\/td>\n<\/tr>\n | ||||||
641<\/td>\n | TABLE 1-2 – A COMPARISON OF SEISMIC STRENGTH DESIGN LOAD COMBINATIONS OF ASCE 7-95 ( 1997 UBC) AND ACI 318-95 <\/td>\n<\/tr>\n | ||||||
642<\/td>\n | TABLE 1-2 – A COMPARISON OF SEISMIC STRENGTH DESIGN LOAD COMBINATIONS OF ASCE 7-95 (1997 UBC) AND ACI 318-95 (CONT’D) REFERENCES <\/td>\n<\/tr>\n | ||||||
643<\/td>\n | APPENDIX 2 – BACKGROUND TO THE WIND LOAD PROVISIONS OF MODEL CODES AND STANDARDS <\/td>\n<\/tr>\n | ||||||
646<\/td>\n | TABLE 2-1 – SURFACE ROUGHNESS CATEGORIES OF ASCE 7-02 AND 7-05 TABLE 2-2 – EXPOSURE CATEGORIES OF ASCE 7-02 AND 7-05 <\/td>\n<\/tr>\n | ||||||
648<\/td>\n | FIGURE 2-1 – FLUCTUATIONS OF WIND VELOCITY FIGURE 2-2 – RELATIONSHIP BETWEEN HOURLY MEAN VELOCITY OF WIND AND VELOCITY OF WIND AVERAGED OVER A SHORTER PERIOD, T <\/td>\n<\/tr>\n | ||||||
653<\/td>\n | FIGURE 2 -3 – PLAN OF EXAMPLE CONCRETE BUILDING <\/td>\n<\/tr>\n | ||||||
654<\/td>\n | FIGURE 2-4 – ELEVATION OF EXAMPLE CONCRETE BUILDING <\/td>\n<\/tr>\n | ||||||
655<\/td>\n | TABLE 2-3 – COMPARISON OF COMPUTED WIND FORCES FOR EXAMPLE BUILDING <\/td>\n<\/tr>\n | ||||||
656<\/td>\n | REFERENCES <\/td>\n<\/tr>\n | ||||||
657<\/td>\n | APPENDIX 3 – BACK GROUND TO SEISMIC GROUND MOTION IN SEISMIC DESIGN <\/td>\n<\/tr>\n | ||||||
659<\/td>\n | FIGURE 3-1 – SCHEMATIC REPRESENTATION OF EFFECTIVE PEAK ACCELERATION AND EFFECTIVE PEAK VELOCITY <\/td>\n<\/tr>\n | ||||||
660<\/td>\n | TABLE 3-1 – RELATIONSHIP BETWEEN EPV AND A <\/td>\n<\/tr>\n | ||||||
664<\/td>\n | FIGURE 3-2 – HAZARD CURVES FOR SELECTED CITIES FIGURE 3-3 – COMPARISON OF EARTHQUAKES WITH LONG AND SHORT RETURN PERIODS IN COASTAL CALIFORNIA AND EASTERN UNITED STATES <\/td>\n<\/tr>\n | ||||||
667<\/td>\n | FIGURE 3-4 – DEFINITION OF DESIGN EARTHQUAKE SCHEMATIC <\/td>\n<\/tr>\n | ||||||
669<\/td>\n | REFERENCES <\/td>\n<\/tr>\n | ||||||
671<\/td>\n | APPENDIX 4 – CONSIDERATION OF SITE SOIL CHARACTERISTICS <\/td>\n<\/tr>\n | ||||||
672<\/td>\n | FIGURE 4 -1 – SITE COEFFICIENT S, OF 1985 AND EARLIER UBC EDITIONS <\/td>\n<\/tr>\n | ||||||
674<\/td>\n | FIGURE 4 -2 – TWO FACTOR APPROAD TO LOCAL SITE RESPONSE <\/td>\n<\/tr>\n | ||||||
677<\/td>\n | REFERENCES <\/td>\n<\/tr>\n | ||||||
679<\/td>\n | METRIC CONVERSION TABLE <\/td>\n<\/tr>\n | ||||||
687<\/td>\n | INDEX <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" 2009 IBC Handbook: Structural Provisions<\/b><\/p>\n |