{"id":255225,"date":"2024-10-19T16:52:14","date_gmt":"2024-10-19T16:52:14","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bs-en-61400-132016\/"},"modified":"2024-10-25T12:18:49","modified_gmt":"2024-10-25T12:18:49","slug":"bs-en-61400-132016","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bs-en-61400-132016\/","title":{"rendered":"BS EN 61400-13:2016"},"content":{"rendered":"
IEC 61400-13:2015(B) describes the measurement of fundamental structural loads on wind turbines for the purpose of the load simulation model validation. The standard prescribes the requirements and recommendations for site selection, signal selection, data acquisition, calibration, data verification, measurement load cases, capture matrix, post-processing, uncertainty determination and reporting. Informative annexes are also provided to improve understanding of testing methods. This standard replaces IEC TS 61400-13 published in 2001; it constitutes a technical revision and transition from technical specification to International Standard.<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
6<\/td>\n | English CONTENTS <\/td>\n<\/tr>\n | ||||||
12<\/td>\n | FOREWORD <\/td>\n<\/tr>\n | ||||||
14<\/td>\n | INTRODUCTION <\/td>\n<\/tr>\n | ||||||
15<\/td>\n | 1 Scope 2 Normative references 3 Terms and definitions <\/td>\n<\/tr>\n | ||||||
18<\/td>\n | 4 Symbols, units and abbreviations <\/td>\n<\/tr>\n | ||||||
20<\/td>\n | 5 General 5.1 Document structure <\/td>\n<\/tr>\n | ||||||
21<\/td>\n | 5.2 Safety during testing 6 Test requirements 6.1 General 6.2 Test site requirements 6.3 Measurement load cases 6.3.1 General <\/td>\n<\/tr>\n | ||||||
22<\/td>\n | 6.3.2 MLCs during steady-state operation 6.3.3 MLCs during transient events Tables Table 1 \u2013 MLCs during steady-state operation related to the DLCs defined in IEC\u00a061400-1 <\/td>\n<\/tr>\n | ||||||
23<\/td>\n | 6.3.4 MLCs for dynamic characterization Table 2 \u2013 Measurement of transient load cases related to the DLCs defined in IEC\u00a061400-1 Table 3 \u2013 MLCs for dynamic characterization <\/td>\n<\/tr>\n | ||||||
24<\/td>\n | 6.3.5 Capture matrices <\/td>\n<\/tr>\n | ||||||
25<\/td>\n | Table 4 \u2013 Capture matrix for normal power production for stall controlled wind turbines <\/td>\n<\/tr>\n | ||||||
26<\/td>\n | Table 5 \u2013 Capture matrix for normal power production for non stall controlled wind turbines Table 6 \u2013 Capture matrix for parked condition <\/td>\n<\/tr>\n | ||||||
27<\/td>\n | 6.4 Quantities to be measured 6.4.1 General 6.4.2 Load quantities Table 7 \u2013 Capture matrix for normal transient events Table 8 \u2013 Capture matrix for other than normal transient events <\/td>\n<\/tr>\n | ||||||
28<\/td>\n | Figures Figure 1 \u2013 Fundamental wind turbine loads: tower base, rotor and blade loads Table 9 \u2013 Wind turbine fundamental load quantities <\/td>\n<\/tr>\n | ||||||
29<\/td>\n | 6.4.3 Meteorological quantities 6.4.4 Wind turbine operation quantities Table 10 \u2013 Additional load quantities for turbines with a rated power output greater than 1 500 kW and rotor diameter greater than 75 m Table 11 \u2013 Meteorological quantities <\/td>\n<\/tr>\n | ||||||
30<\/td>\n | 6.5 Turbine configuration changes Table 12 \u2013 Wind turbine operation quantities <\/td>\n<\/tr>\n | ||||||
31<\/td>\n | 7 Instrumentation 7.1 Load quantities 7.1.1 Types of sensors 7.1.2 Choice of sensor location 7.1.3 Measurement of blade root bending moments <\/td>\n<\/tr>\n | ||||||
32<\/td>\n | 7.1.4 Blade bending moment distribution 7.1.5 Blade torsion frequency\/damping 7.1.6 Measurement of rotor yaw and tilt moment 7.1.7 Measurement of the rotor torque 7.1.8 Measurement of tower base bending 7.1.9 Tower top bending moments <\/td>\n<\/tr>\n | ||||||
33<\/td>\n | 7.1.10 Tower mid bending moments 7.1.11 Tower torque 7.1.12 Tower top acceleration 7.1.13 Pitch actuation loads (on hub side of pitch bearing) 7.2 Meteorological quantities 7.2.1 Measurement and installation requirements 7.2.2 Icing potential 7.2.3 Atmospheric stability <\/td>\n<\/tr>\n | ||||||
34<\/td>\n | 7.3 Wind turbine operation quantities 7.3.1 Electrical power 7.3.2 Rotor speed or generator speed 7.3.3 Yaw misalignment 7.3.4 Rotor azimuth angle 7.3.5 Pitch position 7.3.6 Pitch speed 7.3.7 Brake moment 7.3.8 Wind turbine status 7.3.9 Brake status <\/td>\n<\/tr>\n | ||||||
35<\/td>\n | 7.4 Data acquisition system 7.4.1 General 7.4.2 Resolution 7.4.3 Anti-aliasing 8 Determination of calibration factors 8.1 General <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | 8.2 Calibration of load channels 8.2.1 General Table 13 \u2013 Summary of suitable calibration methods <\/td>\n<\/tr>\n | ||||||
37<\/td>\n | 8.2.2 Blade bending moments 8.2.3 Main shaft moments <\/td>\n<\/tr>\n | ||||||
38<\/td>\n | 8.2.4 Tower bending moments 8.2.5 Tower torque <\/td>\n<\/tr>\n | ||||||
39<\/td>\n | 8.3 Calibration of non-load channels 8.3.1 Pitch angle 8.3.2 Rotor azimuth angle 8.3.3 Yaw angle 8.3.4 Wind direction 8.3.5 Pitch actuation loads <\/td>\n<\/tr>\n | ||||||
40<\/td>\n | 8.3.6 Brake moment 9 Data verification 9.1 General 9.2 Verification checks 9.2.1 General <\/td>\n<\/tr>\n | ||||||
41<\/td>\n | 9.2.2 Blade moments <\/td>\n<\/tr>\n | ||||||
42<\/td>\n | 9.2.3 Main shaft 9.2.4 Tower <\/td>\n<\/tr>\n | ||||||
43<\/td>\n | 10 Processing of measured data 10.1 General 10.2 Fundamental load quantities 10.3 Load quantities for larger turbines 10.4 Wind speed trend detection <\/td>\n<\/tr>\n | ||||||
44<\/td>\n | 10.5 Statistics 10.6 Rainflow counting 10.7 Cumulative rainflow spectrum 10.8 Damage equivalent load <\/td>\n<\/tr>\n | ||||||
45<\/td>\n | 10.9 Wind speed binning <\/td>\n<\/tr>\n | ||||||
46<\/td>\n | 10.10 Power spectral density 11 Uncertainty estimation 12 Reporting <\/td>\n<\/tr>\n | ||||||
50<\/td>\n | Annexes Annex A (informative) Example co-ordinate systems A.1 General A.2 Blade co-ordinate system A.3 Hub co-ordinate system Figure A.1 \u2013 Blade co-ordinate system <\/td>\n<\/tr>\n | ||||||
51<\/td>\n | A.4 Nacelle co-ordinate system Figure A.2 \u2013 Hub co-ordinate system <\/td>\n<\/tr>\n | ||||||
52<\/td>\n | A.5 Tower co-ordinate system Figure A.3 \u2013 Nacelle co-ordinate system Figure A.4 \u2013 Tower co-ordinate system <\/td>\n<\/tr>\n | ||||||
53<\/td>\n | A.6 Yaw misalignment A.7 Cone angle and tilt angle Figure A.5 \u2013 Yaw misalignment Figure A.6 \u2013 Cone angle and tilt angle <\/td>\n<\/tr>\n | ||||||
54<\/td>\n | A.8 Rotor azimuth angle A.9 Blade pitch angle <\/td>\n<\/tr>\n | ||||||
55<\/td>\n | Annex B (informative) Procedure for the evaluation of uncertainties in load measurements on wind turbines B.1 List of symbols <\/td>\n<\/tr>\n | ||||||
56<\/td>\n | B.2 General procedure B.2.1 Standard uncertainty <\/td>\n<\/tr>\n | ||||||
57<\/td>\n | B.2.2 Analytical combination of standard uncertainties <\/td>\n<\/tr>\n | ||||||
58<\/td>\n | B.2.3 Total uncertainty <\/td>\n<\/tr>\n | ||||||
59<\/td>\n | B.3 Uncertainties of binned averaged values B.3.1 General B.3.2 Uncertainty of calibration and signal B.3.3 Uncertainty of the bin scatter B.3.4 Uncertainty of the x-axis quantity B.3.5 Uncertainty of bin averaged mean values <\/td>\n<\/tr>\n | ||||||
60<\/td>\n | B.4 Standard uncertainty of DEL and load spectra B.5 Examples of an uncertainty evaluation B.5.1 Example for analytical shunt calibration of tower torque Table B.1 \u2013 Uncertainty components <\/td>\n<\/tr>\n | ||||||
64<\/td>\n | Table B.2 \u2013 Values and uncertainties for the calculation <\/td>\n<\/tr>\n | ||||||
65<\/td>\n | Figure B.1 \u2013 Explanation of used symbols <\/td>\n<\/tr>\n | ||||||
67<\/td>\n | B.6 Determination and use of calibration matrix B.6.1 Determination of the calibration matrix <\/td>\n<\/tr>\n | ||||||
68<\/td>\n | B.6.2 Use of the calibration matrix <\/td>\n<\/tr>\n | ||||||
69<\/td>\n | B.6.3 Time series <\/td>\n<\/tr>\n | ||||||
71<\/td>\n | Annex C (informative) Sample presentation of mechanical load measurements and analysis C.1 General Figure C.1 \u2013 Hub-height wind speed as a function of time <\/td>\n<\/tr>\n | ||||||
72<\/td>\n | Figure C.2 \u2013 Hub-height turbulence intensity as a function of hub-height wind speed Figure C.3 \u2013 Turbulence intensity trending as a function of hub-height wind speed <\/td>\n<\/tr>\n | ||||||
73<\/td>\n | Figure C.4 \u2013 Global capture matrix with all loads channels operating <\/td>\n<\/tr>\n | ||||||
74<\/td>\n | Figure C.5 \u2013 IEC example turbine at 9,1 m\/s \u2013 Wind turbine operational and meteorological quantities <\/td>\n<\/tr>\n | ||||||
75<\/td>\n | Figure C.6 \u2013 IEC example turbine at 9,1 m\/s \u2013 Major load components <\/td>\n<\/tr>\n | ||||||
76<\/td>\n | Figure C.7 \u2013 10-minute statistics for blade 1 root edge bending <\/td>\n<\/tr>\n | ||||||
77<\/td>\n | Figure C.8 \u2013 Power spectral density of blade 1 root edge bending <\/td>\n<\/tr>\n | ||||||
78<\/td>\n | Table C.1 \u2013 Binned data for blade 1 root edge bending <\/td>\n<\/tr>\n | ||||||
79<\/td>\n | Figure C.9 \u2013 Cumulative rainflow spectrum forblade 1 root edge bending during test period <\/td>\n<\/tr>\n | ||||||
80<\/td>\n | Table C.2 \u2013 Transient capture matrix for normal start-up and shutdown Table C.3 \u2013 Brief statistical description for normal shutdown for IEC example turbine at 9,5 m\/s <\/td>\n<\/tr>\n | ||||||
81<\/td>\n | Figure C.10 \u2013 IEC example turbine normal shutdown at 9,5 m\/s \u2013 Wind turbine operational and meteorological quantities <\/td>\n<\/tr>\n | ||||||
82<\/td>\n | Figure C.11 \u2013 IEC example turbine normal shutdown at 9,5 m\/s \u2013 Major load components <\/td>\n<\/tr>\n | ||||||
83<\/td>\n | Annex D (informative) Recommendations for offshore measurements Figure D.1 \u2013 Example of wave spectrum and monopile response <\/td>\n<\/tr>\n | ||||||
84<\/td>\n | Figure D.2 \u2013 Example of wave spectrum <\/td>\n<\/tr>\n | ||||||
85<\/td>\n | Annex E (informative) Load model validation E.1 General <\/td>\n<\/tr>\n | ||||||
86<\/td>\n | E.2 Methods for loads comparison E.2.1 Statistical binning Figure E.1 \u2013 Measured data Figure E.2 \u2013 Simulated data Figure E.3 \u2013 Comparison of wind speed binned averaged 10 min. statistics <\/td>\n<\/tr>\n | ||||||
87<\/td>\n | E.2.2 Spectral functions Figure E.4 \u2013 Comparison of 1 Hz equivalent loads Figure E.5 \u2013 Comparison of 1 Hz equivalent loads (wind speed binned) Figure E.6 \u2013 Comparison of PSD functions <\/td>\n<\/tr>\n | ||||||
88<\/td>\n | E.2.3 Fatigue spectra E.2.4 Point by point Figure E.7 \u2013 Comparison of fatigue spectra <\/td>\n<\/tr>\n | ||||||
89<\/td>\n | Figure E.8 \u2013 Point by point comparison of wind speed time histories Figure E.9 \u2013 Point by point comparison of load time histories <\/td>\n<\/tr>\n | ||||||
90<\/td>\n | Annex F (informative) Methods for identification of wind speed trends F.1 List of symbols F.2 General <\/td>\n<\/tr>\n | ||||||
91<\/td>\n | F.3 Trend identification methods Figure F.1 \u2013 Comparison of measured wind speed (vmeas), smoothingfiltered wind speed (vfilt) and resulting trend-free wind speed (vHP) <\/td>\n<\/tr>\n | ||||||
93<\/td>\n | Figure F.2 \u2013 Differences of turbulence intensities calculated with un-filtered and filtered wind speed versus mean measured wind speed <\/td>\n<\/tr>\n | ||||||
94<\/td>\n | Figure F.3 \u2013 Ratio of turbulence intensities calculated with un-filtered and filtered wind speed versus mean measured wind speed <\/td>\n<\/tr>\n | ||||||
95<\/td>\n | F.4 Ongoing procedure <\/td>\n<\/tr>\n | ||||||
96<\/td>\n | Annex G (informative) Data acquisition considerations G.1 Data acquisition system G.1.1 General G.1.2 Resolution <\/td>\n<\/tr>\n | ||||||
97<\/td>\n | G.1.3 Sampling model and filtering Figure G.1 \u2013 Anti-aliasing check <\/td>\n<\/tr>\n | ||||||
98<\/td>\n | Table G.1 \u2013 Wind turbine significant frequencies Table G.2 \u2013 Sampling ratio <\/td>\n<\/tr>\n | ||||||
99<\/td>\n | G.1.4 Other considerations <\/td>\n<\/tr>\n | ||||||
100<\/td>\n | Annex H (informative) Load calibration H.1 General H.2 Gravity load calibration of the blade bending <\/td>\n<\/tr>\n | ||||||
101<\/td>\n | H.3 Analytical calibration of the tower bending moments <\/td>\n<\/tr>\n | ||||||
102<\/td>\n | H.4 External load calibration of the rotor torque <\/td>\n<\/tr>\n | ||||||
103<\/td>\n | Annex I (informative) Temperature drift I.1 General I.2 Known issues Figure I.1 \u2013 Observed scatter in the original 10-min average values of the blade edge moment together with the same signal after temperature compensation in dark blue <\/td>\n<\/tr>\n | ||||||
104<\/td>\n | I.3 Recommendations Figure I.2 \u2013 Linear regression through the offsets derived from the different calibration runs <\/td>\n<\/tr>\n | ||||||
105<\/td>\n | Annex J (informative) Mechanical load measurements on vertical axis wind turbines J.1 General J.2 Terms and definitions J.3 Coordinate systems <\/td>\n<\/tr>\n | ||||||
106<\/td>\n | J.4 Quantities to be measured J.4.1 Fundamental loads Figure J.1 \u2013 Darrieus style VAWT Figure J.2 \u2013 Helical Darrieus style VAWT <\/td>\n<\/tr>\n | ||||||
107<\/td>\n | J.5 Measurements J.5.1 Measurement of blade attachment bending moments J.5.2 Blade mid-span bending moment J.5.3 Blade modal frequency\/damping J.5.4 Connecting strut bending moment Table J.1 \u2013 Minimum recommendations for VAWT fundamental load quantities <\/td>\n<\/tr>\n | ||||||
108<\/td>\n | J.5.5 Connecting strut axial force J.5.6 Connecting strut modal frequency\/damping J.5.7 Rotor shaft torque J.5.8 Tower normal bending <\/td>\n<\/tr>\n | ||||||
109<\/td>\n | Bibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" Wind turbines – Measurement of mechanical loads<\/b><\/p>\n |