{"id":233453,"date":"2024-10-19T15:12:58","date_gmt":"2024-10-19T15:12:58","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bs-en-62047-202014\/"},"modified":"2024-10-25T09:43:01","modified_gmt":"2024-10-25T09:43:01","slug":"bs-en-62047-202014","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bs-en-62047-202014\/","title":{"rendered":"BS EN 62047-20:2014"},"content":{"rendered":"
IEC 62047-20:2014 specifies terms and definitions, ratings and characteristics, and measuring methods of gyroscopes. Gyroscopes are primarily used for consumer, general industries and aerospace applications. MEMS and semiconductor lasers are widely used for device technology of gyroscopes.<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
5<\/td>\n | English CONTENTS <\/td>\n<\/tr>\n | ||||||
7<\/td>\n | 1 Scope 2 Normative references 3 Terms and definitions 4 Essential ratings and characteristics 4.1 Categorization of gyro <\/td>\n<\/tr>\n | ||||||
8<\/td>\n | 4.2 Absolute maximum ratings Tables Table 1 \u2013 Categories of gyro Table 2 \u2013 Absolute maximum ratings <\/td>\n<\/tr>\n | ||||||
9<\/td>\n | 4.3 Normal operating rating 4.4 Characteristics Table 3 \u2013 Normal operating ratings <\/td>\n<\/tr>\n | ||||||
10<\/td>\n | Table 4 \u2013 Characteristics <\/td>\n<\/tr>\n | ||||||
11<\/td>\n | 5 Measuring methods 5.1 Scale factor 5.1.1 Purpose 5.1.2 Measuring circuit (circuit diagram) <\/td>\n<\/tr>\n | ||||||
12<\/td>\n | Figures Figure 1 \u2013 Example of measuring circuit <\/td>\n<\/tr>\n | ||||||
13<\/td>\n | 5.1.3 Measuring principle Figure 2 \u2013 Example of wiring configuration <\/td>\n<\/tr>\n | ||||||
14<\/td>\n | Figure 3 \u2013 Example of measurement data when the angular rate is applied <\/td>\n<\/tr>\n | ||||||
16<\/td>\n | Figure 4 \u2013 Example of scale factor data at each temperature <\/td>\n<\/tr>\n | ||||||
17<\/td>\n | Figure 5 \u2013 Example of relationship between scale factor and scale factor temperature coefficient at each temperature <\/td>\n<\/tr>\n | ||||||
18<\/td>\n | Figure 6 \u2013 Example of measurement of ratiometric error for the scale factor <\/td>\n<\/tr>\n | ||||||
20<\/td>\n | Figure 7 \u2013 Example measurement of scale factor stability <\/td>\n<\/tr>\n | ||||||
21<\/td>\n | Figure 8 \u2013 Example of measurement of scale factor symmetry <\/td>\n<\/tr>\n | ||||||
22<\/td>\n | 5.1.4 Measurement procedures <\/td>\n<\/tr>\n | ||||||
24<\/td>\n | 5.1.5 Specified conditions Table 5 \u2013 Specified condition for measurement of scale factor <\/td>\n<\/tr>\n | ||||||
25<\/td>\n | 5.2 Cross axis sensitivity 5.2.1 Purpose 5.2.2 Measuring circuit (circuit diagram) <\/td>\n<\/tr>\n | ||||||
26<\/td>\n | 5.2.3 Principle of measurement Figure 9 \u2013 Measuring circuit for cross axis sensitivity <\/td>\n<\/tr>\n | ||||||
27<\/td>\n | Figure 10 \u2013 Principle of measurement for cross axis sensitivity <\/td>\n<\/tr>\n | ||||||
28<\/td>\n | 5.2.4 Precautions to be observed during the measurements of the angular rate applied 5.2.5 Measurement procedures 5.2.6 Specified conditions <\/td>\n<\/tr>\n | ||||||
29<\/td>\n | 5.3 Bias 5.3.1 Purpose 5.3.2 Measuring circuit <\/td>\n<\/tr>\n | ||||||
30<\/td>\n | Figure 11 \u2013 Measuring circuit 1 for bias <\/td>\n<\/tr>\n | ||||||
31<\/td>\n | 5.3.3 Principle of measurement Figure 12 \u2013 Measuring circuit 2 for bias <\/td>\n<\/tr>\n | ||||||
33<\/td>\n | Figure 13 \u2013 Example measurement of ratiometric error for bias <\/td>\n<\/tr>\n | ||||||
35<\/td>\n | Figure 14 \u2013 Bias temperature sensitivity and bias hysteresis <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | 5.3.4 Measurement procedures Figure 15 \u2013 Bias linear acceleration sensitivity <\/td>\n<\/tr>\n | ||||||
38<\/td>\n | 5.3.5 Specified conditions Table 6 \u2013 Specified conditions for the measurement of bias <\/td>\n<\/tr>\n | ||||||
39<\/td>\n | 5.4 Output noise 5.4.1 Purpose 5.4.2 Measuring circuit <\/td>\n<\/tr>\n | ||||||
40<\/td>\n | 5.4.3 Principle of measurement Figure 16 \u2013 Output noise measuring system Figure 17 \u2013 Example of wiring configuration for output noise <\/td>\n<\/tr>\n | ||||||
41<\/td>\n | 5.4.4 Precautions during measurement 5.4.5 Measurement procedures Figure 18 \u2013 Frequency power spectrums <\/td>\n<\/tr>\n | ||||||
42<\/td>\n | Figure 19 \u2013 Angular random walk <\/td>\n<\/tr>\n | ||||||
43<\/td>\n | Figure 20 \u2013 Bias instability and Allan variance curve <\/td>\n<\/tr>\n | ||||||
44<\/td>\n | 5.4.6 Specified conditions 5.5 Frequency band 5.5.1 Purpose 5.5.2 Measuring circuit <\/td>\n<\/tr>\n | ||||||
45<\/td>\n | Figure 21 \u2013 Measuring circuit for frequency response <\/td>\n<\/tr>\n | ||||||
46<\/td>\n | 5.5.3 Principle of measurement Figure 22 \u2013 Example of wiring configuration for frequency response <\/td>\n<\/tr>\n | ||||||
47<\/td>\n | Figure 23 \u2013 Frequency response characteristics Figure 24 \u2013 Gain peak response characteristics <\/td>\n<\/tr>\n | ||||||
48<\/td>\n | 5.5.4 Precautions during measurement 5.5.5 Measurement procedure <\/td>\n<\/tr>\n | ||||||
49<\/td>\n | Figure 25 \u2013 Calibration of frequency response <\/td>\n<\/tr>\n | ||||||
50<\/td>\n | 5.5.6 Specified conditions 5.6 Resolution 5.6.1 Purpose 5.6.2 Measuring circuit 5.6.3 Principle of measurement Table 7 \u2013 Specified condition for the measurement of frequency band <\/td>\n<\/tr>\n | ||||||
51<\/td>\n | 5.6.4 Measurement procedures <\/td>\n<\/tr>\n | ||||||
52<\/td>\n | 5.6.5 Specified conditions Table 8 \u2013 Specified condition for the measurement of resolution <\/td>\n<\/tr>\n | ||||||
53<\/td>\n | Annex A (informative) Accuracy of measured value of gyro characteristics A.1 General A.2 Angle and angular rate A.3 Example of angular deviation occurring after calibration <\/td>\n<\/tr>\n | ||||||
54<\/td>\n | Bibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" Semiconductor devices. Micro-electromechanical devices – Gyroscopes<\/b><\/p>\n |