{"id":211965,"date":"2024-10-19T13:42:56","date_gmt":"2024-10-19T13:42:56","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/icc-ibc-seaoc-ssdm-v1-2018\/"},"modified":"2024-10-25T06:31:41","modified_gmt":"2024-10-25T06:31:41","slug":"icc-ibc-seaoc-ssdm-v1-2018","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/icc\/icc-ibc-seaoc-ssdm-v1-2018\/","title":{"rendered":"ICC IBC SEAOC SSDM V1 2018"},"content":{"rendered":"

2018 IBC\u00ae SEAOC Structural\/Seismic Design Manual, Volume 1: Code Application Examples This series provides a step-by-step approach to applying the structural provisions of the 2018 International Building Code\u00ae and referenced standards. Volume 1 contains code application examples based on the IBC and ASCE 7-16, including determination of seismic irregularities, combinations of structural systems, determination of drift, support of discontinuous systems and analysis of seismic forces applied to equipment, nonstructural elements, and nonbuilding structures. Features: Sample structures ASCE 7 equations applied to examples Code and standard references for each example Volume 1 examples includes: Nonstructural Component Seismic Demands Based on Building Accelerations Redundancy Factor for Concrete Core Shear Wall Building Combined Loading for SCBF Column Supporting Mezzanine An excellent reference and study guide for the NCEES Structural Exam, this manual is an invaluable resource for civil and structural engineers, architects, academics, and students.<\/p>\n

PDF Catalog<\/h4>\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
PDF Pages<\/th>\nPDF Title<\/th>\n<\/tr>\n
1<\/td>\n2018 IBC\u00ae SEAOC STRUCTURAL\/SEISMIC DESIGN MANUAL : VOLUME 1 CODE APPLICATION EXAMPLES <\/td>\n<\/tr>\n
2<\/td>\n2018 IBC\u00ae SEAOC STRUCTURAL\/SEISMIC DESIGN MANUAL : VOLUME 1 CODE APPLICATION EXAMPLES TITLE PAGE <\/td>\n<\/tr>\n
3<\/td>\nCOPYRIGHT
PUBLISHER
EDITOR
DISCLAIMER <\/td>\n<\/tr>\n
4<\/td>\nSUGGESTIONS FOR IMPROVEMENT
ERRATA NOTIFICATION <\/td>\n<\/tr>\n
6<\/td>\nTABLE OF CONTENTS <\/td>\n<\/tr>\n
12<\/td>\nPREFACE TO THE 2018 IBC SEAOC STRUCTURAL\/SEISMIC DESIGN MANUAL <\/td>\n<\/tr>\n
14<\/td>\nPREFACE TO VOLUME 1 <\/td>\n<\/tr>\n
16<\/td>\nACKNOWLEDGEMENTS <\/td>\n<\/tr>\n
18<\/td>\nREFERENCES <\/td>\n<\/tr>\n
20<\/td>\nHOW TO USE THIS DOCUMENT <\/td>\n<\/tr>\n
22<\/td>\nDESIGN EXAMPLE 1 DESIGN SPECTRAL RESPONSE ACCELERATION PARAMETERS <\/td>\n<\/tr>\n
23<\/td>\n1. MAPPED MCER SPECTRAL RESPONSE ACCELERATION PARAMETERS SS AND S1
2. SITE COEFFICIENTS Fa AND Fv AND MCER SPECTRAL RESPONSE ACCELERATION PARAMETERS SMS AND SM1 ADJUSTED FOR SITE CLASS EFFECTS
EQUATION 11.4-1
EQUATION 11.4-2
3. DESIGN SPECTRAL RESPONSE ACCELERATION PARAMETERS SDS AND SD1
EQUATION 11.4-3
EQUATION 11.4-4
COMMENTARY <\/td>\n<\/tr>\n
24<\/td>\nDESIGN EXAMPLE 2 DESIGN RESPONSE SPECTRUM
1. DESIGN RESPONSE SPECTRUM <\/td>\n<\/tr>\n
25<\/td>\nEQUATION 11.4-5
EQUATION 11.4-6
EQUATION 11.4-7 <\/td>\n<\/tr>\n
26<\/td>\nFIGURE 2-1 DESIGN RESPONSE SPECTRUM PER SECTION 11.4.6 <\/td>\n<\/tr>\n
27<\/td>\nDESIGN EXAMPLE 3 SITE-SPECIFIC GROUND MOTION PROCEDURES
EQUATION 11.4-1
EQUATION 11.4-2
EQUATION 11.4-3
EQUATION 11.4-4 <\/td>\n<\/tr>\n
28<\/td>\n1. DESIGN RESPONSE SPECTRUM PER SECTION 11.4.6 (USING MAP-BASED ACCELERATION PARAMETERS) <\/td>\n<\/tr>\n
29<\/td>\n2. SCALED SITE-SPECIFIC DESIGN RESPONSE SPECTRUM PER SECTION 21.3 <\/td>\n<\/tr>\n
30<\/td>\nFIGURE 3-1 SCALING OF DESIGN SITE-SPECIFIC RESPONSE SPECTRUM <\/td>\n<\/tr>\n
31<\/td>\n3. DESIGN SPECTRAL RESPONSE ACCELERATION PARAMETERS SDS, SD1, SMS, AND SM1 PER SECTION 21.4
COMMENTARY <\/td>\n<\/tr>\n
32<\/td>\nDESIGN EXAMPLE 4 IMPORTANCE FACTOR AND RISK CATEGORY SEISMIC DESIGN CATEGORY
1. RISK CATEGORY AND SEISMIC IMPORTANCE FACTOR <\/td>\n<\/tr>\n
33<\/td>\n2. SEISMIC DESIGN CATEGORY <\/td>\n<\/tr>\n
34<\/td>\nDESIGN EXAMPLE 5 CONTINUOUS LOAD PATH INTERCONNECTION CONNECTION TO SUPPORTS
FIGURE 5-1 <\/td>\n<\/tr>\n
35<\/td>\n1. HORIZONTAL CONNECTION FORCE BETWEEN THE TWO BEAMS
2. HORIZONTAL CONNECTION FORCE BETWEEN THE BEAM AND SUPPORT “P” <\/td>\n<\/tr>\n
36<\/td>\nDESIGN EXAMPLE 6 COMBINATION OF FRAMING SYSTEMS IN DIFFERENT DIRECTIONS
FIGURE 6-1 TYPICAL FLOOR PLAN <\/td>\n<\/tr>\n
37<\/td>\n1. VALUE FOR R, Cd, AND \u03a90 FOR EACH DIRECTION
COMMENTARY <\/td>\n<\/tr>\n
38<\/td>\nDESIGN EXAMPLE 7 COMBINATION OF FRAMING SYSTEMS IN THE SAME DIRECTION: VERTICAL
1. STEEL SPECIAL CONCENTRICALLY BRACED FRAME (SCBF) OVER STEEL SPECIAL MOMENT FRAME (SMF) <\/td>\n<\/tr>\n
39<\/td>\nFIGURE 7-1
2. SPECIAL REINFORCED CONCRETE SHEAR WALL (SRCSW) OVER SPECIAL REINFORCED CONCRETE MOMENT FRAMES (SRCMF) <\/td>\n<\/tr>\n
40<\/td>\nFIGURE 7-2
3. CONCRETE SRCMG OVER A CONCRETE BUILDING FRAME SHEAR WALL SYSTEM <\/td>\n<\/tr>\n
41<\/td>\nFIGURE 7-3 <\/td>\n<\/tr>\n
42<\/td>\nFIGURE 7-4 <\/td>\n<\/tr>\n
43<\/td>\nFIGURE 7-5
COMMENTARY <\/td>\n<\/tr>\n
44<\/td>\nDESIGN EXAMPLE 8 COMBINATION OF FRAMING SYSTEMS IN THE SAME DIRECTION: HORIZONTAL
FIGURE 8-1 <\/td>\n<\/tr>\n
45<\/td>\n1. VALUE FOR R IN THE EAST-WEST DIRECTION FOR A RIGID DIAPHRAGM
2. VALUE FOR R IN THE EAST-WEST DIRECTION FOR A FLEXIBLE DIAPHRAGM
COMMENTARY <\/td>\n<\/tr>\n
46<\/td>\nDESIGN EXAMPLE 9 COMBINATION FRAMING DETAILING REQUIREMENTS
FIGURE 9-1 <\/td>\n<\/tr>\n
47<\/td>\n1. SEISMIC AXIAL FORCE FOR THE DESIGN OF THE CONCRETE COLUMN\/PILASTER <\/td>\n<\/tr>\n
48<\/td>\n2. LOCATIONS AND TYPES OF SPLICES FOR THE VERTICAL REINFORCING
3. AMOUNT AND SPACING OF REQUIRED CONFINEMENT REINFORCING
4. SEISMIC FORCE FOR THE DESIGN OF THE CONNECTION BETWEEN THE TWO SYSTEMS
COMMENTARY <\/td>\n<\/tr>\n
49<\/td>\nDESIGN EXAMPLE 10 DUAL SYSTEMS <\/td>\n<\/tr>\n
50<\/td>\nFIGURE 10-1
1. DESIGN CRITERIA FOR THE MOMENT FRAME SYSTEM <\/td>\n<\/tr>\n
51<\/td>\n2. SEISMIC DESIGN MOMENT AT POINT A
COMMENTARY <\/td>\n<\/tr>\n
52<\/td>\nDESIGN EXAMPLE 11 INTRODUCTION TO HORIZONTAL IRREGULARITIES <\/td>\n<\/tr>\n
53<\/td>\nDESIGN EXAMPLE 12 HORIZONTAL IRREGULARITY TYPE 1A AND TYPE 1B
FIGURE 12-1 <\/td>\n<\/tr>\n
54<\/td>\n1. DETERMINE IF A TYPE 1A OR TYPE 1B TORSIONAL IRREGULARITY EXISTS AT THE SECOND STORY <\/td>\n<\/tr>\n
55<\/td>\n2. COMPUTE AMPLIFICATION FACTOR AX FOR LEVEL 2
EQUATION 12.8-14
COMMENTARY <\/td>\n<\/tr>\n
57<\/td>\nDESIGN EXAMPLE 13 HORIZONTAL IRREGULARITY TYPE 2
FIGURE 13-1
1. DETERMINE IF A TYPE 2 RE-ENTRANT CORNER IRREGULARITY EXISTS <\/td>\n<\/tr>\n
58<\/td>\nCOMMENTARY <\/td>\n<\/tr>\n
59<\/td>\nDESIGN EXAMPLE 14 HORIZONTAL IRREGULARITY TYPE 3
FIGURE 14-1
1. DETERMINE IF A TYPE 3 DIAPHRAGM DISCONTINUITY IRREGULARITY EXISTS AT THE SECOND-FLOOR LEVEL <\/td>\n<\/tr>\n
60<\/td>\nFIGURE 14-2 <\/td>\n<\/tr>\n
61<\/td>\nDESIGN EXAMPLE 15 HORIZONTAL IRREGULARITY TYPE 4
FIGURE 15-1 <\/td>\n<\/tr>\n
62<\/td>\n1. DETERMINE IF A TYPE 4 OUT-OF-PLANE OFFSET IRREGULARITY EXISTS BETWEEN THE FIRST AND SECOND STORIES
COMMENTARY <\/td>\n<\/tr>\n
63<\/td>\nDESIGN EXAMPLE 16 HORIZONTAL IRREGULARITY TYPE 5
FIGURE 16-1
1. DETERMINE IF A TYPE 5 NONPARALLEL SYSTEM IRREGULARITY EXISTS <\/td>\n<\/tr>\n
64<\/td>\nDESIGN EXAMPLE 17 INTRODUCTION TO VERTICAL IRREGULARITIES <\/td>\n<\/tr>\n
65<\/td>\nDESIGN EXAMPLE 18 VERTICAL IRREGULARITY TYPE 1A AND TYPE B
FIGURE 18-1
1. DETERMINE IF A TYPE 1A OR TYPE 1B VERTICAL IRREGULARITY EXISTS IN THE FIRST STORY <\/td>\n<\/tr>\n
68<\/td>\nCOMMENTARY
EQUATION 12.8-15
TABLE 18-1 SOFT-STORY STATUS 1A
TABLE 18-2 SOFT-STORY STATUS 1B <\/td>\n<\/tr>\n
69<\/td>\nDESIGN EXAMPLE 19 VERTICAL IRREGULARITY TYPE 2
FIGURE 19-1
1. DETERMINE IF A TYPE 2 VERTICAL IRREGULARITY EXISTS <\/td>\n<\/tr>\n
70<\/td>\nCOMMENTARY <\/td>\n<\/tr>\n
71<\/td>\nDESIGN EXAMPLE 20 VERTICAL IRREGULARITY TYPE 3
FIGURE 20-1
1. DETERMINE IF A TYPE 3 VERTICAL IRREGULARITY EXISTS <\/td>\n<\/tr>\n
72<\/td>\nCOMMENTARY <\/td>\n<\/tr>\n
73<\/td>\nDESIGN EXAMPLE 21 VERTICAL IRREGULARITY TYPE 4
FIGURE 21-1
1. DETERMINE IF A TYPE 4 VERTICAL IRREGULARITY EXISTS <\/td>\n<\/tr>\n
74<\/td>\nCOMMENTARY <\/td>\n<\/tr>\n
75<\/td>\nDESIGN EXAMPLE 22 VERTICAL IRREGULARITY TYPE 5A\/5B CONCRETE WALL
FIGURE 22-1
1. DETERMINE IF A TYPE 5A OR TYPE 5B VERTICAL IRREGULARITY EXISTS <\/td>\n<\/tr>\n
76<\/td>\nCOMMENTARY <\/td>\n<\/tr>\n
77<\/td>\nDESIGN EXAMPLE 23 VERTICAL IRREGULARITY TYPE 5A\/5B STEEL MOMENT FRAME
FIGURE 23-1 <\/td>\n<\/tr>\n
78<\/td>\nDISCUSSION
1. DETERMINE FIRST-STORY LATERAL STRENGTH <\/td>\n<\/tr>\n
79<\/td>\n2. DETERMINE SECOND-STORY LATERAL STRENGTH <\/td>\n<\/tr>\n
80<\/td>\n3. DETERMINE IF A TYPE 5A OR TYPE 5B VERTICAL IRREGULARITY EXISTS AT THE FIRST STORY <\/td>\n<\/tr>\n
81<\/td>\nDESIGN EXAMPLE 24 ELEMENTS SUPPORTING DISCONTINUOUS WALLS OR FRAMES <\/td>\n<\/tr>\n
82<\/td>\nFIGURE 24-1
1. APPLICABLE LOAD COMBINATIONS AND REQUIRED STRENGTH FOR COLUMN C <\/td>\n<\/tr>\n
83<\/td>\nCOMMENTARY
FIGURE 24-2 <\/td>\n<\/tr>\n
84<\/td>\nFIGURE 24-3
FIGURE 24-4 <\/td>\n<\/tr>\n
85<\/td>\nDESIGN EXAMPLE 25 ELEMENTS SUPPORTING DISCONTINUOS WALLS OR FRAMES LIGHT FRAME
FIGURE 25-1 <\/td>\n<\/tr>\n
86<\/td>\n1. APPLICABLE LOAD COMBINATIONS AND REQUIRED STRENGTH FOR COLUMN <\/td>\n<\/tr>\n
87<\/td>\nCOMMENTARY <\/td>\n<\/tr>\n
88<\/td>\nDESIGN EXAMPLE 26 REDUNDANCY FACTOR \u03c1 <\/td>\n<\/tr>\n
89<\/td>\nFIGURE 26-1 <\/td>\n<\/tr>\n
91<\/td>\nFIGURE 26-2 <\/td>\n<\/tr>\n
92<\/td>\nFIGURE 26-3 <\/td>\n<\/tr>\n
93<\/td>\nDESIGN EXAMPLE 27 SEISMIC LOAD COMBINATIONS: STRENGTH DESIGN
FIGURE 27-1 <\/td>\n<\/tr>\n
94<\/td>\n1. STRENGTH DESIGN SEISMIC LOAD COMBINATIONS
2. STRENGTH DESIGN MOMENTS AT BEAM END A FOR SEISMIC LOAD COMBINATIONS <\/td>\n<\/tr>\n
95<\/td>\n3. STRENGTH DESIGN INTERACTION PAIRS OF AXIAL LOAD AND MOMENT FOR THE DESIGN OF COLUMN SECTION AT C FOR SEISMIC LOAD COMBINATIONS
COMMENTARY <\/td>\n<\/tr>\n
96<\/td>\nDESIGN EXAMPLE 28 MINIMUM UPWARD FORCE FOR HORIZONTAL CANTILEVERS FOR SDC D THROUGH F
FIGURE 28-1 <\/td>\n<\/tr>\n
97<\/td>\n1. APPLICABLE STRENGTH DESIGN LOAD COMBINATIONS AND RESULTING DESIGN FORCES ON BEAM <\/td>\n<\/tr>\n
98<\/td>\n2. BEAM END REACTIONS FOR GOVERNING LOAD COMBINATION(S)
FIGURE 28-2 <\/td>\n<\/tr>\n
99<\/td>\nDESIGN EXAMPLE 29 INTERACTION EFFECTS
FIGURE 29-1 <\/td>\n<\/tr>\n
100<\/td>\n1. DEFORMATION COMPATIBILITY CRITERIA
2. APPROXIMATE COLUMN SHEAR
COMMENTARY <\/td>\n<\/tr>\n
101<\/td>\nDESIGN EXAMPLE 30 SEISMIC BASE SHEAR
FIGURE 30-1 <\/td>\n<\/tr>\n
102<\/td>\n1. PERIOD OF THE STRUCTURE
EQUATION 12.8-7
2. SEISMIC RESPONSE COEFFICIENT CS
EQUATION 12.8-2
EQUATION 12.8-3
EQUATION 12.8-4
EQUATOIN 12.8-5
EQUATION 12.8-6 <\/td>\n<\/tr>\n
103<\/td>\n3. SEISMIC BASE SHEAR
EQUATION 12.8-1
COMMENTARY
EQUATION 12.8-6 <\/td>\n<\/tr>\n
104<\/td>\nDESIGN EXAMPLE 31 APPROXIMATE FUNDAMENTAL PERIOD
EQUATION 12.8-7
1. STEEL SPECIAL MOMENT FRAME (SMF) STRUCTURE <\/td>\n<\/tr>\n
105<\/td>\nFIGURE 31-1
2. CONCRETE SPECIAL MOMENT FRAME (SMF) STRUCTURE
FIGURE 31-2 <\/td>\n<\/tr>\n
106<\/td>\n3. STEEL ECCENTRICALLY BRACED FRAME (EBF) STRUCTURE
FIGURE 31-3
4. MASONRY SHEAR WALL BUILDING
FIGURE 31-4 <\/td>\n<\/tr>\n
107<\/td>\n5. CONCRETE SHEAR WALL BUILDING (TILT-UP CONSTRUCTION)
FIGURE 31-5
COMMENTARY <\/td>\n<\/tr>\n
108<\/td>\nDESIGN EXAMPLE 32 VERTICAL DISTRIBUTION OF SEISMIC FORCES
FIGURE 32-1 <\/td>\n<\/tr>\n
109<\/td>\n1. SEISMIC BASE SHEAR, V
EQUATION 12.8-1
2. VERTICAL DISTRIBUTION EXPONENT K
FIGURE 32-2 <\/td>\n<\/tr>\n
110<\/td>\n3. VERTICAL DISTRIBUTION FACTOR CVX AND LATERAL SEISMIC FORCE FX AT EACH LEVEL
EQUATION 12.8-11
EQUATION 12.8-12 <\/td>\n<\/tr>\n
111<\/td>\nCOMMENTARY <\/td>\n<\/tr>\n
112<\/td>\nDESIGN EXAMPLE 33 HORIZONTAL DISTRIBUTION OF FORCES
FIGURE 33-1 <\/td>\n<\/tr>\n
113<\/td>\n1. ECCENTRICITY AND RIGIDITY PROPERTIES <\/td>\n<\/tr>\n
114<\/td>\nFIGURE 33-2
2. DIRECT SHEAR IN WALLS A AND B
3. PLAN IRREGULARITY REQUIREMENTS <\/td>\n<\/tr>\n
115<\/td>\n4. TORSIONAL SHEARS IN WALLS A AND B <\/td>\n<\/tr>\n
116<\/td>\n5. TOTAL SHEAR IN WALLS A AND B
COMMENTARY <\/td>\n<\/tr>\n
117<\/td>\nDESIGN EXAMPLE 34 AMPLIFICATION OF ACCIDENTAL TORSION
FIGURE 34-1 <\/td>\n<\/tr>\n
118<\/td>\n1. MAXIMUM FORCE IN SHEAR WALLS A AND B FOR THE SECOND STORY <\/td>\n<\/tr>\n
119<\/td>\n2. CHECK IF TORSIONAL IRREGULARITY EXISTS FOR THE SECOND STORY
3. DETERMINE AMPLIFICATION FACTOR AX FOR THE SECOND STORY
EQUATION 12.8-14
4. NEW ACCIDENTAL TORSION ECCENTRICITY FOR THE SECOND STORY <\/td>\n<\/tr>\n
120<\/td>\nCOMMENTARY <\/td>\n<\/tr>\n
121<\/td>\nDESIGN EXAMPLE 35 STORY DRIFT
FIGURE 35-1 <\/td>\n<\/tr>\n
122<\/td>\nFIGURE 35-2 <\/td>\n<\/tr>\n
123<\/td>\n1. MAXIMUM INELASTIC RESPONSE DEFLECTION \ua77dX FOR THE CENTER OF MASS AT EACH FLOOR
EQUATION 12.8-15
2. DESIGN STORY DRIFT \u0394 IN STORY 3 DUE TO \ua77dX
3. CHECK STORY 3 FOR STORY DRIFT LIMIT
COMMENTARY <\/td>\n<\/tr>\n
124<\/td>\nDESIGN EXAMPLE 36 P-DELTA EFFECTS
FIGURE 36-1 <\/td>\n<\/tr>\n
125<\/td>\n1. INITIAL DESIGN STORY DRIFT \u0394 IN FIRST STORY
EQUATION 12.8-15
2. P-DELTA CRITERIA FOR THE BUILDING
EQUATION 12.8-16 <\/td>\n<\/tr>\n
126<\/td>\n3. CHECK P-DELTA REQUIREMENTS FOR THE FIRST STORY
EQUATION 12.8-17 <\/td>\n<\/tr>\n
127<\/td>\n4. FINAL DESIGN STORY DRIFT AND STORY SHEAR IN FIRST STORY
5. CHECK FOR STORY DRIFT COMPLIANCE IN THE FIRST STORY
COMMENTARY <\/td>\n<\/tr>\n
129<\/td>\nDESIGN EXAMPLE 37 SCALING DESIGN VALUES OF COMBINED RESPONSE <\/td>\n<\/tr>\n
130<\/td>\nTABLE 37-1
1. COMBINED MODAL RESPONSE DESIGN BASE SHEAR, VT <\/td>\n<\/tr>\n
131<\/td>\n2. SCALING OF SEISMIC FORCES FROM MODAL ANALYSIS
3. SCALING OF DRIFTS FROM MODAL ANALYSIS <\/td>\n<\/tr>\n
132<\/td>\nCOMMENTARY <\/td>\n<\/tr>\n
133<\/td>\nDESIGN EXAMPLE 38 DIAPHRAGM DESIGN FORCES, FPX: ONE-STORY BUILDING
FIGURE 38-1 <\/td>\n<\/tr>\n
134<\/td>\nFIGURE 38-2
1. DIAPHRAGM DESIGN FORCE AT THE ROOF
EQUATION 12.10-1
EQUATOIN 12.10-2
EQUATION 12.10-3 <\/td>\n<\/tr>\n
135<\/td>\nCOMMENTARY
EQUATION 12.10-1
EQUATION 12.8-11
EQUATION 12.8-12 <\/td>\n<\/tr>\n
136<\/td>\nEQUATION 12.8-1
EQUATION 12.8-2 <\/td>\n<\/tr>\n
137<\/td>\nDESIGN EXAMPLE 39 DIAPHRAGM DESIGN FORCES, FPX: MULTISTORY BUILDING
FIGURE 39-1 <\/td>\n<\/tr>\n
138<\/td>\nTABLE 39-1
1. DIAPHRAGM FORCE AT LEVEL 7
EQUATION 12.10-1
EQUATION 12.10-2
EQUATOIN 12.10-3 <\/td>\n<\/tr>\n
139<\/td>\nTABLE 39-2 <\/td>\n<\/tr>\n
140<\/td>\nDESIGN EXAMPLE 40 COLLECTOR ELEMENTS\u2014FLEXIBLE DIAPHRAGM
EQUATION 12.8-2 <\/td>\n<\/tr>\n
141<\/td>\nFIGURE 40-1
FIGURE 40-2
1. DIAPHRAGM DESIGN FORCE TRIBUTARY TO COLLECTOR CONNECTION TO WALL
EQUATION 12.10-1 <\/td>\n<\/tr>\n
142<\/td>\nEQUATION 12.10-2
EQUATION 12.10-3
2. COLLECTOR DESIGN FORCE AT CONNECTION TO WALL <\/td>\n<\/tr>\n
143<\/td>\nCOMMENTARY <\/td>\n<\/tr>\n
144<\/td>\nDESIGN EXAMPLE 41 OUT-OF-PLANE SEISMIC FORCES\u2014ONE-STORY STRUCTURAL WALL
FIGURE 41-1 <\/td>\n<\/tr>\n
145<\/td>\n1. OUT-OF-PLANE FORCE FOR WALL-PANEL DESIGN <\/td>\n<\/tr>\n
146<\/td>\n2. SHEAR AND MOMENT DIAGRAMS FOR WALL-PANEL DESIGN
FIGURE 41-2
3. LOADING, SHEAR, AND MOMENT DIAGRAMS FOR PARAPET DESIGN <\/td>\n<\/tr>\n
147<\/td>\nEQUATION 13.3-1
EQUATION 13.3-2
EQUATION 13.3-3
FIGURE 41-3
COMMENTARY <\/td>\n<\/tr>\n
148<\/td>\nDESIGN EXAMPLE 42 OUT-OF-PLANE SEISMIC FORCES\u2014TWO STORY STRUCTURAL WALL
FIGURE 42-1 <\/td>\n<\/tr>\n
149<\/td>\n1. OUT-OF-PLANE FORCES FOR WALL-PANEL DESIGN
FIGURE 42-2 <\/td>\n<\/tr>\n
150<\/td>\n2. OUT-OF-PLANE FORCES FOR WALL-ANCHORAGE DESIGN
EQUATION 12.11-1
EQUATION 12.11-2
EQUATION 12.11-1
EQUATION 12.11-2 <\/td>\n<\/tr>\n
151<\/td>\nCOMMENTARY <\/td>\n<\/tr>\n
152<\/td>\nDESIGN EXAMPLE 43 WALL ANCHORAGE TO FLEXIBLE DIAPHRAGMS
FIGURE 43-1 <\/td>\n<\/tr>\n
153<\/td>\n1. DESIGN FORCE FOR PREMANUFACTURED STEEL ANCHORAGE ELEMENT <\/td>\n<\/tr>\n
154<\/td>\n2. DESIGN FORCE FOR WOOD SUBPURLIN TIE ELEMENT
COMMENTARY
TABLE 43-1 <\/td>\n<\/tr>\n
155<\/td>\nDESIGN EXAMPLE 44 STORY DRIFT LIMIT
FIGURE 44-1 <\/td>\n<\/tr>\n
156<\/td>\n1. DESIGN SEISMIC DEFLECTIONS \ua77dX
EQUATION 12.8-15
2. COMPARE DESIGN STORY DRIFTS WIHT THE LIMIT VALUE <\/td>\n<\/tr>\n
157<\/td>\nTABLE 44-1
COMMENTARY <\/td>\n<\/tr>\n
158<\/td>\nDESIGN EXAMPLE 45 STRUCTURAL SEPARATION
FIGURE 45-1 <\/td>\n<\/tr>\n
159<\/td>\n1. SEPARATION WITHIN THE SAME BUILDING
EQUATION 12.12-2
EQUATION 12.12-1
EQUATION 12.8-15 <\/td>\n<\/tr>\n
160<\/td>\n2. SEPARATION FROM AN ADJACENT BUILDING ON THE SAME PROPERTY
3. SEPARATION FROM AN ADJACENT BUILDING ON ANOTHER PROPERTY
EQUATION 12.8-15 <\/td>\n<\/tr>\n
161<\/td>\nDESIGN EXAMPLE 46 DEFORMATION COMPATIBILITY FOR SEISMIC DESIGN CATEGORIES D THROUGH F
FIGURE 46-1 <\/td>\n<\/tr>\n
162<\/td>\nFIGURE 46-2
1. MOMNET IN GRAVITY COLUMN
EQUATION 12.8-15
EQUATION ACI 18.14.2.1 <\/td>\n<\/tr>\n
163<\/td>\n2. DETAILING REQUIREMENTS FOR GRAVITY COLUMN
COMMENTARY <\/td>\n<\/tr>\n
164<\/td>\nDESIGN EXAMPLE 47 FOUNDATION DESIGN <\/td>\n<\/tr>\n
165<\/td>\nFIGURE 47-1
1. REQUIRED FOOTING SIZE USING IBC ASD BASIC LOAD CASES
EQUATION 16-9
EQUATOIN 16-12
EQUATION 16-14
EQUATION 16-16 <\/td>\n<\/tr>\n
166<\/td>\nMODIFIED EQUATION 16.-12
MODIFIED EQUATION 16.-14
MODIFIED EQUATION 16.-16
EQUATION 12.4-1
EQUATION 12.4-2 <\/td>\n<\/tr>\n
168<\/td>\n2. REQUIRED FOOTING SIZE USING IBC ALTERNATIVE ASD BASIC LOAD CASES
EQUATION 16-17
EQUATION 16-21
EQUATION 16-22 <\/td>\n<\/tr>\n
169<\/td>\n3. SOIL PRESSURE REACTIONS FOR STRENGTH DESIGN OF FOOTING
EQUATION 16-5 <\/td>\n<\/tr>\n
170<\/td>\nEQUATION 16-7
COMMENTARY <\/td>\n<\/tr>\n
171<\/td>\nDESIGN EXAMPLE 48 FOUNDATION TIES
FIGURE 48-1 <\/td>\n<\/tr>\n
172<\/td>\nFIGURE 48-2
1. INTERCONNECTION REQUIREMENTS <\/td>\n<\/tr>\n
173<\/td>\n2. INTERCONNECTION FORCE BETWEEN PILE CAPS 3 AND 10
EQUATION 16-2
EQUATION 16-5
EQUATION 16-9
EQUATION 16-11
EQUATION 16-12
EQUATION 16-14
3. REQUIRED “TIE” RESTRAINT BETWEEN PILE CAPS 3 AND 10 <\/td>\n<\/tr>\n
174<\/td>\nFIGURE 48-3
FIGURE 48-4
COMMENTARY <\/td>\n<\/tr>\n
175<\/td>\nDESIGN EXAMPLE 49 SIMPLIFIED ALTERNATIVE STRUCTURAL DESIGN CRITERIA FOR SIMPLE BEARING WALL OR BUILDING FRAME SYSTEMS
FIGURE 49-1 <\/td>\n<\/tr>\n
176<\/td>\n1. SEISMIC BASE SHEAR
EQUATION 12.14-12
2. SEISMIC LATERAL FORCES AT EACH LEVEL
EQUATION 12.14-13
COMMENTARY
EQUATION 12.8-1
EQUATION 12.8-2
EQUATION 12.8-11
EQUATION 12.8-12 <\/td>\n<\/tr>\n
177<\/td>\nTABLE 49-1
TABLE 49-2 COMPARISON OF SIMPLIFIED VS EQUIVALENT LATERAL FORCE (ELF) PROCEDURE <\/td>\n<\/tr>\n
178<\/td>\nDESIGN EXAMPLE 50 SEISMIC DEMANDS ON NONSTRUCTURAL COMPONENTS ON RIGID SUPPORTS
FIGURE 50-1 <\/td>\n<\/tr>\n
179<\/td>\n1. DESIGN CRITERIA
EQUATION 13.3-1
2. DESIGN LATERAL SEISMIC FORCE AT BASE
EQUATION 13.3-3
3. DESIGN LATERAL SEISMIC FORCE AT ROOF
EQUATION 13.3-2 <\/td>\n<\/tr>\n
180<\/td>\nCOMMENTARY
FIGURE 50-2
EQUATION 13.3-11 <\/td>\n<\/tr>\n
182<\/td>\nDESIGN EXAMPLE 51 SEISMIC DEMANDS ON VIBRATION-ISOLATED NONSTRUCTURAL COMPONENTS
FIGURE 51-1 <\/td>\n<\/tr>\n
183<\/td>\n1. DESIGN CRITERIA
EQUATION 13.3-1
2. DESIGN LATERAL SEISMIC FORCE AT BASE
EQUATION 13.3-3
3. DESIGN LATERAL SEISMIC FORCE AT ROOF
EQUATION 13.3-2 <\/td>\n<\/tr>\n
184<\/td>\nCOMMENTARY <\/td>\n<\/tr>\n
185<\/td>\nDESIGN EXAMPLE 52 SEISMIC RELATIVE DISPLACEMENTS OF COMPONENT ATTACHMENTS
FIGURE 52-1 <\/td>\n<\/tr>\n
186<\/td>\n1. SEISMIC RELATIVE DISPLACEMENT, Dpl, TO BE CONSIDERED
EQUATION 13.3-7
EQUATION 13.3-8
EQUATION 13.3-6 <\/td>\n<\/tr>\n
187<\/td>\n2. INDUCED MOMENT AND SHEAR IN FRAME
FIGURE 52-2
COMMENTARY <\/td>\n<\/tr>\n
188<\/td>\nDESIGN EXAMPLE 53 EXTERIOR NONSTRUCTURAL WALL ELEMENT
FIGURE 53-1
1. DESIGN CRITERIA <\/td>\n<\/tr>\n
189<\/td>\nEQUATION 13.3-1
EQUATION 13.3-3
EQUATION 13.3-2
2. DESIGN LATERAL SEISMIC FORCE ON A PANEL AT THE FOURTH STORY
EQUATION 13.3-3
EQUATION 13.3-2
FIGURE 53-2 <\/td>\n<\/tr>\n
190<\/td>\n3. DESIGN LATERAL SEISMIC FORCE ON A PANEL AT THE FIRST STORY
COMMENTARY <\/td>\n<\/tr>\n
191<\/td>\nDESIGN EXAMPLE 54 EXTERIOR NONSTRUCTURAL WALL ELEMENT CONNECTIONS
FIGURE 54-1 <\/td>\n<\/tr>\n
192<\/td>\n1. STRENGTH DESIGN SEISMIC LOAD COMBINATIONS
2. LATERAL SEISMIC FORCE AT CENTER OF MASS PANEL (POINT C) <\/td>\n<\/tr>\n
193<\/td>\nEQUATION 13.3-3
EQUATION 13.3-1
EQUATION 13.3-3 <\/td>\n<\/tr>\n
194<\/td>\n3. COMBINED DEAD AND SEISMIC FORCES ON CONNECTIONS
FIGURE 54-2 <\/td>\n<\/tr>\n
195<\/td>\nFIGURE 54-3 <\/td>\n<\/tr>\n
196<\/td>\n4. DESIGN FORCES FOR THE BRACKETS <\/td>\n<\/tr>\n
197<\/td>\n5. DESIGN FORCES FOR THE RODS
COMMENTARY <\/td>\n<\/tr>\n
198<\/td>\nDESIGN EXAMPLE 55 LATERAL SEISMIC FORCE ON NONBUILDING STRUCTURE
FIGURE 55-1 <\/td>\n<\/tr>\n
199<\/td>\n1. DESIGN BASE SHEAR
EQUATION 12.8-1
EQUATION 12.8-2
EQUATION 12.8-3
EQUATION 15.4-2
EQUATION 12.8-1 <\/td>\n<\/tr>\n
200<\/td>\n2. VERTICAL DISTRIBUTION OF SEISMIC FORCES
EQUATION 12.8-11
EQUATION 12.8-12
TABLE 55-1 STORY FORCES AND STORY SHEARS <\/td>\n<\/tr>\n
201<\/td>\nDESIGN EXAMPLE 56 FLEXIBLE NONBUILDING STRUCTURE
FIGURE 56-1 <\/td>\n<\/tr>\n
202<\/td>\n1. PERIOD OF VIBRATION
2. DESIGN BASE SHEAR
EQUATION 12.8-1
EQUATION 12.8-2
EQUATION 12.8-3 <\/td>\n<\/tr>\n
203<\/td>\nEQUATION 15.4-2
COMMENTARY <\/td>\n<\/tr>\n
204<\/td>\nDESIGN EXAMPLE 57 RIGID NONBUILDING STRUCTURE
FIGURE 57-1
1. DESIGN BASE SHEAR
EQUATION 15.4-5 <\/td>\n<\/tr>\n
205<\/td>\n2. VERTICAL DISTRIBUTION OF SEISMIC FORCES
EQUATION 12.8-11
EQUATION 12.8-12
TABLE 57-1 STORY FORCES (k = 1.0)
COMMENTARY <\/td>\n<\/tr>\n
206<\/td>\nDESIGN EXAMPLE 58 RETAINING WALL WITH SEISMIC LATERAL EARTH PRESSURE <\/td>\n<\/tr>\n
207<\/td>\n1. DESIGN CRITERIA
FIGURE 58-1 <\/td>\n<\/tr>\n
208<\/td>\n2. RETAINING WALL DESIGN FORCES
3. APPLICABLE LOAD COMBINATIONS FOR CONCRETE WALL DESIGN <\/td>\n<\/tr>\n
209<\/td>\n4. WALL SLIDING AND OVERTURNING MOMENT CHECKS (STABILITY ANALYSIS)
COMMENTARY <\/td>\n<\/tr>\n
210<\/td>\nDESIGN EXAMPLE 59 SEISMIC DEMANDS ON NONSTRUCTURAL COMPONENTS WITH BUILDING ACCELERATIONS
FIGURE 59-1 <\/td>\n<\/tr>\n
211<\/td>\nFIGURE 59-2
1. DESIGN CRITERIA
EQUATION 12.8-14 <\/td>\n<\/tr>\n
212<\/td>\n2. SEISMIC FORCES ON A NONSTRUCTURAL COMPONENT AT THE ROOF
EQUATION 13.3-1
EQUATION 13.3-3
EQUATION 13.3-2
3. SEISMIC FORCES ON A NONSTRUCTURAL COMPONENT AT THE SECOND LEVEL
EQUATION 13.3-1
EQUATION 13.3-3
EQUATION 13.3-2 <\/td>\n<\/tr>\n
213<\/td>\nCOMMENTARY
FIGURE 59-3
EQUATION 13.3-11 <\/td>\n<\/tr>\n
215<\/td>\nDESIGN EXAMPLE 60 REDUNDANCY FACTOR FOR CONCRETE CORE SHEAR WALL BUILDING <\/td>\n<\/tr>\n
217<\/td>\nFIGURE 60-1
1. REDUNDANCY FACTOR \u03a1 <\/td>\n<\/tr>\n
218<\/td>\nFIGURE 60-2 <\/td>\n<\/tr>\n
219<\/td>\nFIGURE 60-3 <\/td>\n<\/tr>\n
221<\/td>\nDESIGN EXAMPLE 61 COMBINED LOADING FOR SCBF COLUMN SUPPORTING MEZZANINE <\/td>\n<\/tr>\n
222<\/td>\nFIGURE 61-1 <\/td>\n<\/tr>\n
223<\/td>\nFIGURE 61-2 <\/td>\n<\/tr>\n
224<\/td>\n1. BASIC COMBINATIONS WITH SEISMIC LOAD EFFECTS
2. SEISMIC LOAD EFFECTS AND COMBINATIONS
EQUATION 12.4-5 <\/td>\n<\/tr>\n
225<\/td>\nFIGURE 61-3 <\/td>\n<\/tr>\n
226<\/td>\nEQUATION 12.4-4A
EQUATION 12.4-7
3. COLUMN DESIGN (STRENGTH DESIGN FORCES ACTING ON COLUMN) <\/td>\n<\/tr>\n
227<\/td>\nFIGURE 61-4 <\/td>\n<\/tr>\n
228<\/td>\n4. CONFIRM DESIGN AGAINST OTHER LOAD COMBINATIONS
COMMENTARY <\/td>\n<\/tr>\n
230<\/td>\nSEAOC WIND DESIGN MANUAL <\/td>\n<\/tr>\n
231<\/td>\n2019 EDITION OF THE SEAOC BLUE BOOK: SEISMIC DESIGN RECOMMENDATIONS <\/td>\n<\/tr>\n
232<\/td>\nTOP TOOLS FOR STRUCTURAL DESIGN <\/td>\n<\/tr>\n
233<\/td>\nICC’S DIGITAL CODES LIBRARY <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":"

2018 IBC SEAOC Structural\/Seismic Design Manual Volume 1: Code Application Examples<\/b><\/p>\n\n\n\n\n
Published By<\/td>\nPublication Date<\/td>\nNumber of Pages<\/td>\n<\/tr>\n
ICC<\/b><\/a><\/td>\n2018<\/td>\n233<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n","protected":false},"featured_media":211968,"template":"","meta":{"rank_math_lock_modified_date":false,"ep_exclude_from_search":false},"product_cat":[2670],"product_tag":[],"class_list":{"0":"post-211965","1":"product","2":"type-product","3":"status-publish","4":"has-post-thumbnail","6":"product_cat-icc","8":"first","9":"instock","10":"sold-individually","11":"shipping-taxable","12":"purchasable","13":"product-type-simple"},"_links":{"self":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product\/211965","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product"}],"about":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/types\/product"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media\/211968"}],"wp:attachment":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media?parent=211965"}],"wp:term":[{"taxonomy":"product_cat","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_cat?post=211965"},{"taxonomy":"product_tag","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_tag?post=211965"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}