{"id":255174,"date":"2024-10-19T16:52:01","date_gmt":"2024-10-19T16:52:01","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bsi-pd-iec-tr-61850-90-32016\/"},"modified":"2024-10-25T12:18:27","modified_gmt":"2024-10-25T12:18:27","slug":"bsi-pd-iec-tr-61850-90-32016","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bsi-pd-iec-tr-61850-90-32016\/","title":{"rendered":"BSI PD IEC\/TR 61850-90-3:2016"},"content":{"rendered":"
IEC TR 61850-90-3:2016(E) addresses communication aspects related to specific sensor networks that are widely used as well as information exchange towards asset management systems. Since the outcome of this work will affect several parts of IEC 61850, in a first step, this technical report has been prepared to address the topic from an application specific viewpoint across all affected parts of IEC 61850. Once this technical report has been approved, the affected parts of the standard will be amended with the results from the report. This approach is similar to what is done as an example with IEC 61850-90-1 for the communication between substations.<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
4<\/td>\n | CONTENTS <\/td>\n<\/tr>\n | ||||||
11<\/td>\n | FOREWORD <\/td>\n<\/tr>\n | ||||||
13<\/td>\n | INTRODUCTION <\/td>\n<\/tr>\n | ||||||
14<\/td>\n | 1 Scope <\/td>\n<\/tr>\n | ||||||
15<\/td>\n | 2 Normative references 3 Terms, definitions, abbreviations, acronyms and conventions 3.1 Terms and definitions <\/td>\n<\/tr>\n | ||||||
16<\/td>\n | 3.2 Abbreviations, acronyms and conventions Tables Table 1 \u2013 Normative abbreviations for data object names <\/td>\n<\/tr>\n | ||||||
34<\/td>\n | 4 Use cases 5 GIS (Gas Insulated Switchgear) 5.1 Summary Figures Figure 1 \u2013 CMD Modelling Concept <\/td>\n<\/tr>\n | ||||||
35<\/td>\n | 5.2 GIS overview <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | 5.3 GIS use case diagrams Figure 2 \u2013 GIS CMD Overview <\/td>\n<\/tr>\n | ||||||
37<\/td>\n | Figure 3 \u2013 GIS use case diagram <\/td>\n<\/tr>\n | ||||||
41<\/td>\n | Figure 4 \u2013 Abrasion monitoring use case <\/td>\n<\/tr>\n | ||||||
43<\/td>\n | Figure 5 \u2013 Switch monitoring use case <\/td>\n<\/tr>\n | ||||||
45<\/td>\n | Figure 6 \u2013 Operating mechanism monitoring use case <\/td>\n<\/tr>\n | ||||||
50<\/td>\n | Figure 7 \u2013 Maintenance planning use case <\/td>\n<\/tr>\n | ||||||
52<\/td>\n | Figure 8 \u2013 CB operating time monitoring use case <\/td>\n<\/tr>\n | ||||||
55<\/td>\n | 5.4 Preliminary modelling approach Figure 9 \u2013 GIS internal structure <\/td>\n<\/tr>\n | ||||||
56<\/td>\n | Figure 10 \u2013 Example of 3 phases compartment modelling Figure 11 \u2013 Example of 3 phases CB modelling <\/td>\n<\/tr>\n | ||||||
57<\/td>\n | Figure 12 \u2013 Example of 3 phases switch modelling Figure 13 \u2013 Example of PD monitoring modelling <\/td>\n<\/tr>\n | ||||||
58<\/td>\n | 6 Power transformer 6.1 Summary 6.2 Transformer overview Figure 14 \u2013 Transformer principle <\/td>\n<\/tr>\n | ||||||
59<\/td>\n | 6.3 Transformer CMD use case diagram Figure 15 \u2013 Typical power transformer <\/td>\n<\/tr>\n | ||||||
60<\/td>\n | Figure 16 \u2013 Use case for oil supervision <\/td>\n<\/tr>\n | ||||||
62<\/td>\n | Figure 17 \u2013 Partial discharge (PD) use case <\/td>\n<\/tr>\n | ||||||
64<\/td>\n | Figure 18 \u2013 Use case for temperature supervision <\/td>\n<\/tr>\n | ||||||
66<\/td>\n | Figure 19 \u2013 Use case for solid insulation aging supervision <\/td>\n<\/tr>\n | ||||||
68<\/td>\n | Figure 20 \u2013 Use case for bubbling temperature supervision <\/td>\n<\/tr>\n | ||||||
70<\/td>\n | Figure 21 \u2013 Use case for bushing supervision <\/td>\n<\/tr>\n | ||||||
72<\/td>\n | Figure 22 \u2013 Use case for cooling supervision <\/td>\n<\/tr>\n | ||||||
75<\/td>\n | Figure 23 \u2013 Use case for ancillary sensors supervision <\/td>\n<\/tr>\n | ||||||
76<\/td>\n | 6.4 Preliminary modelling approach <\/td>\n<\/tr>\n | ||||||
78<\/td>\n | 7 Load tap changer (LTC) 7.1 Summary <\/td>\n<\/tr>\n | ||||||
79<\/td>\n | 7.2 Load tap changer overview 7.3 Constraints\/assumptions\/design considerations Figure 24 \u2013 Structure of load tap changer <\/td>\n<\/tr>\n | ||||||
80<\/td>\n | Figure 25 \u2013 Configuration of LTC CMD system <\/td>\n<\/tr>\n | ||||||
81<\/td>\n | 7.4 Data flow Figure 26 \u2013 Data flows for LTC CMD (part 1) <\/td>\n<\/tr>\n | ||||||
82<\/td>\n | 7.5 Use case diagram Figure 27 \u2013 Data flows for LTC CMD (part 2) Figure 28 \u2013 Data flows for LTC CMD (part 3) <\/td>\n<\/tr>\n | ||||||
83<\/td>\n | Figure 29 \u2013 Use case for monitoring LTC operation properties <\/td>\n<\/tr>\n | ||||||
85<\/td>\n | Figure 30 \u2013 Use case for monitoring LTC operation counts <\/td>\n<\/tr>\n | ||||||
86<\/td>\n | Figure 31 \u2013 Use case for monitoring contact abrasion <\/td>\n<\/tr>\n | ||||||
88<\/td>\n | Figure 32 \u2013 Use case for monitoring LTC oil temperature and flow <\/td>\n<\/tr>\n | ||||||
90<\/td>\n | Figure 33 \u2013 Use case for monitoring operation of oil filter unit <\/td>\n<\/tr>\n | ||||||
91<\/td>\n | 7.6 Data description table <\/td>\n<\/tr>\n | ||||||
96<\/td>\n | 8 Underground cable (UGC) 8.1 Summary 8.2 Underground cable overview Figure 34 \u2013 An online system monitoring OF (Oil Filled) cable conditions <\/td>\n<\/tr>\n | ||||||
97<\/td>\n | 8.3 Constraints\/assumptions\/design considerations 8.4 Data flow Figure 35 \u2013 Cable cross-section drawing <\/td>\n<\/tr>\n | ||||||
98<\/td>\n | Figure 36 \u2013 Supervisions of UGC and their data flows <\/td>\n<\/tr>\n | ||||||
99<\/td>\n | 8.5 Use case diagram Figure 37 \u2013 Supervisions of OF cables and their data flows Figure 38 \u2013 Use case for thermal aging supervision <\/td>\n<\/tr>\n | ||||||
101<\/td>\n | Figure 39 \u2013 A sensor detecting cable positions in 3 dimensions Figure 40 \u2013 Use case for supervision of cable parts cracking <\/td>\n<\/tr>\n | ||||||
103<\/td>\n | Figure 41 \u2013 Use case for insulation aging supervision <\/td>\n<\/tr>\n | ||||||
104<\/td>\n | Figure 42 \u2013 Use case for water-tree supervision <\/td>\n<\/tr>\n | ||||||
106<\/td>\n | Figure 43 \u2013 Use case for supervision of earth fault without circuit breaker trip <\/td>\n<\/tr>\n | ||||||
108<\/td>\n | Figure 44 \u2013 Use case for oil aging supervision <\/td>\n<\/tr>\n | ||||||
109<\/td>\n | Figure 45 \u2013 Use case for oil leak supervision <\/td>\n<\/tr>\n | ||||||
111<\/td>\n | 8.6 Data description table <\/td>\n<\/tr>\n | ||||||
112<\/td>\n | 9 Transmission line (TL) 9.1 Summary <\/td>\n<\/tr>\n | ||||||
113<\/td>\n | 9.2 Transmission line overview <\/td>\n<\/tr>\n | ||||||
114<\/td>\n | Figure 46 \u2013 Example configuration of OHTL tower cluster Figure 47 \u2013 Line sensor unit <\/td>\n<\/tr>\n | ||||||
115<\/td>\n | 9.3 TL CMD use case diagram Figure 48 \u2013 Use case for line condition supervisor <\/td>\n<\/tr>\n | ||||||
117<\/td>\n | Figure 49 \u2013 Use case for tower condition supervisor <\/td>\n<\/tr>\n | ||||||
119<\/td>\n | Figure 50 \u2013 Use case for insulator condition supervisor <\/td>\n<\/tr>\n | ||||||
121<\/td>\n | Figure 51 \u2013 Use case for surrounding area supervisor <\/td>\n<\/tr>\n | ||||||
123<\/td>\n | 9.4 Data description table 10 Auxiliary power system 10.1 Summary <\/td>\n<\/tr>\n | ||||||
124<\/td>\n | 10.2 Auxiliary power system overview Figure 52 \u2013 Legend of diagrams <\/td>\n<\/tr>\n | ||||||
125<\/td>\n | Figure 53 \u2013 Secured DC system from AC input power Figure 54 \u2013 Secured AC system from DC input with AC backup <\/td>\n<\/tr>\n | ||||||
126<\/td>\n | 10.3 Data flow 10.4 Use case diagram Figure 55 \u2013 Secured AC system from AC input with AC backup Figure 56 \u2013 Data flow of auxiliary power system <\/td>\n<\/tr>\n | ||||||
127<\/td>\n | Figure 57 \u2013 Use case for auxiliary power system <\/td>\n<\/tr>\n | ||||||
128<\/td>\n | 10.5 Data modelling <\/td>\n<\/tr>\n | ||||||
129<\/td>\n | Figure 58 \u2013 Secured DC system from AC input power Figure 59 \u2013 Secured AC system from DC input with AC backup <\/td>\n<\/tr>\n | ||||||
130<\/td>\n | 11 Communication Requirements 11.1 General issues Figure 60 \u2013 Secured AC system from AC input with AC backup <\/td>\n<\/tr>\n | ||||||
131<\/td>\n | 11.2 Response behaviour requirements (6.4 of IEC\u00a061850-5:2013) 11.3 Requirements for data integrity (Clause 14 of IEC\u00a061850-5:2013) 11.4 Communication requirements for the WAN Figure 61 \u2013 Communication architecture for CMD <\/td>\n<\/tr>\n | ||||||
132<\/td>\n | 11.5 Performance issue 11.6 Plug and Play 12 Asset Management 12.1 Definition 12.2 Comparison of asset management to other systems <\/td>\n<\/tr>\n | ||||||
133<\/td>\n | 12.3 IEC\u00a061850 services for Asset Management <\/td>\n<\/tr>\n | ||||||
134<\/td>\n | Figure 62 \u2013 Reporting and logging model (conceptual) from IEC\u00a061850-7-1 <\/td>\n<\/tr>\n | ||||||
135<\/td>\n | 12.4 CMD 12.5 Conclusion 12.6 Maintenance <\/td>\n<\/tr>\n | ||||||
136<\/td>\n | Figure 63 \u2013 Use case for maintenance <\/td>\n<\/tr>\n | ||||||
138<\/td>\n | 12.7 ERP Update <\/td>\n<\/tr>\n | ||||||
139<\/td>\n | Figure 64 \u2013 Use case for ERP update <\/td>\n<\/tr>\n | ||||||
141<\/td>\n | 13 Logical node classes 13.1 General <\/td>\n<\/tr>\n | ||||||
142<\/td>\n | 13.2 Abstract Logical Nodes (AbstractLNs_90_3) Figure 65 \u2013 Class diagram LogicalNodes_90_3::LogicalNodes_90_3 <\/td>\n<\/tr>\n | ||||||
143<\/td>\n | Figure 66 \u2013 Class diagram AbstractLNs_90_3::AbstractLNs_90_3 <\/td>\n<\/tr>\n | ||||||
144<\/td>\n | Table 2 \u2013 Data objects of BatteryChargerLN <\/td>\n<\/tr>\n | ||||||
145<\/td>\n | 13.3 Logical nodes for tanks (LNGroupK) <\/td>\n<\/tr>\n | ||||||
146<\/td>\n | Figure 67 \u2013 Class diagram LNGroupK::LNGroupK <\/td>\n<\/tr>\n | ||||||
147<\/td>\n | Table 3 \u2013 Data objects of KTNKExt <\/td>\n<\/tr>\n | ||||||
148<\/td>\n | Table 4 \u2013 Data objects of KTOW <\/td>\n<\/tr>\n | ||||||
149<\/td>\n | 13.4 Logical nodes for metering and measurement (LNGroupM) <\/td>\n<\/tr>\n | ||||||
150<\/td>\n | Figure 68 \u2013 Class diagram LNGroupM::LNGroupM <\/td>\n<\/tr>\n | ||||||
151<\/td>\n | Table 5 \u2013 Data objects of MMETExt <\/td>\n<\/tr>\n | ||||||
152<\/td>\n | 13.5 Logical nodes for supervision and monitoring (LNGroupS) <\/td>\n<\/tr>\n | ||||||
153<\/td>\n | Figure 69 \u2013 Class diagram LNGroupS::LNGroupS1 <\/td>\n<\/tr>\n | ||||||
154<\/td>\n | Figure 70 \u2013 Class diagram LNGroupS::LNGroupS2 <\/td>\n<\/tr>\n | ||||||
156<\/td>\n | Table 6 \u2013 Data objects of SBAT <\/td>\n<\/tr>\n | ||||||
157<\/td>\n | Table 7 \u2013 Data objects of SCBRExt <\/td>\n<\/tr>\n | ||||||
159<\/td>\n | Table 8 \u2013 Data objects of SCGR <\/td>\n<\/tr>\n | ||||||
160<\/td>\n | Table 9 \u2013 Data objects of SEAM <\/td>\n<\/tr>\n | ||||||
162<\/td>\n | Table 10 \u2013 Data objects of SFIR <\/td>\n<\/tr>\n | ||||||
163<\/td>\n | Table 11 \u2013 Data objects of SIMLExt <\/td>\n<\/tr>\n | ||||||
168<\/td>\n | Table 12 \u2013 Data objects of SIMS <\/td>\n<\/tr>\n | ||||||
169<\/td>\n | Table 13 \u2013 Data objects of SLTCExt <\/td>\n<\/tr>\n | ||||||
172<\/td>\n | Table 14 \u2013 Data objects of SPTRExt <\/td>\n<\/tr>\n | ||||||
173<\/td>\n | Table 15 \u2013 Data objects of SSTP <\/td>\n<\/tr>\n | ||||||
174<\/td>\n | 13.6 Logical nodes for instrument transformers and sensors (LNGroupT) <\/td>\n<\/tr>\n | ||||||
175<\/td>\n | Figure 71 \u2013 Class diagram LNGroupT::LNGroupT <\/td>\n<\/tr>\n | ||||||
176<\/td>\n | Table 16 \u2013 Data objects of TDEN <\/td>\n<\/tr>\n | ||||||
177<\/td>\n | Table 17 \u2013 Data objects of TTRQ <\/td>\n<\/tr>\n | ||||||
178<\/td>\n | 13.7 Logical nodes for power transformers (LNGroupY) Table 18 \u2013 Data objects of TUHF <\/td>\n<\/tr>\n | ||||||
179<\/td>\n | Figure 72 \u2013 Class diagram LNGroupY::LNGroupY <\/td>\n<\/tr>\n | ||||||
180<\/td>\n | Table 19 \u2013 Data objects of YPTRExt <\/td>\n<\/tr>\n | ||||||
181<\/td>\n | 13.8 Logical nodes for further power system equipment (LNGroupZ) <\/td>\n<\/tr>\n | ||||||
182<\/td>\n | Figure 73 \u2013 Class diagram LNGroupZ::LNGroupZ1 <\/td>\n<\/tr>\n | ||||||
183<\/td>\n | Figure 74 \u2013 Class diagram LNGroupZ::LNGroupZ2 <\/td>\n<\/tr>\n | ||||||
184<\/td>\n | Table 20 \u2013 Data objects of ZAXNExt <\/td>\n<\/tr>\n | ||||||
185<\/td>\n | Table 21 \u2013 Data objects of ZBATExt <\/td>\n<\/tr>\n | ||||||
187<\/td>\n | Table 22 \u2013 Data objects of ZBSHExt <\/td>\n<\/tr>\n | ||||||
188<\/td>\n | Table 23 \u2013 Data objects of ZBTC <\/td>\n<\/tr>\n | ||||||
190<\/td>\n | Table 24 \u2013 Data objects of ZCABExt <\/td>\n<\/tr>\n | ||||||
192<\/td>\n | Table 25 \u2013 Data objects of ZCONExt <\/td>\n<\/tr>\n | ||||||
193<\/td>\n | Table 26 \u2013 Data objects of ZGENExt <\/td>\n<\/tr>\n | ||||||
195<\/td>\n | Table 27 \u2013 Data objects of ZLINExt <\/td>\n<\/tr>\n | ||||||
197<\/td>\n | Table 28 \u2013 Data objects of ZUPS <\/td>\n<\/tr>\n | ||||||
198<\/td>\n | 14 Data object name semantics and enumerations 14.1 Data semantics Table 29 \u2013 Attributes defined on classes of LogicalNodes_90_3 package <\/td>\n<\/tr>\n | ||||||
206<\/td>\n | 14.2 Enumerated data attribute types Figure 75 \u2013 Class diagram DOEnums_90_3::DOEnums_90_3 Table 30 \u2013 Literals of BatteryChargerType90_3Kind <\/td>\n<\/tr>\n | ||||||
207<\/td>\n | Table 31 \u2013 Literals of BatteryTestResult90-3Kind Table 32 \u2013 Literals of BatteryType90_3Kind <\/td>\n<\/tr>\n | ||||||
208<\/td>\n | Table 33 \u2013 Literals of ChargerOperationKind Table 34 \u2013 Literals of ExternalDeviceModeKind Table 35 \u2013 Literals of OperationFailureModeKind <\/td>\n<\/tr>\n | ||||||
209<\/td>\n | 15 SCL enumerations (from DOEnums_90_3) Table 36 \u2013 Literals of SystemOperationModeKind <\/td>\n<\/tr>\n | ||||||
211<\/td>\n | Annex A (informative) Usage of \u201cT\u201d logical node and \u201cS\u201d logical node in CMD application Figure A.1 \u2013 Decomposition of functions into interacting LN on different levels: Examples for generic function with tele control interface, protection function and measuring\/metering function (from IEC\u00a061850-5:2003) <\/td>\n<\/tr>\n | ||||||
212<\/td>\n | Bibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" Communication networks and systems for power utility automation – Using IEC 61850 for condition monitoring diagnosis and analysis<\/b><\/p>\n |