{"id":26353,"date":"2024-10-17T02:29:56","date_gmt":"2024-10-17T02:29:56","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/fema-306-98-1998\/"},"modified":"2024-10-24T13:45:41","modified_gmt":"2024-10-24T13:45:41","slug":"fema-306-98-1998","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/fema\/fema-306-98-1998\/","title":{"rendered":"FEMA 306 98 1998"},"content":{"rendered":"
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
3<\/td>\n | Preface <\/td>\n<\/tr>\n | ||||||
5<\/td>\n | Table of Contents <\/td>\n<\/tr>\n | ||||||
9<\/td>\n | List of Figures <\/td>\n<\/tr>\n | ||||||
11<\/td>\n | List of Tables <\/td>\n<\/tr>\n | ||||||
13<\/td>\n | List of Test and Inspection Guides <\/td>\n<\/tr>\n | ||||||
15<\/td>\n | List of Component Damage Classification Guides <\/td>\n<\/tr>\n | ||||||
17<\/td>\n | Prologue What have we learned? <\/td>\n<\/tr>\n | ||||||
18<\/td>\n | What does it mean? <\/td>\n<\/tr>\n | ||||||
21<\/td>\n | 1. Introduction and Overview 1.1 Purpose 1.2 Scope <\/td>\n<\/tr>\n | ||||||
22<\/td>\n | Figure 1 1 Global Displacement Capacities for Various Performance Levels. Capacities will vary, d… 1.3 Basis <\/td>\n<\/tr>\n | ||||||
23<\/td>\n | Figure 1 2 Global Displacement Demands for Restored and Unrestored Damaged Buildings. <\/td>\n<\/tr>\n | ||||||
24<\/td>\n | 1.4 Overview of the Damage Investigation and Evaluation Procedures 1.4.1 Introduction and Overview 1.4.2 Characteristics of Concrete and Masonry Wall Buildings 1.4.3 Investigation of Earthquake Damage <\/td>\n<\/tr>\n | ||||||
25<\/td>\n | Figure 1 3 Flowchart for the Investigation and Evaluation of Earthquake Damage to Concrete and Ma… <\/td>\n<\/tr>\n | ||||||
26<\/td>\n | 1.4.4 Evaluation of Earthquake Damage <\/td>\n<\/tr>\n | ||||||
27<\/td>\n | 1.4.5 Component Information 1.4.6 Terms and Symbols 1.4.7 Related Documents <\/td>\n<\/tr>\n | ||||||
28<\/td>\n | 1.5 Limitations <\/td>\n<\/tr>\n | ||||||
29<\/td>\n | 2. Characteristics of Concrete And Masonry Wall Buildings 2.1 Typical Vertical Elements 2.1.1 Bearing Walls and Infilled Frames Figure 2 1 Global Structure, Lateral-Force-Resisting Elements, and Components. <\/td>\n<\/tr>\n | ||||||
30<\/td>\n | 2.1.2 Wall Elevations 2.1.3 Foundation Effects 2.2 Horizontal Elements <\/td>\n<\/tr>\n | ||||||
31<\/td>\n | Figure 2 2 Characteristics of Bearing Walls and Infilled Frames <\/td>\n<\/tr>\n | ||||||
32<\/td>\n | Figure 2 3 Three General Categories of Concrete and Masonry Wall Configurations <\/td>\n<\/tr>\n | ||||||
33<\/td>\n | Figure 2 4 Example Wall Mechanisms and Components <\/td>\n<\/tr>\n | ||||||
34<\/td>\n | 2.3 Three-Dimensional Considerations 2.4 Identification of Components <\/td>\n<\/tr>\n | ||||||
35<\/td>\n | Table 2 1 Component Types for Reinforced Concrete Walls <\/td>\n<\/tr>\n | ||||||
37<\/td>\n | 3. Investigation of Earthquake Damage 3.1 Characteristics of the Damaging Earthquake 3.2 Review of Existing Building Data <\/td>\n<\/tr>\n | ||||||
38<\/td>\n | Figure 3 1 Parameters Needed and Form of Approximate Site Response Spectrum 3.3 Assessing the Consequences of the Damaging Earthquake <\/td>\n<\/tr>\n | ||||||
39<\/td>\n | Figure 3 2 Peak Ground Acceleration Contours for 1994 Northridge, California, Earthquake (from NI… <\/td>\n<\/tr>\n | ||||||
40<\/td>\n | Table 3 1 Summary of Inspection and Test Procedures <\/td>\n<\/tr>\n | ||||||
41<\/td>\n | Figure 3 3 Spectral Acceleration Contours for T=0.3 sec., 1994 Northridge, California, Earthquake… <\/td>\n<\/tr>\n | ||||||
42<\/td>\n | Figure 3 4 Spectral Acceleration Contours for T=1.0 sec., 1994 Northridge, California, Earthquake… 3.4 Pre-existing Conditions <\/td>\n<\/tr>\n | ||||||
43<\/td>\n | 3.5 Component Damage Classification <\/td>\n<\/tr>\n | ||||||
44<\/td>\n | 3.6 Verification <\/td>\n<\/tr>\n | ||||||
45<\/td>\n | Figure 3 5 Different Inelastic Lateral Mechanisms and Components for Same Wall Element <\/td>\n<\/tr>\n | ||||||
46<\/td>\n | Figure 3 6 Relationship between design strength and expected strength 3.7 Documentation <\/td>\n<\/tr>\n | ||||||
47<\/td>\n | Figure 3 7 Component force-deformation behavior, ductility, and severity of damage <\/td>\n<\/tr>\n | ||||||
48<\/td>\n | Figure 3 8 Example Component Damage Record <\/td>\n<\/tr>\n | ||||||
49<\/td>\n | 3.8 Test and Inspection Guides <\/td>\n<\/tr>\n | ||||||
81<\/td>\n | 4. Evaluation of Earthquake Damage 4.1 Basis of Evaluation 4.2 Seismic Performance Objectives 4.3 Seismic Performance Parameters <\/td>\n<\/tr>\n | ||||||
82<\/td>\n | 4.4 Relative Performance Analysis 4.4.1 Overview <\/td>\n<\/tr>\n | ||||||
83<\/td>\n | Figure 4 1 Displacement Parameters for Damage Evaluation <\/td>\n<\/tr>\n | ||||||
84<\/td>\n | Figure 4 2 Idealized Component Force-Deformation Relationship 4.4.2 Global Displacement Performance Limits <\/td>\n<\/tr>\n | ||||||
85<\/td>\n | Figure 4 3 Global Displacement Limits and Component Acceptability used in FEMA 273\/274 4.4.3 Component Modeling and Acceptability Criteria <\/td>\n<\/tr>\n | ||||||
86<\/td>\n | Figure 4 4 Component Modeling Criteria <\/td>\n<\/tr>\n | ||||||
87<\/td>\n | Figure 4 5 Component Acceptability Criteria <\/td>\n<\/tr>\n | ||||||
88<\/td>\n | Figure 4 6 Component Modification Factors and Damage Severity <\/td>\n<\/tr>\n | ||||||
89<\/td>\n | Figure 4 7 Determining l values from structural testing <\/td>\n<\/tr>\n | ||||||
90<\/td>\n | 4.4.4 Global Displacement Demand <\/td>\n<\/tr>\n | ||||||
91<\/td>\n | Figure 4 8 Maximum Displacement Dependency on Damaging Earthquake Figure 4 9 Global Capacity Dependency on Initial and Effective Stiffness <\/td>\n<\/tr>\n | ||||||
92<\/td>\n | Figure 4 10 Pre- and Post-Event Capacity Curves with Associated Stiffnesses <\/td>\n<\/tr>\n | ||||||
94<\/td>\n | 4.5 Performance Restoration Measures <\/td>\n<\/tr>\n | ||||||
95<\/td>\n | 4.6 An Alternative\u2014The Direct Method <\/td>\n<\/tr>\n | ||||||
97<\/td>\n | 5: Reinforced Concrete 5.1 Introduction and Background 5.2 Reinforced Concrete Component Types and Behavior Modes 5.2.1 Component Types 5.2.2 Behavior Modes and Damage <\/td>\n<\/tr>\n | ||||||
98<\/td>\n | Table 5 1 Component Types and Descriptions for Reinforced Concrete Walls. 5.2.3 Behavior Modes with High Ductility Capacity (Flexural Response) 5.2.4 Behavior Modes with Intermediate Ductility Capacity <\/td>\n<\/tr>\n | ||||||
99<\/td>\n | Table 5 2 Behavior Modes for Reinforced Concrete Wall Components. <\/td>\n<\/tr>\n | ||||||
100<\/td>\n | Table 5 3 Likelihood of Earthquake Damage to Reinforced Concrete Walls According to Wall Componen… <\/td>\n<\/tr>\n | ||||||
102<\/td>\n | 5.2.5 Behavior Modes with Little or No Ductility Capacity <\/td>\n<\/tr>\n | ||||||
103<\/td>\n | 5.2.6 Foundation Rocking Response 5.3 Reinforced Concrete Evaluation Procedures 5.3.1 Cracking <\/td>\n<\/tr>\n | ||||||
104<\/td>\n | 5.3.2 Expected Strength and Material Properties <\/td>\n<\/tr>\n | ||||||
105<\/td>\n | 5.3.3 Plastic-Hinge Location and Length <\/td>\n<\/tr>\n | ||||||
106<\/td>\n | 5.3.4 Ductility Classifications <\/td>\n<\/tr>\n | ||||||
107<\/td>\n | 5.3.5 Moment Strength <\/td>\n<\/tr>\n | ||||||
108<\/td>\n | 5.3.6 Shear Strength <\/td>\n<\/tr>\n | ||||||
110<\/td>\n | 5.3.7 Wall Boundary Confinement <\/td>\n<\/tr>\n | ||||||
111<\/td>\n | 5.3.8 Lap Splice Strength <\/td>\n<\/tr>\n | ||||||
112<\/td>\n | 5.3.9 Wall Buckling <\/td>\n<\/tr>\n | ||||||
113<\/td>\n | 5.4 Symbols for Reinforced Concrete <\/td>\n<\/tr>\n | ||||||
115<\/td>\n | 5.5 Reinforced Concrete Component Guides <\/td>\n<\/tr>\n | ||||||
127<\/td>\n | 6: Reinforced Masonry 6.1 Introduction and Background <\/td>\n<\/tr>\n | ||||||
128<\/td>\n | 6.2 Reinforced Masonry Component Types and Behavior Modes 6.2.1 Component Types <\/td>\n<\/tr>\n | ||||||
129<\/td>\n | Table 6 1 Component Types for Reinforced Masonry 6.2.2 Behavior Modes with High Ductility <\/td>\n<\/tr>\n | ||||||
130<\/td>\n | Table 6 2 Likelihood of Earthquake Damage to Reinforced Masonry Components According to Component… <\/td>\n<\/tr>\n | ||||||
131<\/td>\n | Table 6 3 Behavior Modes for Reinforced Masonry Components (Note: Hysteresis Curves from Shing et… <\/td>\n<\/tr>\n | ||||||
133<\/td>\n | 6.2.3 Behavior Modes with Moderate Ductility 6.2.4 Behavior Modes with Low Ductility <\/td>\n<\/tr>\n | ||||||
134<\/td>\n | 6.3 Reinforced Masonry Evaluation Procedures 6.3.1 Material Properties Table 6 4 Initial Expected Clay or Concrete Masonry Properties 6.3.2 Flexure <\/td>\n<\/tr>\n | ||||||
136<\/td>\n | 6.3.3 Shear <\/td>\n<\/tr>\n | ||||||
137<\/td>\n | 6.3.4 Sliding 6.3.5 Wall Instability <\/td>\n<\/tr>\n | ||||||
138<\/td>\n | 6.3.6 Lap-Splice Slip 6.3.7 Masonry Beams <\/td>\n<\/tr>\n | ||||||
140<\/td>\n | 6.4 Symbols for Reinforced Masonry <\/td>\n<\/tr>\n | ||||||
141<\/td>\n | 6.5 Reinforced Masonry Component Guides <\/td>\n<\/tr>\n | ||||||
157<\/td>\n | 7: Unreinforced Masonry 7.1 Introduction and Background 7.1.1 Section Organization 7.1.2 Material Types and Structural Framing <\/td>\n<\/tr>\n | ||||||
158<\/td>\n | 7.1.3 Seismically Rehabilitated URM Buildings <\/td>\n<\/tr>\n | ||||||
159<\/td>\n | 7.2 Unreinforced Masonry Component Types and Behavior Modes 7.2.1 Non-Wall Components <\/td>\n<\/tr>\n | ||||||
160<\/td>\n | Figure 7 1 Diagram of Parapet Failure (from Rutherford and Chekene, 1990) <\/td>\n<\/tr>\n | ||||||
162<\/td>\n | Table 7 1 Behavior Modes for Non-Wall URM Elements 7.2.2 Wall Components <\/td>\n<\/tr>\n | ||||||
163<\/td>\n | Table 7 2 Behavior Modes for URM Walls <\/td>\n<\/tr>\n | ||||||
164<\/td>\n | Figure 7 3 Diagram of an Appendage Failure (from Rutherford and Chekene, 1990) 7.2.3 Foundation Rocking 7.2.4 Wall-Pier Rocking <\/td>\n<\/tr>\n | ||||||
165<\/td>\n | Figure 7 4 Photos of Appendage Failures (from Rutherford &Chekene, 1990) <\/td>\n<\/tr>\n | ||||||
166<\/td>\n | Figure 7 5 Diagram of Wall-Diaphragm Tension Tie Failure (from Rutherford and Chekene, 1990) 7.2.5 Bed-Joint Sliding <\/td>\n<\/tr>\n | ||||||
167<\/td>\n | Figure 7 6 Photo of Wall-Diaphragm Tension Tie Failure (from Rutherford and Chekene, 1990) <\/td>\n<\/tr>\n | ||||||
168<\/td>\n | Figure 7 7 Diagram of Wall-Diaphragm Shear Tie Failure (from City of Los Angeles, 1991) <\/td>\n<\/tr>\n | ||||||
169<\/td>\n | Figure 7 8 Examples of Various Masonry Diaphragms (from Rutherford and Chekene, 1997) 7.2.6 Bed-Joint Sliding at Wall Base <\/td>\n<\/tr>\n | ||||||
170<\/td>\n | Figure 7 9 URM Wall Components 7.2.7 Spandrel-Joint Sliding 7.2.8 Rocking\/Toe Crushing <\/td>\n<\/tr>\n | ||||||
171<\/td>\n | Figure 7 10 Photo of Bed Joint Sliding 7.2.9 Flexural Cracking\/Toe Crushing\/Bed Joint Sliding 7.2.10 Flexural Cracking\/Diagonal Tension 7.2.11 Flexural Cracking\/Toe Crushing <\/td>\n<\/tr>\n | ||||||
172<\/td>\n | 7.2.12 Spandrel-Unit Cracking 7.2.13 Corner Damage 7.2.14 Preemptive Diagonal Tension 7.2.15 Preemptive Toe Crushing <\/td>\n<\/tr>\n | ||||||
173<\/td>\n | Figure 7 11 Diagram of Corner Damage (from City of Los Angeles, 1991) 7.2.16 Out-of-Plane Flexural Response <\/td>\n<\/tr>\n | ||||||
174<\/td>\n | Figure 7 12 Photo of Corner Damage (from Rutherford and Chekene, 1990) 7.2.17 Other Modes 7.3 Unreinforced Masonry Evaluation procedures 7.3.1 Overview <\/td>\n<\/tr>\n | ||||||
175<\/td>\n | 7.3.2 Evaluation Procedures for In- Plane Behavior of Piers in Walls with Weak Pier – Strong Span… <\/td>\n<\/tr>\n | ||||||
177<\/td>\n | 7.3.3 Evaluation Procedures for In- Plane Behavior of Solid Wall Components 7.3.4 Evaluation Procedures for In- Plane Behavior of Perforated Walls with Spandrel Damage <\/td>\n<\/tr>\n | ||||||
178<\/td>\n | Figure 7 13 Spandrel Joint Sliding <\/td>\n<\/tr>\n | ||||||
181<\/td>\n | Figure 7 14 Implications of Spandrel Cracking <\/td>\n<\/tr>\n | ||||||
182<\/td>\n | 7.3.5 Evaluation Procedures for Out-of- Plane Behavior of Wall and Pier Components <\/td>\n<\/tr>\n | ||||||
183<\/td>\n | 7.4 Symbols for Unreinforced Masonry <\/td>\n<\/tr>\n | ||||||
185<\/td>\n | 7.5 Unreinforced Masonry Component Guides <\/td>\n<\/tr>\n | ||||||
203<\/td>\n | 8: Infilled Frames 8.1 Introduction and Background <\/td>\n<\/tr>\n | ||||||
204<\/td>\n | 8.2 Infilled Frame Masonry Component Types and Behavior Modes 8.2.1 Component Types <\/td>\n<\/tr>\n | ||||||
205<\/td>\n | Table 8 1 Component Types for Infilled Frames <\/td>\n<\/tr>\n | ||||||
207<\/td>\n | 8.2.2 Panel and Frame Modeling and Interaction 8.2.3 Behavior Modes <\/td>\n<\/tr>\n | ||||||
208<\/td>\n | Table 8 2 Behavior Modes For Solid Infilled Panel Components <\/td>\n<\/tr>\n | ||||||
209<\/td>\n | Figure 8 1 Ductile reinforced concrete frames with concrete masonry infills tested by Mehrabi et … <\/td>\n<\/tr>\n | ||||||
210<\/td>\n | Figure 8 2 Bed-joint sliding of a two-bay steel frame-block infill. Model study by Gergely et al…. <\/td>\n<\/tr>\n | ||||||
211<\/td>\n | Figure 8 3 Specimen tested by Mander et al. (1993a). Steel frame-clay brick masonry infill. Top a… <\/td>\n<\/tr>\n | ||||||
212<\/td>\n | Figure 8 4 Effect of openings on the monotonic lateral-load performance of steel frame-masonry in… <\/td>\n<\/tr>\n | ||||||
213<\/td>\n | Figure 8 5 Out-of-plane behavior of infilled masonry walls showing crack patterns and out-of-plan… <\/td>\n<\/tr>\n | ||||||
214<\/td>\n | Figure 8 6 Experiments conducted by Aycardi et al. (1994), showing the performance of nonductile … <\/td>\n<\/tr>\n | ||||||
216<\/td>\n | Table 8 3 Behavior Modes For Infilled Steel-Frame Components <\/td>\n<\/tr>\n | ||||||
217<\/td>\n | Table 8 4 Behavior Modes For Infilled Concrete-Frame Components 8.3 Infilled Frame Evaluation Procedures 8.3.1 Solid Infilled-Panel Components <\/td>\n<\/tr>\n | ||||||
219<\/td>\n | 8.3.2 Infilled-Panel Components with Openings 8.3.3 Out-of-Plane Behavior of Infilled-Panel Components <\/td>\n<\/tr>\n | ||||||
220<\/td>\n | 8.3.4 Steel-Frame Components 8.3.5 Concrete-Frame Components <\/td>\n<\/tr>\n | ||||||
221<\/td>\n | Table 8 5 Out-of-plane infill strength parameters. <\/td>\n<\/tr>\n | ||||||
225<\/td>\n | 8.4 Infilled Frame Component Guides <\/td>\n<\/tr>\n | ||||||
235<\/td>\n | Glossary <\/td>\n<\/tr>\n | ||||||
237<\/td>\n | List of General Symbols <\/td>\n<\/tr>\n | ||||||
239<\/td>\n | References <\/td>\n<\/tr>\n | ||||||
253<\/td>\n | ATC-43 Project Participants <\/td>\n<\/tr>\n | ||||||
257<\/td>\n | Applied Technology Council Projects And Report Information <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" FEMA 306 – Evaluation of Earthquake Damaged Concrete and Masonry Wall Buildings: Basic Procedures Manual<\/b><\/p>\n |