{"id":245666,"date":"2024-10-19T16:09:36","date_gmt":"2024-10-19T16:09:36","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bs-en-iec-62439-32018-tc\/"},"modified":"2024-10-25T11:10:13","modified_gmt":"2024-10-25T11:10:13","slug":"bs-en-iec-62439-32018-tc","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bs-en-iec-62439-32018-tc\/","title":{"rendered":"BS EN IEC 62439-3:2018 – TC"},"content":{"rendered":"

IEC 62439-3:2016 is available as \/2 which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition. IEC 62439-3:2016 is applicable to high-availability automation networks based on the Ethernet technology. This part of IEC 62439 specifies two redundancy protocols designed to provide seamless recovery in case of single failure of an inter-bridge link or bridge in the network, which are based on the same scheme: parallel transmission of duplicated information. This third edition cancels and replaces the second edition published in 2012. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: – technical corrections and extension of specifications; – consideration of IEC 61588 clock synchronization with end-to-end delay measurement alongside the existing peer-to-peer delay measurement in PRP.<\/p>\n

PDF Catalog<\/h4>\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
PDF Pages<\/th>\nPDF Title<\/th>\n<\/tr>\n
1<\/td>\ncompares BS EN IEC 62439-3:2018 <\/td>\n<\/tr>\n
2<\/td>\nTRACKED CHANGES
Text example 1 \u2014 indicates added text (in green) <\/td>\n<\/tr>\n
208<\/td>\nundefined <\/td>\n<\/tr>\n
212<\/td>\nEnglish
CONTENTS <\/td>\n<\/tr>\n
218<\/td>\nFOREWORD <\/td>\n<\/tr>\n
220<\/td>\nINTRODUCTION
0.1 General
0.2 Changes with respect to the previous edition
0.3 Patent declaration <\/td>\n<\/tr>\n
222<\/td>\n1 Scope
2 Normative references <\/td>\n<\/tr>\n
223<\/td>\n3 Terms, definitions, abbreviations, acronyms, and conventions
3.1 Terms and definitions
3.2 Abbreviations and acronyms <\/td>\n<\/tr>\n
224<\/td>\n3.3 Conventions <\/td>\n<\/tr>\n
225<\/td>\n4 Parallel Redundancy Protocol (PRP)
4.1 PRP principle of operation
4.1.1 PRP network topology
4.1.2 PRP LANs with linear or bus topology
Figures
Figure 1 \u2013 PRP example of general redundant network <\/td>\n<\/tr>\n
226<\/td>\n4.1.3 PRP LANs with ring topology
4.1.4 DANP node structure
Figure 2 \u2013 PRP example of redundant network as two LANs (bus topology)
Figure 3 \u2013 PRP example of redundant ring with SANs and DANPs <\/td>\n<\/tr>\n
227<\/td>\n4.1.5 PRP attachment of singly attached nodes
Figure 4 \u2013 PRP with two DANPs communicating <\/td>\n<\/tr>\n
228<\/td>\n4.1.6 Compatibility between singly and doubly attached nodes
4.1.7 Network management
4.1.8 Implication on application
4.1.9 Transition to non-redundant networks <\/td>\n<\/tr>\n
229<\/td>\n4.1.10 Duplicate handling
Figure 5 \u2013 PRP RedBox, transition from single to double LAN <\/td>\n<\/tr>\n
230<\/td>\nFigure 6 \u2013 PRP frame extended by an RCT <\/td>\n<\/tr>\n
231<\/td>\nFigure 7 \u2013 PRP VLAN-tagged frame extended by an RCT
Figure 8 \u2013 PRP padded frame closed by an RCT <\/td>\n<\/tr>\n
232<\/td>\nFigure 9 \u2013 Duplicate Discard algorithm boundaries <\/td>\n<\/tr>\n
233<\/td>\nTables
Table 1 \u2013 Duplicate discard cases <\/td>\n<\/tr>\n
234<\/td>\n4.1.11 Network supervision
4.1.12 Redundancy management interface
4.2 PRP protocol specifications
4.2.1 Installation, configuration and repair guidelines <\/td>\n<\/tr>\n
235<\/td>\n4.2.2 Unicast MAC addresses
4.2.3 Multicast MAC addresses
4.2.4 IP addresses
4.2.5 Nodes <\/td>\n<\/tr>\n
236<\/td>\n4.2.6 Duplicate Accept mode (testing only)
4.2.7 Duplicate Discard mode
Table 2 \u2013 Monitoring data set <\/td>\n<\/tr>\n
237<\/td>\nTable 3 \u2013 NodesTable attributes <\/td>\n<\/tr>\n
240<\/td>\n4.3 PRP_Supervision frame
4.3.1 PRP_Supervision frame format
Table 4 \u2013 PRP_Supervision frame with no VLAN tag <\/td>\n<\/tr>\n
241<\/td>\n4.3.2 PRP_Supervision frame contents
Table 5 \u2013 PRP_Supervision frame with (optional) VLAN tag <\/td>\n<\/tr>\n
242<\/td>\n4.3.3 PRP_Supervision frame for RedBox
4.3.4 Reception of a PRP_Supervision frame and NodesTable
Table 6 \u2013 PRP_Supervision frame contents
Table 7 \u2013 PRP_Supervision TLV for Redbox <\/td>\n<\/tr>\n
243<\/td>\n4.4 Bridging node
4.5 Constants
4.6 PRP service specification
5 High-availability Seamless Redundancy (HSR)
5.1 HSR objectives
Table 8 \u2013 PRP constants <\/td>\n<\/tr>\n
244<\/td>\n5.2 HSR principle of operation
5.2.1 Basic operation with a ring topology
Figure 10 \u2013 HSR example of ring configuration for multicast traffic <\/td>\n<\/tr>\n
245<\/td>\n5.2.2 DANH node structure
Figure 11 \u2013 HSR example of ring configuration for unicast traffic <\/td>\n<\/tr>\n
246<\/td>\n5.2.3 Topology
Figure 12 \u2013 HSR structure of a DANH <\/td>\n<\/tr>\n
247<\/td>\nFigure 13 \u2013 HSR example of topology using two independent networks <\/td>\n<\/tr>\n
248<\/td>\nFigure 14 \u2013 HSR example of peer coupling of two rings <\/td>\n<\/tr>\n
249<\/td>\nFigure 15 \u2013 HSR example of connected rings <\/td>\n<\/tr>\n
250<\/td>\nFigure 16 \u2013 HSR example of coupling two redundant PRP LANs to a ring <\/td>\n<\/tr>\n
251<\/td>\nFigure 17 \u2013 HSR example of coupling from a ring node to redundant PRP LANs <\/td>\n<\/tr>\n
252<\/td>\nFigure 18 \u2013 HSR example of coupling from a ring to two PRP LANs <\/td>\n<\/tr>\n
253<\/td>\nFigure 19 \u2013 HSR example of coupling three rings to one PRP LAN <\/td>\n<\/tr>\n
254<\/td>\n5.2.4 RedBox structure
Figure 20 \u2013 HSR example of meshed topology <\/td>\n<\/tr>\n
255<\/td>\nFigure 21 \u2013 HSR structure of a RedBox <\/td>\n<\/tr>\n
256<\/td>\n5.3 HSR node specifications
5.3.1 HSR operation
5.3.2 DANH receiving from its link layer interface <\/td>\n<\/tr>\n
257<\/td>\n5.3.3 DANH receiving from an HSR port <\/td>\n<\/tr>\n
258<\/td>\n5.3.4 DANH forwarding rules <\/td>\n<\/tr>\n
259<\/td>\n5.3.5 CoS <\/td>\n<\/tr>\n
260<\/td>\n5.3.6 Clock synchronization
5.3.7 Deterministic medium access
5.4 HSR RedBox specifications
5.4.1 RedBox properties
5.4.2 RedBox receiving from interlink <\/td>\n<\/tr>\n
262<\/td>\n5.4.3 RedBox forwarding on the ring
5.4.4 RedBox receiving from an HSR port <\/td>\n<\/tr>\n
264<\/td>\n5.4.5 RedBox receiving from its link layer interface
5.4.6 Redbox ProxyNodeTable handling
5.4.7 RedBox CoS <\/td>\n<\/tr>\n
265<\/td>\n5.4.8 RedBox clock synchronization
5.4.9 RedBox medium access
5.5 QuadBox specification
5.6 Duplicate Discard method
5.7 Frame format for HSR
5.7.1 Frame format for all frames
Figure 22 \u2013 HSR frame without a VLAN tag <\/td>\n<\/tr>\n
266<\/td>\n5.7.2 HSR_Supervision frame
Figure 23 \u2013 HSR frame with VLAN tag <\/td>\n<\/tr>\n
267<\/td>\nTable 9 \u2013 HSR_Supervision frame with no VLAN tag <\/td>\n<\/tr>\n
268<\/td>\nTable 10 \u2013 HSR_Supervision frame with optional VLAN tag <\/td>\n<\/tr>\n
269<\/td>\n5.8 Constants <\/td>\n<\/tr>\n
270<\/td>\n5.9 HSR service specification
Figure 24 \u2013 HSR node with management counters
Table 11 \u2013 HSR Constants <\/td>\n<\/tr>\n
271<\/td>\n6 Protocol Implementation Conformance Statement (PICS)
Figure 25 \u2013 HSR RedBox with management counters <\/td>\n<\/tr>\n
272<\/td>\n7 PRP\/HSR Management Information Base (MIB) <\/td>\n<\/tr>\n
289<\/td>\nAnnexes
Annex A (normative) Clocks synchronization over redundant paths in IEC 62439-3
A.1 Overview
A.2 Attachment to redundant LANs by a boundary clock
Figure A.1 \u2013 Doubly Attached Clock as BC (MCA is best master) <\/td>\n<\/tr>\n
290<\/td>\nA.3 Attachment to redundant LANs by doubly attached ordinary clocks <\/td>\n<\/tr>\n
291<\/td>\nFigure A.2 \u2013 Doubly Attached Clock when MCA is best master <\/td>\n<\/tr>\n
292<\/td>\nA.4 PRP mapping to PTP
A.4.1 Scenarios and device roles
Figure A.3 \u2013 Doubly attached clocks when OC1 is best master <\/td>\n<\/tr>\n
294<\/td>\nA.4.2 Operation in PRP
Figure A.4 \u2013 Elements of PRP networks <\/td>\n<\/tr>\n
295<\/td>\nA.4.3 Configuration specification
Figure A.5 \u2013 Connection of a master clock to an ordinary clock over PRP <\/td>\n<\/tr>\n
296<\/td>\nA.4.4 Specifications of DANP as DAC
A.4.5 Clock model of a RedBox for PTP <\/td>\n<\/tr>\n
297<\/td>\nFigure A.6 \u2013 PRP RedBox as BCs (OC3 and BC7 are best masters) <\/td>\n<\/tr>\n
298<\/td>\nFigure A.7 \u2013 RedBox DABC clock model <\/td>\n<\/tr>\n
299<\/td>\nFigure A.8 \u2013 PRP RedBoxes as DABC with E2E \u2013 BC7 is master <\/td>\n<\/tr>\n
300<\/td>\nFigure A.9 \u2013 PRP RedBoxes as DABC with E2E \u2013 timing <\/td>\n<\/tr>\n
301<\/td>\nFigure A.10 \u2013 PRP RedBoxes as DABC with P2P \u2013 OC5 is best master <\/td>\n<\/tr>\n
302<\/td>\nFigure A.11 \u2013 PRP RedBoxes as DABC with P2P \u2013 timing <\/td>\n<\/tr>\n
303<\/td>\nFigure A.12 \u2013 PRP RedBox as DATC with E2E \u2013signal flow <\/td>\n<\/tr>\n
305<\/td>\nFigure A.13 \u2013 PRP RedBox as DATC with E2E \u2013 timing <\/td>\n<\/tr>\n
306<\/td>\nFigure A.14 \u2013 PRP RedBox as DATC with P2P <\/td>\n<\/tr>\n
307<\/td>\nFigure A.15 \u2013 PRP RedBox as DATC with P2P \u2013 timing <\/td>\n<\/tr>\n
310<\/td>\nFigure A.16 \u2013 PRP RedBox as SLTC with E2E <\/td>\n<\/tr>\n
311<\/td>\nFigure A.17 \u2013 PRP RedBox as SLTC with E2E \u2013 timing <\/td>\n<\/tr>\n
312<\/td>\nFigure A.18 \u2013 PRP RedBox as SLTC with P2P <\/td>\n<\/tr>\n
313<\/td>\nA.5 HSR Mapping to PTP
A.5.1 PTP traffic in HSR <\/td>\n<\/tr>\n
314<\/td>\nFigure A.19 \u2013 HSR with one GMC <\/td>\n<\/tr>\n
315<\/td>\nFigure A.20 \u2013 PTP messages sent and received by an HSR node (1-step). <\/td>\n<\/tr>\n
316<\/td>\nA.5.2 HSR nodes specifications
Figure A.21 \u2013 PTP messages sent and received by an HSR node (2-step) <\/td>\n<\/tr>\n
317<\/td>\nA.5.3 Redundant clocks in HSR
A.5.4 Attachment of an MC to an external LAN <\/td>\n<\/tr>\n
318<\/td>\nA.6 PRP to HSR Mapping
A.6.1 Connection methods
A.6.2 PRP-HSR connection by BC
Figure A.22 \u2013 Attachment of a GMC to an HSR ring through a RedBox as TC <\/td>\n<\/tr>\n
319<\/td>\nA.6.3 PRP-HSR connection by TCs
Figure A.23 \u2013 PRP to HSR coupling by BCs <\/td>\n<\/tr>\n
320<\/td>\nA.7 Doubly attached clock model
A.7.1 State machine
Figure A.24 \u2013 PRP to HSR coupling by TCs <\/td>\n<\/tr>\n
321<\/td>\nFigure A.25 \u2013 Port states including transitions for redundant operation <\/td>\n<\/tr>\n
322<\/td>\nTable A.1 \u2013 States <\/td>\n<\/tr>\n
323<\/td>\nA.7.2 Supervision of the port
Table A.2 \u2013 Transitions
Table A.3 \u2013 Variables <\/td>\n<\/tr>\n
324<\/td>\nA.7.3 BMCA for paired ports
Figure A.26 \u2013 BMCA for redundant masters <\/td>\n<\/tr>\n
325<\/td>\nA.7.4 Selection of the port state
A.8 PTP datasets for high availability
A.8.1 General
A.8.2 Data types <\/td>\n<\/tr>\n
326<\/td>\nA.8.3 Datasets for ordinary or boundary clocks <\/td>\n<\/tr>\n
330<\/td>\nA.8.4 Object for transparent clocks <\/td>\n<\/tr>\n
333<\/td>\nAnnex B (normative) PTP profile for Power Utility Automation \u2013 Redundant clock attachment
B.1 Application domain
B.2 PTP profile specification
B.3 Redundant clock attachment <\/td>\n<\/tr>\n
334<\/td>\nAnnex C (normative) PTP profiles for high-availability automation networks
C.1 Application domain
C.2 PTP profile specification
C.3 Clock types <\/td>\n<\/tr>\n
335<\/td>\nC.4 Protocol specification common
C.5 Protocol specification for L3E2E automation profile
C.6 Protocol specification for L2P2P automation profile <\/td>\n<\/tr>\n
336<\/td>\nC.7 Timing requirements
C.7.1 Measurement conditions
C.7.2 Network time inaccuracy
C.7.3 Network elements
C.7.4 Requirements for grandmasters <\/td>\n<\/tr>\n
337<\/td>\nC.7.5 Requirements for TCs
C.7.6 Requirements for BCs
C.7.7 Requirements for media converters
C.7.8 Requirements for links <\/td>\n<\/tr>\n
338<\/td>\nC.8 Network engineering
C.9 Default settings <\/td>\n<\/tr>\n
339<\/td>\nC.10 Redundant clock handling
Table C.1 \u2013 PTP attributes for the Industrial Automation profile <\/td>\n<\/tr>\n
340<\/td>\nC.11 Protocol Implementation Conformance Statement (PICS)
C.11.1 Conventions
C.11.2 PICS <\/td>\n<\/tr>\n
341<\/td>\nTable C.2 \u2013 PICS for clocks <\/td>\n<\/tr>\n
342<\/td>\nAnnex D (informative) Precision Time Protocol tutorial for IEC 62439-3
D.1 Objective
D.2 Precision and accuracy
Figure D.1 \u2013Precision and accuracy example <\/td>\n<\/tr>\n
343<\/td>\nD.3 PTP clock types
Figure D.2 \u2013 Precision Time Protocol principle <\/td>\n<\/tr>\n
344<\/td>\nD.4 PTP main options
Figure D.3 \u2013 Precision Time Protocol elements <\/td>\n<\/tr>\n
345<\/td>\nD.5 Layer 2 and layer 3 communication
D.6 1-step and 2-step correction
D.6.1 Time correction in TCs
Figure D.4 \u2013 Delays and time-stamping logic in TCs <\/td>\n<\/tr>\n
346<\/td>\nD.6.2 2-step to 1-step translation
Figure D.5 \u2013 Correction of the Sync message by 1-step and 2-step (peer-to-peer) <\/td>\n<\/tr>\n
347<\/td>\nFigure D.6 \u2013 Translation from 2-step to 1-step in TCs <\/td>\n<\/tr>\n
348<\/td>\nD.7 End-To-End link delay measurement
D.7.1 General method
D.7.2 End-to-End link delay measurement with 1-step clock correction
Figure D.7 \u2013 Translation from 2-step to 1-step \u2013 message view <\/td>\n<\/tr>\n
349<\/td>\nD.7.3 End-to-End link delay measurement with 2-step clock correction
Figure D.8 \u2013 End-to-end link delay measurement with 1-step clock correction <\/td>\n<\/tr>\n
350<\/td>\nD.7.4 End-to-End link delay calculation by Delay_Req\/Delay_Resp
D.8 Peer-to-Peer link delay calculation
D.8.1 Peer-to-Peer link delay calculation with 1-step correction
Figure D.9 \u2013 End-to-end delay measurement with 2-step clock correction <\/td>\n<\/tr>\n
351<\/td>\nD.8.2 Peer-to-Peer link delay calculation with 2-step correction
Figure D.10 \u2013 Peer-to-peer link delay measurement with 1-step clock correction <\/td>\n<\/tr>\n
352<\/td>\nFigure D.11 \u2013 Peer-to-peer link delay measurement with 2-step clock correction <\/td>\n<\/tr>\n
353<\/td>\nAnnex E (normative) Management Information base for singly and doubly attached clocks <\/td>\n<\/tr>\n
378<\/td>\nBibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":"

Tracked Changes. Industrial communication networks. High availability automation networks – Parallel Redundancy Protocol (PRP) and High-availability Seamless Redundancy (HSR)<\/b><\/p>\n\n\n\n\n
Published By<\/td>\nPublication Date<\/td>\nNumber of Pages<\/td>\n<\/tr>\n
BSI<\/b><\/a><\/td>\n2020<\/td>\n380<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n","protected":false},"featured_media":245670,"template":"","meta":{"rank_math_lock_modified_date":false,"ep_exclude_from_search":false},"product_cat":[2641],"product_tag":[],"class_list":{"0":"post-245666","1":"product","2":"type-product","3":"status-publish","4":"has-post-thumbnail","6":"product_cat-bsi","8":"first","9":"instock","10":"sold-individually","11":"shipping-taxable","12":"purchasable","13":"product-type-simple"},"_links":{"self":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product\/245666","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product"}],"about":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/types\/product"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media\/245670"}],"wp:attachment":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media?parent=245666"}],"wp:term":[{"taxonomy":"product_cat","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_cat?post=245666"},{"taxonomy":"product_tag","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_tag?post=245666"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}