{"id":252629,"date":"2024-10-19T16:40:52","date_gmt":"2024-10-19T16:40:52","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bs-en-62271-1012013a12018\/"},"modified":"2024-10-25T12:00:40","modified_gmt":"2024-10-25T12:00:40","slug":"bs-en-62271-1012013a12018","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bs-en-62271-1012013a12018\/","title":{"rendered":"BS EN 62271-101:2013+A1:2018"},"content":{"rendered":"

This part of IEC 62271 mainly applies to a.c. circuit-breakers within the scope of IEC 62271- 100. It provides the general rules for testing a.c. circuit-breakers, for making and breaking capacities over the range of test duties described in 6.102 to 6.111 of IEC 62271-100:2008, by synthetic methods.<\/p>\n

It has been proven that synthetic testing is an economical and technically correct way to test high-voltage a.c. circuit-breakers according to the requirements of IEC 62271-100 and that it is equivalent to direct testing.<\/p>\n

The methods and techniques described are those in general use. The purpose of this standard is to establish criteria for synthetic testing and for the proper evaluation of results. Such criteria will establish the validity of the test method without imposing restraints on innovation of test circuitry.<\/p>\n

PDF Catalog<\/h4>\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
PDF Pages<\/th>\nPDF Title<\/th>\n<\/tr>\n
2<\/td>\nNational foreword <\/td>\n<\/tr>\n
96<\/td>\nCONTENTS <\/td>\n<\/tr>\n
101<\/td>\nFOREWORD <\/td>\n<\/tr>\n
103<\/td>\n1 Scope
2 Normative references
3 Terms and definitions <\/td>\n<\/tr>\n
105<\/td>\n4 Synthetic testing techniques and methods for short-circuit breaking tests
4.1 Basic principles and general requirements for synthetic breaking test methods
4.1.1 General <\/td>\n<\/tr>\n
106<\/td>\n4.1.2 High-current interval
4.1.3 Interaction interval <\/td>\n<\/tr>\n
107<\/td>\n4.1.4 High-voltage interval <\/td>\n<\/tr>\n
108<\/td>\n4.2 Synthetic test circuits and related specific requirements for breaking tests
4.2.1 Current injection methods <\/td>\n<\/tr>\n
109<\/td>\n4.2.2 Voltage injection method
4.2.3 Duplicate circuit method (transformer or Skeats circuit) <\/td>\n<\/tr>\n
110<\/td>\n4.2.4 Other synthetic test methods
4.3 Three-phase synthetic test methods <\/td>\n<\/tr>\n
111<\/td>\nTable 1 \u2013 Test circuits for test duties T100s and T100a
Table 2 \u2013 Test parameters during three-phase interruption for test-duties T10, T30, T60 and T100s, kpp = 1,5 <\/td>\n<\/tr>\n
112<\/td>\nTable 3 \u2013 Test parameters during three-phase interruption for test-duties T10, T30, T60 and T100s, kpp = 1,3
Table 4 \u2013 Test parameters during three phase interruption for test-duties T10, T30, T60 and T100s, kpp = 1,2 <\/td>\n<\/tr>\n
113<\/td>\n5 Synthetic testing techniques and methods for short-circuit making tests
5.1 Basic principles and general requirements for synthetic making test methods
5.1.1 General
5.1.2 High-voltage interval
5.1.3 Pre-arcing interval <\/td>\n<\/tr>\n
114<\/td>\n5.1.4 Latching interval and fully closed position
5.2 Synthetic test circuit and related specific requirements for making tests
5.2.1 General
5.2.2 Test circuit
5.2.3 Specific requirements <\/td>\n<\/tr>\n
115<\/td>\n6 Specific requirements for synthetic tests for making and breaking performance related to the requirements of 6.102 through 6.111 of IEC\u00a062271-100:2008 <\/td>\n<\/tr>\n
125<\/td>\nTable 5 \u2013 Synthetic test methods for test duties T10, T30, T60, T100s, T100a, SP, DEF, OP and SLF <\/td>\n<\/tr>\n
127<\/td>\nFigures
Figure 1 \u2013 Interrupting process \u2013 Basic time intervals
Tables <\/td>\n<\/tr>\n
128<\/td>\nFigure 2 \u2013 Examples of evaluation of recovery voltage <\/td>\n<\/tr>\n
129<\/td>\nFigure 3 \u2013 Equivalent surge impedance of the voltage circuit for the current injection method <\/td>\n<\/tr>\n
130<\/td>\nFigure 4 \u2013 Making process \u2013 Basic time intervals <\/td>\n<\/tr>\n
131<\/td>\nFigure 5 \u2013 Typical synthetic making circuit for single-phase tests <\/td>\n<\/tr>\n
132<\/td>\nFigure 6 \u2013 Typical synthetic making circuit for out-of-phase <\/td>\n<\/tr>\n
133<\/td>\nFigure 7 \u2013 Typical synthetic make circuit for three-phase tests (kpp = 1,5) <\/td>\n<\/tr>\n
134<\/td>\nFigure 8 \u2013 Comparison of arcing time settings during three-phase direct tests (left) and three-phase synthetic (right) for T100s with kpp = 1,5 <\/td>\n<\/tr>\n
135<\/td>\nFigure 9 \u2013 Comparison of arcing time settings during three-phase direct tests (left) and three-phase synthetic (right) for T100a with kpp = 1,5 <\/td>\n<\/tr>\n
136<\/td>\nAnnex A (informative) Current distortion <\/td>\n<\/tr>\n
143<\/td>\nFigure A.1 \u2013 Direct circuit, simplified diagram
Figure A.2 \u2013 Prospective short-circuit current
Figure A.3 \u2013 Distortion current <\/td>\n<\/tr>\n
144<\/td>\nFigure A.4 \u2013 Distortion current <\/td>\n<\/tr>\n
145<\/td>\nFigure A.5 \u2013 Simplified circuit diagram <\/td>\n<\/tr>\n
146<\/td>\nFigure A.6 \u2013 Current and arc voltage characteristics for symmetrical current <\/td>\n<\/tr>\n
147<\/td>\nFigure A.7 \u2013 Current and arc voltage characteristics for asymmetrical current <\/td>\n<\/tr>\n
148<\/td>\nFigure A.8 \u2013 Reduction of amplitude and duration of final current loop of arcing <\/td>\n<\/tr>\n
149<\/td>\nFigure A.9 \u2013 Reduction of amplitude and duration of final current loop of arcing <\/td>\n<\/tr>\n
150<\/td>\nFigure A.10 \u2013 Reduction of amplitude and duration of final current loop of arcing <\/td>\n<\/tr>\n
151<\/td>\nFigure A.11 \u2013 Reduction of amplitude and duration of final current loop of arcing <\/td>\n<\/tr>\n
152<\/td>\nAnnex B (informative) Current injection methods <\/td>\n<\/tr>\n
153<\/td>\nFigure B.1 \u2013 Typical current injection circuit with voltage circuit in parallel with the test circuit-breaker <\/td>\n<\/tr>\n
154<\/td>\nFigure B.2 \u2013 Injection timing for current injection scheme with circuit B.1 <\/td>\n<\/tr>\n
155<\/td>\nFigure B.3 \u2013 Examples of the determination of the interval of significant change of arc voltage from the oscillograms <\/td>\n<\/tr>\n
156<\/td>\nAnnex C (informative) Voltage injection methods <\/td>\n<\/tr>\n
157<\/td>\nFigure C.1 \u2013 Typical voltage injection circuit diagram with voltage circuit in parallel with the auxiliary circuit-breaker (simplified diagram) <\/td>\n<\/tr>\n
158<\/td>\nFigure C.2 \u2013 TRV waveshapes in a voltage injection circuit with the voltage circuit in parallel with the auxiliary circuit-breaker <\/td>\n<\/tr>\n
159<\/td>\nAnnex D (informative) Skeats or duplicate transformer circuit <\/td>\n<\/tr>\n
160<\/td>\nFigure D.1 \u2013 Transformer or Skeats circuit <\/td>\n<\/tr>\n
161<\/td>\nFigure D.2 \u2013 Triggered transformer or Skeats circuit <\/td>\n<\/tr>\n
162<\/td>\nAnnex E (normative) Information to be given and results to be recorded for synthetic tests <\/td>\n<\/tr>\n
163<\/td>\nAnnex F (normative) Synthetic test methods for circuit-breakerswith opening resistors <\/td>\n<\/tr>\n
167<\/td>\nFigure F.1 \u2013 Test circuit to verify thermal re-ignition behaviour of the main interrupter
Figure F.2 \u2013 Test circuit to verify dielectric re-ignition behaviour of the main interrupter <\/td>\n<\/tr>\n
168<\/td>\nFigure F.3 \u2013 Test circuit on the resistor interrupter <\/td>\n<\/tr>\n
169<\/td>\nFigure F.4 \u2013 Example of test circuit for capacitive current switching tests on the main interrupter
Figure F.5 \u2013 Example of test circuit for capacitive current switching tests on the resistor interrupter <\/td>\n<\/tr>\n
170<\/td>\nAnnex G (informative) Synthetic methods for capacitive-current switching <\/td>\n<\/tr>\n
173<\/td>\nFigure G.1 \u2013 Capacitive current circuits (parallel mode) <\/td>\n<\/tr>\n
174<\/td>\nFigure G.2 \u2013 Current injection circuit <\/td>\n<\/tr>\n
175<\/td>\nFigure G.3 \u2013 LC oscillating circuit <\/td>\n<\/tr>\n
176<\/td>\nFigure G.4 \u2013 Inductive current circuit in parallel with LC oscillating circuit <\/td>\n<\/tr>\n
177<\/td>\nFigure G.5 \u2013 Current injection circuit, normal recovery voltage applied to both terminals of the circuit-breaker <\/td>\n<\/tr>\n
178<\/td>\nFigure G.6 \u2013 Synthetic test circuit (series circuit), normal recovery voltage applied to both sides of the test circuit breaker <\/td>\n<\/tr>\n
179<\/td>\nFigure G.7 \u2013 Current injection circuit, recovery voltage applied to both sides of the circuit-breaker <\/td>\n<\/tr>\n
180<\/td>\nFigure G.8 \u2013 Making test circuit <\/td>\n<\/tr>\n
181<\/td>\nFigure G.9 \u2013 Inrush making current test circuit <\/td>\n<\/tr>\n
182<\/td>\nAnnex H (informative) Re-ignition methods to prolong arcing <\/td>\n<\/tr>\n
183<\/td>\nFigure H.1 \u2013 Typical re-ignition circuit diagram for prolonging arc-duration
Figure H.2 \u2013 Combined Skeats and current injection circuits <\/td>\n<\/tr>\n
184<\/td>\nFigure H.3 \u2013 Typical waveforms obtained during an asymmetrical test using the circuit in Figure H.2 <\/td>\n<\/tr>\n
185<\/td>\nAnnex I (normative) Reduction in di\/dt and TRV for test duty T100a
Table I.1 \u2013 Last loop di\/dt reduction for 50\u00a0Hz for kpp = 1,3 and 1,5 <\/td>\n<\/tr>\n
186<\/td>\nTable I.2 \u2013 Last loop di\/dt reduction for 50\u00a0Hz for kpp = 1,2 <\/td>\n<\/tr>\n
187<\/td>\nTable I.3 \u2013 Last loop di\/dt reduction for 60\u00a0Hz for kpp = 1,3 and 1,5 <\/td>\n<\/tr>\n
188<\/td>\nTable I.4 \u2013 Last loop di\/dt reduction for 60\u00a0Hz for kpp = 1,2 <\/td>\n<\/tr>\n
189<\/td>\nTable I.5 \u2013 Corrected TRV values for the first pole-to-clear for kpp = 1,3 and fr = 50\u00a0Hz <\/td>\n<\/tr>\n
190<\/td>\nTable I.6 \u2013 Corrected TRV values for the first pole-to-clear for kpp = 1,3 and fr = 60\u00a0Hz <\/td>\n<\/tr>\n
191<\/td>\nTable I.7 \u2013 Corrected TRV values for the first pole-to-clear for kpp = 1,5 and fr = 50\u00a0Hz <\/td>\n<\/tr>\n
192<\/td>\nTable I.8 \u2013 Corrected TRV values for the first pole-to-clear for kpp = 1,5 and fr = 60\u00a0Hz
Table I.9 \u2013 Corrected TRV values for the first pole-to-clear for kpp = 1,2 and fr = 50 Hz <\/td>\n<\/tr>\n
193<\/td>\nTable I.10 \u2013 Corrected TRV values for the first pole-to-clear for kpp = 1,2 and fr = 60 Hz <\/td>\n<\/tr>\n
194<\/td>\nAnnex J (informative) Three-phase synthetic test circuits <\/td>\n<\/tr>\n
196<\/td>\nFigure J.1 \u2013 Three-phase synthetic combined circuit <\/td>\n<\/tr>\n
197<\/td>\nFigure J.2 \u2013 Waveshapes of currents, phase-to-ground and phase-to phase voltages during a three-phase synthetic test (T100s; kpp = 1,5 ) performed according to the three-phase synthetic combined circuit <\/td>\n<\/tr>\n
198<\/td>\nFigure J.3 \u2013 Three-phase synthetic circuit with injection in all phases for kpp = 1,5
Figure J.4 \u2013 Waveshapes of currents and phase-to-ground voltages during a three-phase synthetic test (T100s; kpp =1,5) performed according to the three-phase synthetic circuit with injection in all phases <\/td>\n<\/tr>\n
199<\/td>\nFigure J.5 \u2013 Three-phase synthetic circuit for terminal fault tests with kpp = 1,3 (current injection method)
Figure J.6 \u2013 Waveshapes of currents, phase-to-ground and phase-to-phase voltages during a three-phase synthetic test (T100s; kpp =1,3 ) performed according to the three-phase synthetic circuit shown in Figure J.5 <\/td>\n<\/tr>\n
200<\/td>\nFigure J.7 \u2013 TRV voltages waveshapes of the test circuit described in Figure J.5 <\/td>\n<\/tr>\n
201<\/td>\nAnnex K (normative) Test procedure using a three-phase current circuit and one voltage circuit <\/td>\n<\/tr>\n
202<\/td>\nTable K.1 \u2013 Demonstration of arcing times for kpp = 1,5 <\/td>\n<\/tr>\n
203<\/td>\nTable K.2 \u2013 Alternative demonstration of arcing times for kpp = 1,5 <\/td>\n<\/tr>\n
204<\/td>\nTable K.3 \u2013 Demonstration of arcing times for kpp = 1,3 <\/td>\n<\/tr>\n
205<\/td>\nTable K.4 \u2013 Alternative demonstration of arcing times for kpp = 1,3 <\/td>\n<\/tr>\n
206<\/td>\nTable K.5 \u2013 Demonstration of arcing times for kpp = 1,5 <\/td>\n<\/tr>\n
207<\/td>\nTable K.6 \u2013 Alternative demonstration of arcing times for kpp = 1,5 <\/td>\n<\/tr>\n
208<\/td>\nTable K.7 \u2013 Demonstration of arcing times for kpp = 1,3 <\/td>\n<\/tr>\n
209<\/td>\nTable K.8 \u2013 Alternative demonstration of arcing times for kpp = 1,3 <\/td>\n<\/tr>\n
210<\/td>\nTable K.9 \u2013 Procedure for combining kpp = 1,5 and 1,3 during test-duties T10, T30, T60 and T100s(b) <\/td>\n<\/tr>\n
211<\/td>\nTable K.10 \u2013 Procedure for combining kpp = 1,5 and 1,3 during test-duty T100a <\/td>\n<\/tr>\n
212<\/td>\nFigure K.1 \u2013 Example of a three-phase current circuit with single-phase synthetic injection <\/td>\n<\/tr>\n
213<\/td>\nFigure K.2 \u2013 Representation of the testing conditions of Table K.1 <\/td>\n<\/tr>\n
214<\/td>\nFigure K.3 \u2013 Representation of the testing conditions of Table K.2 <\/td>\n<\/tr>\n
215<\/td>\nFigure K.4 \u2013 Representation of the testing conditions of Table K.3 <\/td>\n<\/tr>\n
216<\/td>\nFigure K.5 \u2013 Representation of the testing conditions of Table K.4 <\/td>\n<\/tr>\n
217<\/td>\nFigure K.6 \u2013 Representation of the testing conditions of Table K.5 <\/td>\n<\/tr>\n
218<\/td>\nFigure K.7 \u2013 Representation of the testing conditions of Table K.6 <\/td>\n<\/tr>\n
219<\/td>\nFigure K.8 \u2013 Representation of the testing conditions of Table K.7 <\/td>\n<\/tr>\n
220<\/td>\nFigure K.9 \u2013 Representation of the testing conditions of Table K.8 <\/td>\n<\/tr>\n
221<\/td>\nAnnex L (normative) Splitting of test duties in test series taking into account the associated TRV for each pole-to-clear <\/td>\n<\/tr>\n
223<\/td>\nTable L.1 \u2013 Test procedure for kpp = 1,5 <\/td>\n<\/tr>\n
224<\/td>\nTable L.2 \u2013 Test procedure for kpp = 1,3 <\/td>\n<\/tr>\n
225<\/td>\nTable L.3 \u2013 Simplified test procedure for kpp = 1,3 <\/td>\n<\/tr>\n
226<\/td>\nTable L.4 \u2013 Test procedure for kpp = 1,2 <\/td>\n<\/tr>\n
227<\/td>\nTable L.5 \u2013 Simplified test procedure for kpp = 1,2 <\/td>\n<\/tr>\n
228<\/td>\nTable L.6 \u2013 Test procedure for asymmetrical currents in the case of kpp = 1,5 <\/td>\n<\/tr>\n
229<\/td>\nTable L.7 \u2013 Test procedure for asymmetrical currents in the case of kpp = 1,3 <\/td>\n<\/tr>\n
230<\/td>\nTable L.8 \u2013 Test procedure for asymmetrical currents in the case of kpp = 1,2 <\/td>\n<\/tr>\n
231<\/td>\nFigure L.1 \u2013 Graphical representation of the test shown in Table L.6 <\/td>\n<\/tr>\n
232<\/td>\nFigure L.2 \u2013 Graphical representation of the test shown in Table L.7 <\/td>\n<\/tr>\n
233<\/td>\nTable L.9 \u2013 Required test parameters for different asymmetrical conditions in the case of kpp = 1,5 , fr = 50\u00a0Hz <\/td>\n<\/tr>\n
234<\/td>\nTable L.10 \u2013 Required test parameters for different asymmetrical conditions in the case of a kpp = 1,3 , fr = 50\u00a0Hz <\/td>\n<\/tr>\n
235<\/td>\nTable L.11 \u2013 Required test parameters for different asymmetrical conditions in the case of kpp = 1,2 , fr = 50\u00a0Hz <\/td>\n<\/tr>\n
236<\/td>\nTable L.12 \u2013 Required test parameters for different asymmetrical conditions in the case of kpp = 1,5 , fr = 60\u00a0Hz <\/td>\n<\/tr>\n
237<\/td>\nTable L.13 \u2013 Required test parameters for different asymmetrical conditions in the case of kpp = 1,3 , fr = 60\u00a0Hz <\/td>\n<\/tr>\n
238<\/td>\nTable L.14 \u2013 Required test parameters for different asymmetrical conditions in the case of kpp = 1,2, fr = 60\u00a0Hz <\/td>\n<\/tr>\n
239<\/td>\nTable L.15 \u2013 Procedure for combining kpp = 1,5 and 1,3 during test-duties T10, T30, T60 and T100s(b) <\/td>\n<\/tr>\n
240<\/td>\nTable L.16 \u2013 Procedure for combining kpp = 1,5 and 1,3 during test-duty T100a <\/td>\n<\/tr>\n
241<\/td>\nAnnex M (normative) Tolerances on test quantities for type tests <\/td>\n<\/tr>\n
242<\/td>\nTable M.1 \u2013 Tolerances on test quantities for type tests (1 of 2) <\/td>\n<\/tr>\n
244<\/td>\nAnnex N (informative) Typical test circuits for metal-enclosed and dead tank circuit-breakers <\/td>\n<\/tr>\n
245<\/td>\nFigure N.1 \u2013 Test circuit for unit testing (circuit-breaker with interaction due to gas circulation) <\/td>\n<\/tr>\n
246<\/td>\nFigure N.2 \u2013 Half-pole testing of a circuit-breaker in test circuit given by Figure N.1 \u2013 Example of the required TRVs to be applied between the terminals of the unit(s) under test and between the live parts and the insulated enclosure <\/td>\n<\/tr>\n
247<\/td>\nFigure N.3 \u2013 Synthetic test circuit for unit testing (if unit testing is allowed as per 6.102.4.2 of IEC 62271-100:2008) <\/td>\n<\/tr>\n
248<\/td>\nFigure N.4 \u2013 Half-pole testing of a circuit-breaker in the test circuit of Figure N.3 \u2013 Example of the required TRVs to be applied between the terminals of the unit(s) under test and between the live parts and the insulated enclosure <\/td>\n<\/tr>\n
249<\/td>\nFigure N.5 \u2013 Capacitive current injection circuit with enclosure of the circuit-breaker energized <\/td>\n<\/tr>\n
250<\/td>\nFigure N.6 \u2013 Capacitive synthetic circuit using two power-frequency sources and with the enclosure of the circuit-breaker energized <\/td>\n<\/tr>\n
251<\/td>\nFigure N.7 \u2013 Capacitive synthetic current injection circuit \u2013 Example of unit testing on half a pole of a circuit-breaker with two units per pole \u2013 Enclosure energized with d.c. voltage source <\/td>\n<\/tr>\n
252<\/td>\nFigure N.8 \u2013 Symmetrical synthetic test circuit for out-of-phase switching tests on a complete pole of a circuit-breaker <\/td>\n<\/tr>\n
253<\/td>\nFigure N.9 \u2013 Full pole test with voltage applied to both terminals and the metal enclosure <\/td>\n<\/tr>\n
254<\/td>\nAnnex O (informative) Combination of current injection and voltage injection methods <\/td>\n<\/tr>\n
255<\/td>\nFigure O.1 \u2013 Example of combined current and voltage injection circuit with application of full test voltage to earth <\/td>\n<\/tr>\n
256<\/td>\nFigure O.2 \u2013 Example of combined current and voltage injection circuit with separated application of test voltage <\/td>\n<\/tr>\n
257<\/td>\nBibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":"

High-voltage switchgear and controlgear – Synthetic testing<\/b><\/p>\n\n\n\n\n
Published By<\/td>\nPublication Date<\/td>\nNumber of Pages<\/td>\n<\/tr>\n
BSI<\/b><\/a><\/td>\n2018<\/td>\n258<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n","protected":false},"featured_media":252631,"template":"","meta":{"rank_math_lock_modified_date":false,"ep_exclude_from_search":false},"product_cat":[516,2641],"product_tag":[],"class_list":{"0":"post-252629","1":"product","2":"type-product","3":"status-publish","4":"has-post-thumbnail","6":"product_cat-29-130-10","7":"product_cat-bsi","9":"first","10":"instock","11":"sold-individually","12":"shipping-taxable","13":"purchasable","14":"product-type-simple"},"_links":{"self":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product\/252629","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product"}],"about":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/types\/product"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media\/252631"}],"wp:attachment":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media?parent=252629"}],"wp:term":[{"taxonomy":"product_cat","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_cat?post=252629"},{"taxonomy":"product_tag","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_tag?post=252629"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}