{"id":385077,"date":"2024-10-20T03:28:59","date_gmt":"2024-10-20T03:28:59","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bs-en-iec-61850-7-4202021\/"},"modified":"2024-10-26T06:18:40","modified_gmt":"2024-10-26T06:18:40","slug":"bs-en-iec-61850-7-4202021","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bs-en-iec-61850-7-4202021\/","title":{"rendered":"BS EN IEC 61850-7-420:2021"},"content":{"rendered":"
This part of IEC 61850 defines the IEC 61850 information models to be used in the exchange of information with distributed energy resources (DER) and Distribution Automation (DA) systems. DERs include distribution-connected generation systems, energy storage systems, and controllable loads, as well as facility DER management systems, including aggregated DER, such as plant control systems, facility DER energy management systems (EMS), building EMS, campus EMS, community EMS, microgrid EMS, etc. DA equipment includes equipment used to manage distribution circuits, including automated switches, fault indicators, capacitor banks, voltage regulators, and other power management devices. The IEC 61850 DER information model standard utilizes existing IEC 61850-7-4 logical nodes where possible, while defining DER and DA specific logical nodes to provide the necessary data objects for DER and DA functions, including for the DER interconnection grid codes specified by various countries and regions. Although this document explicitly addresses distribution-connected resources, most of the resource capabilities, operational functions, and architectures are also applicable to transmission-connected resources. […]<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
2<\/td>\n | undefined <\/td>\n<\/tr>\n | ||||||
5<\/td>\n | Annex ZA (normative)Normative references to international publicationswith their corresponding European publications <\/td>\n<\/tr>\n | ||||||
7<\/td>\n | English CONTENTS <\/td>\n<\/tr>\n | ||||||
20<\/td>\n | FOREWORD <\/td>\n<\/tr>\n | ||||||
21<\/td>\n | Tables Table 1 \u2013 Tracking information of IEC 61850-7-420:2019A namespace building-up <\/td>\n<\/tr>\n | ||||||
23<\/td>\n | INTRODUCTION <\/td>\n<\/tr>\n | ||||||
25<\/td>\n | 1 Scope 1.1 General 1.2 Published versions of this standard and related namespace name 1.3 Data model Namespace name and version Table 2 \u2013 Reference between published versions of the standardand related namespace name <\/td>\n<\/tr>\n | ||||||
26<\/td>\n | 1.4 Data model Namespace Code Component distribution Table 3 \u2013 Attributes of IEC 61850-7-420:2019A namespace <\/td>\n<\/tr>\n | ||||||
27<\/td>\n | 1.5 Changes from IEC 61850-7-420:2009 (Edition 1) 1.6 IEC 61850-7-420 versus IEC 61850-7-520 1.7 Terminology due to historical usage of terms <\/td>\n<\/tr>\n | ||||||
28<\/td>\n | 2 Normative references 3 Terms, definitions and abbreviated terms and acronyms 3.1 Terms and definitions <\/td>\n<\/tr>\n | ||||||
37<\/td>\n | 3.2 Generic abbreviations <\/td>\n<\/tr>\n | ||||||
38<\/td>\n | 3.3 Abbreviated terms Table 4 \u2013 Generic acronyms and abbreviations <\/td>\n<\/tr>\n | ||||||
39<\/td>\n | Table 5 \u2013 Normative abbreviations for data object names <\/td>\n<\/tr>\n | ||||||
40<\/td>\n | Table 6 \u2013 Normative abbreviations for data object names <\/td>\n<\/tr>\n | ||||||
51<\/td>\n | 4 Concepts and constructs for managing DERs 4.1 Hierarchical concepts for DER facilities and plants 4.1.1 DER stakeholders <\/td>\n<\/tr>\n | ||||||
52<\/td>\n | 4.1.2 Conceptual DER hierarchical architecture <\/td>\n<\/tr>\n | ||||||
53<\/td>\n | Figures Figure 1 \u2013 Conceptual hierarchical architecture ofDER information interactions with other entities <\/td>\n<\/tr>\n | ||||||
54<\/td>\n | 4.1.3 DER information capabilities <\/td>\n<\/tr>\n | ||||||
56<\/td>\n | 4.1.4 Concept of a recursive model for the term “DER” 4.2 DER generic model and its components 4.2.1 General 4.2.2 Editorial rules Figure 2 \u2013 Recursive composition of DERs <\/td>\n<\/tr>\n | ||||||
57<\/td>\n | 4.2.3 Main principles Figure 3 \u2013 Graphical UML representation convention <\/td>\n<\/tr>\n | ||||||
58<\/td>\n | Figure 4 \u2013 DER generic model: Comprised of 4 types of components <\/td>\n<\/tr>\n | ||||||
59<\/td>\n | Figure 5 \u2013 DER generic model: Typical components main interactions (single level) <\/td>\n<\/tr>\n | ||||||
60<\/td>\n | Figure 6 \u2013 DER generic model: Components main interactions (multiple levels) Figure 7 \u2013 DER generic model: simplest interaction implementationin the case of a single source of controls <\/td>\n<\/tr>\n | ||||||
61<\/td>\n | 4.2.4 Power management model <\/td>\n<\/tr>\n | ||||||
63<\/td>\n | Figure 8 \u2013 Power management situation 1: Handling multiple differential active power requests, compatible with the operational capacity of the resource Figure 9 \u2013 Power management situation 2: Handling multiple differential active power requests, exceeding the operational capacity of the resource <\/td>\n<\/tr>\n | ||||||
64<\/td>\n | Figure 10 \u2013 Power management situation 3: Handling competingmultiple total active power at ECP requests Figure 11 \u2013 Power management situation 4: Combinationof situation 2 and situation 3 <\/td>\n<\/tr>\n | ||||||
65<\/td>\n | Figure 12 \u2013 Power management situation 5: Multiple competingactive power limiting request Figure 13 \u2013 Power management situation 6: Combination of all situations <\/td>\n<\/tr>\n | ||||||
66<\/td>\n | 4.2.5 DEResourceLN class structure and composition model <\/td>\n<\/tr>\n | ||||||
67<\/td>\n | Figure 14 \u2013 Example: Simple DER resource model ofa PV generating unit (instance & class) <\/td>\n<\/tr>\n | ||||||
68<\/td>\n | Figure 15 \u2013 Hierarchical class model of DER resources \u2013 basic principles <\/td>\n<\/tr>\n | ||||||
69<\/td>\n | Figure 16 \u2013 DER composition model principles <\/td>\n<\/tr>\n | ||||||
70<\/td>\n | Figure 17 \u2013 Impacts of composition requirements on the DER class model <\/td>\n<\/tr>\n | ||||||
71<\/td>\n | Figure 18 \u2013 Needed association to express DER generic capabilities <\/td>\n<\/tr>\n | ||||||
72<\/td>\n | Figure 19 \u2013 Exposing the generic interfaces of a mixed DER <\/td>\n<\/tr>\n | ||||||
73<\/td>\n | Figure 20 \u2013 Exposing the generic interfaces ofa storage DER (battery storage as example) <\/td>\n<\/tr>\n | ||||||
74<\/td>\n | Figure 21 \u2013 Typical LN Mapping in case of an EESS resultingfrom the aggregation of two battery units Figure 22 \u2013 Full LN Mapping in case of an EESS resultingfrom the aggregation of two battery units <\/td>\n<\/tr>\n | ||||||
75<\/td>\n | Figure 23 \u2013 Other typical LN Mapping in case of an EESS resultingfrom the aggregation of two battery units <\/td>\n<\/tr>\n | ||||||
76<\/td>\n | Figure 24 \u2013 Example of modelling two breakdowns of the same set of resources(first controllable, second not controllable) Figure 25 \u2013 Example of sorting DER capabilities per type(first controllable, second not controllable) <\/td>\n<\/tr>\n | ||||||
77<\/td>\n | Figure 26 \u2013 Example of modelling two breakdowns of the same set of resources(first renewable, second not renewable) <\/td>\n<\/tr>\n | ||||||
78<\/td>\n | Figure 27 \u2013 Example of combining composition and equivalency of resources <\/td>\n<\/tr>\n | ||||||
79<\/td>\n | Figure 28 \u2013 Principles which should guide the extensionsfor supporting other types of energies <\/td>\n<\/tr>\n | ||||||
80<\/td>\n | 4.2.6 Common properties of DER as resource class Figure 29 \u2013 Principles of the hierarchical class resource model of DER resourceswith examples of specific DER types at the lowest level <\/td>\n<\/tr>\n | ||||||
82<\/td>\n | Figure 30 \u2013 Producer and Consumer Reference Frame conventions Table 7 \u2013 Producer Reference Frame (PRF)conventions <\/td>\n<\/tr>\n | ||||||
83<\/td>\n | Figure 31 \u2013 Power factor sign conventions in the Producer Reference Frame (PRF) Table 8 \u2013 Consumer Reference Frame (CRF) conventions <\/td>\n<\/tr>\n | ||||||
84<\/td>\n | Figure 32 \u2013 Power factor sign conventions in the Consumer Reference Frame (CRF) <\/td>\n<\/tr>\n | ||||||
85<\/td>\n | Figure 33 \u2013 Working areas for DER <\/td>\n<\/tr>\n | ||||||
87<\/td>\n | Figure 34 \u2013 Example of voltage offsets (VRefOfs) with respectto the reference voltage (VRef) (often the PCC) Figure 35 \u2013 Implementation example of voltage offsets (VRefOfs) on a generator supporting a V-var operational function with respect to the reference voltage (VRef) <\/td>\n<\/tr>\n | ||||||
88<\/td>\n | 4.2.7 DER electrical connection point (ECP) model <\/td>\n<\/tr>\n | ||||||
89<\/td>\n | Figure 36 \u2013 Concept of DERs (coloured circles), electrical connection points (ECP),and the Referenced ECP as a pointer <\/td>\n<\/tr>\n | ||||||
91<\/td>\n | Figure 37 \u2013 ECP LN class model, including ECPs, PCCs, and virtual ECPs <\/td>\n<\/tr>\n | ||||||
92<\/td>\n | Figure 38 \u2013 Relationships between ECPs and DER resources <\/td>\n<\/tr>\n | ||||||
93<\/td>\n | Figure 39 \u2013 ECP connection type Table 9 \u2013 Literals of ECPConnKind <\/td>\n<\/tr>\n | ||||||
94<\/td>\n | 4.2.8 DER operational functions model 4.3 Interaction mechanisms between DER components 4.3.1 Handling of computed setpoints 4.3.2 Interaction between a DEResourceLN and its component LNs <\/td>\n<\/tr>\n | ||||||
95<\/td>\n | 4.3.3 Interactions between power management function LN and operational functions LN Figure 40 \u2013 Interactions between a DER and its components (example) <\/td>\n<\/tr>\n | ||||||
96<\/td>\n | Figure 41 \u2013 “Spatial” interactions between an operational function and the power management function in case of setting a (maximum) limit at ECP (example) <\/td>\n<\/tr>\n | ||||||
97<\/td>\n | Figure 42 \u2013 “Temporal” interactions between an operational function and the power management function in case of setting a (maximum) limit at ECP(example) <\/td>\n<\/tr>\n | ||||||
98<\/td>\n | Figure 43 \u2013 “Spatial” interactions between an operational function and the power management function in case of setting a setpoint at ECP (example) Figure 44 \u2013 “Temporal” interactions between an operational function and the power management function in case of setting a setpoint at ECP (example) <\/td>\n<\/tr>\n | ||||||
99<\/td>\n | Figure 45 \u2013 “Spatial” interactions between an operational function and the power management function in case of setting a differential setpoint (example) <\/td>\n<\/tr>\n | ||||||
100<\/td>\n | Figure 46 \u2013 “Temporal” interactions between an operational function and the power management function in case of setting a differential setpoint (example) <\/td>\n<\/tr>\n | ||||||
101<\/td>\n | Figure 47 \u2013 Scheduling modelling principles and main associations <\/td>\n<\/tr>\n | ||||||
102<\/td>\n | Figure 48 \u2013 Principle of integration of scheduled energy behaviour (example) <\/td>\n<\/tr>\n | ||||||
104<\/td>\n | 4.3.4 Interactions between power management function LN and the resource LN \u2013 case of multiple layered resources Figure 49 \u2013 Example of interaction between operationalfunctions and power management functions with layered DERs <\/td>\n<\/tr>\n | ||||||
105<\/td>\n | 4.3.5 Interactions between ECP LN and LNs related to ECP (measurements, ECP status, etc.) 4.3.6 Interactions between equivalent representations of a same resource Figure 50 \u2013 A single DPMC instance controlling multiple DEResources <\/td>\n<\/tr>\n | ||||||
106<\/td>\n | Table 10 \u2013 Example of interactions impacts between equivalent resources <\/td>\n<\/tr>\n | ||||||
107<\/td>\n | 5 State machine and capabilities of different types of DERs 5.1 General 5.2 DER generic state machine for connecting DER at its ECP 5.2.1 General 5.2.2 Diagram of the generic DER state machine <\/td>\n<\/tr>\n | ||||||
108<\/td>\n | Figure 51 \u2013 generic DER state machine <\/td>\n<\/tr>\n | ||||||
109<\/td>\n | 5.2.3 DERStateKind enumeration Figure 52 \u2013 Definitions of logic connections applying to the generic DER state machine <\/td>\n<\/tr>\n | ||||||
110<\/td>\n | 5.2.4 DERStateTransitionKind enumeration Table 11 \u2013 Literals of DERStateKind Table 12 \u2013 Literals of DERStateTransitionKind <\/td>\n<\/tr>\n | ||||||
111<\/td>\n | 5.2.5 DER Testing capabilities Figure 53 \u2013 DER Test typical sequence <\/td>\n<\/tr>\n | ||||||
112<\/td>\n | 5.3 LNs related to generation 5.3.1 Generic DER generator LNs <\/td>\n<\/tr>\n | ||||||
113<\/td>\n | 5.3.2 DER reciprocating (diesel) engine LNs Figure 54 \u2013 Generator DER abstract LNs structure overview <\/td>\n<\/tr>\n | ||||||
114<\/td>\n | 5.3.3 Fuel cell LNs <\/td>\n<\/tr>\n | ||||||
115<\/td>\n | 5.3.4 Photovoltaic LNs <\/td>\n<\/tr>\n | ||||||
116<\/td>\n | Figure 55 \u2013 Example of one-line diagram of an interconnected PV system <\/td>\n<\/tr>\n | ||||||
117<\/td>\n | Figure 56 \u2013 Schematic diagram of a large PV installationwith two arrays of several sub-arrays <\/td>\n<\/tr>\n | ||||||
119<\/td>\n | 5.3.5 Combined Heat and Power LNs Figure 57 \u2013 CHP based on fuel cell systems <\/td>\n<\/tr>\n | ||||||
120<\/td>\n | Figure 58 \u2013 CHP based on internal combustion <\/td>\n<\/tr>\n | ||||||
121<\/td>\n | Figure 59 \u2013 CHP unit includes both domestic hot water and heating loops Figure 60 \u2013 CHP unit includes domestic hot water with 2 storage tanks and 2 heating elements Figure 61 \u2013 CHP unit includes domestic hot water with 1 storage tank and 2 heating elements <\/td>\n<\/tr>\n | ||||||
122<\/td>\n | 5.3.6 DER fuel system LNs <\/td>\n<\/tr>\n | ||||||
123<\/td>\n | 5.3.7 DER excitation LNs 5.3.8 DER inverter LNs Figure 62 \u2013 Inverter \/ converter configuration <\/td>\n<\/tr>\n | ||||||
124<\/td>\n | 5.4 LNs related to storage 5.4.1 EESS description Figure 63 \u2013 Classification of electrical energy storage systems accordingto energy form. IEC-WP [IEC White Paper Electrical Energy Storage:2011]) <\/td>\n<\/tr>\n | ||||||
125<\/td>\n | 5.4.2 Functional requirements of EESSs 5.4.3 EESSs participating in grid operations as a DER system Figure 64 \u2013 Different uses of electrical energy storage in grids,depending on the frequency and duration of use <\/td>\n<\/tr>\n | ||||||
127<\/td>\n | Figure 65 \u2013 Storage DER abstract LNs structure overview Figure 66 \u2013 A simple energy storage system <\/td>\n<\/tr>\n | ||||||
128<\/td>\n | 5.4.4 Definitions of the capacity and the state of charge of an EESS Figure 67 \u2013 A more complex energy storage system <\/td>\n<\/tr>\n | ||||||
129<\/td>\n | 5.5 LNs related to loads Figure 68 \u2013 EESS state of charge: effective and usable capacities and states of charge reflected using the IEC 618650 model naming conventions <\/td>\n<\/tr>\n | ||||||
130<\/td>\n | 5.6 Measurement extension functions 5.7 Financial-related LNs 5.7.1 DER cost LNs Figure 69 \u2013 Load DER abstract LNs structure overview <\/td>\n<\/tr>\n | ||||||
131<\/td>\n | 5.7.2 Pricing-related LNs 6 Operational Functions (including Grid Codes functions) 6.1 General 6.2 Overview of Logical Nodes for Operational Functions <\/td>\n<\/tr>\n | ||||||
132<\/td>\n | 6.3 Main modelling principles 6.3.1 Benefits of operational functions to manage DER Figure 70 \u2013 Overview of Logical Nodes for Operational Functions <\/td>\n<\/tr>\n | ||||||
133<\/td>\n | 6.3.2 Operational function enabling\/disabling (Mod) Figure 71 \u2013 Example of operational functions associated with different ECPs <\/td>\n<\/tr>\n | ||||||
134<\/td>\n | 6.3.3 DER autonomous behavior enabled by operational functions 6.3.4 Priority, Ideal, Max, Min management between operational functions <\/td>\n<\/tr>\n | ||||||
136<\/td>\n | 6.3.5 Operational functions operating at a given ECP 6.3.6 Different ways to describe operational function curves 6.3.7 Percentages as size-neutral parameters <\/td>\n<\/tr>\n | ||||||
137<\/td>\n | 6.3.8 Hysteresis within operational functions <\/td>\n<\/tr>\n | ||||||
138<\/td>\n | Figure 72 \u2013 Example of sloped hysteresis in V-var curve Figure 73 \u2013 Example of single value hysteresis in frequency-active power function <\/td>\n<\/tr>\n | ||||||
139<\/td>\n | 6.3.9 Typical digital signal processing to support operational functions Figure 74 \u2013 Local function block diagram Figure 75 \u2013 Time domain response of first order low pass filter <\/td>\n<\/tr>\n | ||||||
140<\/td>\n | 6.3.10 Ramp rate upon enabling an operational function 6.3.11 Randomized response times upon enabling an operational function 6.3.12 Timeout period 6.3.13 Multiple usages of a same operational function <\/td>\n<\/tr>\n | ||||||
141<\/td>\n | 6.3.14 Multiple operational functions 6.3.15 Uncertainty of requests from external stakeholders for operational functions 6.3.16 Expected responses to operational functions versus actual values from direct commands <\/td>\n<\/tr>\n | ||||||
142<\/td>\n | 6.4 Cease-to-Energize operational function and its interaction with the power management function <\/td>\n<\/tr>\n | ||||||
143<\/td>\n | Figure 76 \u2013 Statechart Diagram: Cease-to-energize state machine <\/td>\n<\/tr>\n | ||||||
144<\/td>\n | Figure 77 \u2013 Example of interactions between the handler of the Cease-to-Energize request (LN DCTE), the power management function and the DEResourceLN <\/td>\n<\/tr>\n | ||||||
145<\/td>\n | 6.5 Voltage Ride-Through operational function 6.5.1 General Figure 78 \u2013 Possible sequence of steps of the DCTE state machine and the DER energy behavior in case of a Cease-to-energize event <\/td>\n<\/tr>\n | ||||||
146<\/td>\n | 6.5.2 European and North American voltage ride-through functions Figure 79 \u2013 European voltage ride-through curve <\/td>\n<\/tr>\n | ||||||
147<\/td>\n | Figure 80 \u2013 IEEE 1547:2018\/AMD1:2020 diagram illustratingthe different voltage ride-through profiles Table 13 \u2013 Voltage ride-through boundary curves <\/td>\n<\/tr>\n | ||||||
148<\/td>\n | 6.5.3 LN DHVT and DLVT: Voltage ride-through <\/td>\n<\/tr>\n | ||||||
149<\/td>\n | 6.6 Frequency Ride-Through operational function 6.6.1 General 6.6.2 North American frequency ride-through Figure 81 \u2013 Voltage protection LNs (extracted from IEC 61850-7-4:2010\/AMD1:2020) <\/td>\n<\/tr>\n | ||||||
150<\/td>\n | 6.6.3 LN DHFT and DLFT: Frequency Ride-Through Figure 82 \u2013 Example of frequency ride-through profile <\/td>\n<\/tr>\n | ||||||
151<\/td>\n | 6.7 Frequency-Active Power operational functions 6.7.1 Overview of Frequency-Active Power functions Figure 83 \u2013 Frequency protection LNs (extracted from IEC 61850-7-4:2010\/AMD1:2020) <\/td>\n<\/tr>\n | ||||||
152<\/td>\n | Figure 84 \u2013 Active power frequency response capabilityof power-generating modules in LFSM-O (ref: RfG) <\/td>\n<\/tr>\n | ||||||
153<\/td>\n | Figure 85 \u2013 Maximum power capability reduction with falling frequency (ref: RfG) Figure 86 \u2013 Active power frequency response capabilityof power-generating modules in LFSM-U (ref: RfG) <\/td>\n<\/tr>\n | ||||||
154<\/td>\n | Figure 87 \u2013 Active power frequency response capability of power-generating modules in FSM illustrating the case of zero deadband and insensitivity (ref: RfG) <\/td>\n<\/tr>\n | ||||||
155<\/td>\n | Figure 88 \u2013 For Zone 1 frequency sensitivity, potential useof WMax to determine the gradient <\/td>\n<\/tr>\n | ||||||
156<\/td>\n | Figure 89 \u2013 Frequency droop curve from IEEE 1547 <\/td>\n<\/tr>\n | ||||||
157<\/td>\n | Figure 90 \u2013 Frequency-active power constrained by static boundary: DER to remain within the boundaries of frequency-active power curves <\/td>\n<\/tr>\n | ||||||
159<\/td>\n | Figure 91 \u2013 For Zone 1, potential use of WMax or WRef to determine the gradient <\/td>\n<\/tr>\n | ||||||
160<\/td>\n | Figure 92 \u2013 For Zone 1, use of Frequency-Active Power: frequency slope (WGra) established by P2 and P3, starting from WRef at the snapshot frequency (HzStr) <\/td>\n<\/tr>\n | ||||||
161<\/td>\n | Figure 93 \u2013 For Zone 2, use of Frequency-Active Power: slope (DLFW.WGra) established by P1 and P6, but starting from WRef at the snapshot frequency (DLFW.HzStr) Figure 94 \u2013 Use of Frequency-Active Power: DER also operating in Zone 3 (charging\/consuming) <\/td>\n<\/tr>\n | ||||||
162<\/td>\n | Figure 95 \u2013 Use of Frequency-Active Power: For DER with consuming capabilities,the same concepts apply in Zones 3 and 4 <\/td>\n<\/tr>\n | ||||||
163<\/td>\n | Figure 96 \u2013 Example of hysteresis in Zone 1 <\/td>\n<\/tr>\n | ||||||
164<\/td>\n | 6.7.2 LN DHFW: High Frequency-Active Power operational function Figure 97 \u2013 Example of multiple gradients and hysteresis in Zones 1 and 3 <\/td>\n<\/tr>\n | ||||||
165<\/td>\n | 6.7.3 LN DLFW: Low Frequency-Active Power operational function 6.8 Active power operational functions 6.8.1 LN DVWC: Voltage-Active Power (V-W) operational function Figure 98 \u2013 Examples of V-W requirements <\/td>\n<\/tr>\n | ||||||
166<\/td>\n | 6.8.2 LN DWGC: Set Active Power for generating or consuming operational function 6.8.3 LN DWFL: Active Power Following operational function Figure 99 \u2013 Example of V-W curve: stay within bounds (SnptBarEna = false),but do not necessarily go to boundary <\/td>\n<\/tr>\n | ||||||
167<\/td>\n | Figure 100 \u2013 Active Power Load Following Figure 101 \u2013 Active Power Following of Generation <\/td>\n<\/tr>\n | ||||||
168<\/td>\n | 6.8.4 LN DAGC: Automatic Generation Control (AGC) operational function Figure 102 \u2013 Active Power Following of Generation without a threshold Figure 103 \u2013 Active Power Following of Generationwith percent compensation less than 100 % <\/td>\n<\/tr>\n | ||||||
169<\/td>\n | 6.8.5 LN DTCD: Coordinated Charge\/Discharge operational function 6.8.6 LN DWMX: Limit Maximum Active Power operational function Figure 104 \u2013 Coordinated Charge\/Discharge <\/td>\n<\/tr>\n | ||||||
170<\/td>\n | 6.8.7 LN DWMN: Limit Minimum Active Power operational function 6.9 Power factor operational functions 6.9.1 General 6.9.2 LN DFPF: Set Fixed Power Factor operational function Figure 105 \u2013 Example of P-Q capability curve (P: active power;Q: reactive power; S: apparent power) <\/td>\n<\/tr>\n | ||||||
171<\/td>\n | 6.10 Reactive power operational functions 6.10.1 General 6.10.2 LN DVVR: Voltage-Reactive Power (V-var) operational function <\/td>\n<\/tr>\n | ||||||
172<\/td>\n | Figure 106 \u2013 Example Voltage\u2013Reactive Power characteristics Figure 107 \u2013 Example of volt-var curve with hysteresis,arrows indicating direction of voltage changes <\/td>\n<\/tr>\n | ||||||
173<\/td>\n | Figure 108 \u2013 Voltage-Reactive Power operational function with single slope <\/td>\n<\/tr>\n | ||||||
174<\/td>\n | 6.10.3 LN DVAR: Constant Reactive Power operational function Figure 109 \u2013 Voltage-Reactive Power operational function with deadband Figure 110 \u2013 Constant Reactive Power operational function <\/td>\n<\/tr>\n | ||||||
175<\/td>\n | 6.10.4 LN DWVR: Active Power\u2013Reactive Power (W-Var) operational function Figure 111 \u2013 Examples of different Q(P) requirements <\/td>\n<\/tr>\n | ||||||
176<\/td>\n | 6.10.5 LN DRGS: Dynamic Reactive Current Support operational function Figure 112 \u2013 Example Active Power\u2013Reactive Power curve <\/td>\n<\/tr>\n | ||||||
177<\/td>\n | Figure 113 \u2013 Basic concepts of the Dynamic Reactive Current Support function Figure 114 \u2013 Calculation of delta voltage over the filter time window <\/td>\n<\/tr>\n | ||||||
178<\/td>\n | Figure 115 \u2013 Activation zones for Dynamic Reactive Current Support <\/td>\n<\/tr>\n | ||||||
179<\/td>\n | Figure 116 \u2013 Alternative gradient behaviour, selected by ArGraMod <\/td>\n<\/tr>\n | ||||||
180<\/td>\n | Figure 117 \u2013 Settings to define a blocking zone <\/td>\n<\/tr>\n | ||||||
181<\/td>\n | Annex A (normative)Data model A.1 Global overview <\/td>\n<\/tr>\n | ||||||
182<\/td>\n | Figure A.1 \u2013 Global overview of LNs included in this document <\/td>\n<\/tr>\n | ||||||
183<\/td>\n | A.2 Reminder of the main IEC 61850-7-4 abstract classes used in this document and other rules Figure A.2 \u2013 Main IEC 61850-7-4 abstract classes used in this document <\/td>\n<\/tr>\n | ||||||
184<\/td>\n | A.3 Namespace data model A.3.1 Logical node classes for distributed energy resources (LogicalNodes_7_420_DER) Table A.1 \u2013 List of classes defined in LogicalNodes_7_420_DER package <\/td>\n<\/tr>\n | ||||||
187<\/td>\n | Figure A.3 \u2013 Class diagram AbstractLNs_7_420::DER related Abstract LNs of 61850-7-420 (1) <\/td>\n<\/tr>\n | ||||||
188<\/td>\n | Figure A.4 \u2013 Class diagram AbstractLNs_7_420::DER related Abstract LNs of 61850-7-420 (2) Table A.2 \u2013 List of classes defined in AbstractLNs_7_420 package <\/td>\n<\/tr>\n | ||||||
190<\/td>\n | Table A.3 \u2013 List of classes defined in AbstractDerLNs_7_420 package Table A.4 \u2013 Data objects of AllEnergyDEResourceLN <\/td>\n<\/tr>\n | ||||||
191<\/td>\n | Table A.5 \u2013 Data objects of DER_NameplateRatingsLN <\/td>\n<\/tr>\n | ||||||
192<\/td>\n | Table A.6 \u2013 Data objects of DER_StateAbstractLN <\/td>\n<\/tr>\n | ||||||
194<\/td>\n | Table A.7 \u2013 Data objects of DER_ActualPowerInformationLN Table A.8 \u2013 Data objects of DER_OperationalSettingsLN <\/td>\n<\/tr>\n | ||||||
195<\/td>\n | Table A.9 \u2013 Data objects of NonStorageOperationalSettingsLN <\/td>\n<\/tr>\n | ||||||
197<\/td>\n | Table A.10 \u2013 List of classes defined in AbstractEcpLNs_7_420 package Table A.11 \u2013 Data objects of ElectricalReferenceLN <\/td>\n<\/tr>\n | ||||||
198<\/td>\n | Table A.12 \u2013 Data objects of PhysicalElectricalConnectionPointLN <\/td>\n<\/tr>\n | ||||||
199<\/td>\n | Table A.13 \u2013 Data objects of VirtualElectricalReferenceLN Table A.14 \u2013 List of classes defined in AbstractGenLNs_7_420 package <\/td>\n<\/tr>\n | ||||||
200<\/td>\n | Table A.15 \u2013 Data objects of DER_GeneratorLN <\/td>\n<\/tr>\n | ||||||
201<\/td>\n | Table A.16 \u2013 Data objects of GeneratorNameplateRatingsLN <\/td>\n<\/tr>\n | ||||||
202<\/td>\n | Table A.17 \u2013 List of classes defined in AbstractStoLNs_7_420 package <\/td>\n<\/tr>\n | ||||||
203<\/td>\n | Table A.18 \u2013 Data objects of StorageOperationalSettingsLN <\/td>\n<\/tr>\n | ||||||
205<\/td>\n | Table A.19 \u2013 Data objects of StorageNameplateRatingsLN <\/td>\n<\/tr>\n | ||||||
207<\/td>\n | Table A.20 \u2013 Data objects of DER_StorageLN <\/td>\n<\/tr>\n | ||||||
208<\/td>\n | Table A.21 \u2013 List of classes defined in AbstractLodLNs_7_420 package <\/td>\n<\/tr>\n | ||||||
209<\/td>\n | Table A.22 \u2013 Data objects of LoadNameplateRatingsLN Table A.23 \u2013 List of classes defined in AbstractOtherLNs_7_420 package <\/td>\n<\/tr>\n | ||||||
210<\/td>\n | Table A.24 \u2013 Data objects of DERConverterLN <\/td>\n<\/tr>\n | ||||||
211<\/td>\n | Figure A.5 \u2013 Class diagram ECP_LNs::ECP_related_Logical_Nodes <\/td>\n<\/tr>\n | ||||||
212<\/td>\n | Table A.25 \u2013 List of classes defined in ECP_LNs package Table A.26 \u2013 Data objects of DECP <\/td>\n<\/tr>\n | ||||||
215<\/td>\n | Table A.27 \u2013 Data objects of DPCC <\/td>\n<\/tr>\n | ||||||
218<\/td>\n | Table A.28 \u2013 Data objects of DVER <\/td>\n<\/tr>\n | ||||||
221<\/td>\n | Figure A.6 \u2013 Class diagram DERPowerManagementLN::DER Power Management LN <\/td>\n<\/tr>\n | ||||||
222<\/td>\n | Table A.29 \u2013 List of classes defined in DERPowerManagementLN package Table A.30 \u2013 Data objects of DPMC <\/td>\n<\/tr>\n | ||||||
227<\/td>\n | Figure A.7 \u2013 Class diagram DERMixedLNs::Mixed DER Logical Nodes Table A.31 \u2013 List of classes defined in DERMixedLNs package <\/td>\n<\/tr>\n | ||||||
228<\/td>\n | Table A.32 \u2013 Data objects of DMDR <\/td>\n<\/tr>\n | ||||||
234<\/td>\n | Figure A.8 \u2013 Class diagram DERGeneratorLNs::DER Generators Logical Nodes Table A.33 \u2013 List of classes defined in DERGeneratorLNs package <\/td>\n<\/tr>\n | ||||||
235<\/td>\n | Table A.34 \u2013 Data objects of DGEN <\/td>\n<\/tr>\n | ||||||
245<\/td>\n | Figure A.9 \u2013 Class diagram DERStorageLNs::DER Storage Logical Nodes <\/td>\n<\/tr>\n | ||||||
246<\/td>\n | Table A.35 \u2013 List of classes defined in DERStorageLNs package Table A.36 \u2013 Data objects of DSTO <\/td>\n<\/tr>\n | ||||||
258<\/td>\n | Figure A.10 \u2013 Class diagram DERLoadLNs::DER Load Logical Nodes <\/td>\n<\/tr>\n | ||||||
259<\/td>\n | Table A.37 \u2013 List of classes defined in DERLoadLNs package Table A.38 \u2013 Data objects of DLOD <\/td>\n<\/tr>\n | ||||||
267<\/td>\n | Figure A.11 \u2013 Class diagram Battery_LNs::Battery_LNs <\/td>\n<\/tr>\n | ||||||
268<\/td>\n | Table A.39 \u2013 List of classes defined in Battery_LNs package Table A.40 \u2013 Data objects of SBAT <\/td>\n<\/tr>\n | ||||||
272<\/td>\n | Table A.41 \u2013 Data objects of DBAT <\/td>\n<\/tr>\n | ||||||
276<\/td>\n | Figure A.12 \u2013 Class diagram PhotovoltaicLNs::Photovoltaic Logical Nodes <\/td>\n<\/tr>\n | ||||||
277<\/td>\n | Table A.42 \u2013 List of classes defined in PhotovoltaicLNs package Table A.43 \u2013 Data objects of DPVA <\/td>\n<\/tr>\n | ||||||
280<\/td>\n | Table A.44 \u2013 Data objects of DPVM <\/td>\n<\/tr>\n | ||||||
282<\/td>\n | Table A.45 \u2013 Data objects of DPVC <\/td>\n<\/tr>\n | ||||||
285<\/td>\n | Table A.46 \u2013 Data objects of DTRC <\/td>\n<\/tr>\n | ||||||
288<\/td>\n | Figure A.13 \u2013 Class diagram ReciprocatingEngineLNs::Reciprocating Engine Logical Nodes <\/td>\n<\/tr>\n | ||||||
289<\/td>\n | Table A.47 \u2013 List of classes defined in ReciprocatingEngineLNs package Table A.48 \u2013 Data objects of DCIP <\/td>\n<\/tr>\n | ||||||
293<\/td>\n | Figure A.14 \u2013 Class diagram FuelCellLNs::DER Fuel Cell_Logical Nodes <\/td>\n<\/tr>\n | ||||||
294<\/td>\n | Table A.49 \u2013 List of classes defined in FuelCellLNs package Table A.50 \u2013 Data objects of DFCL <\/td>\n<\/tr>\n | ||||||
297<\/td>\n | Table A.51 \u2013 Data objects of DSTK <\/td>\n<\/tr>\n | ||||||
299<\/td>\n | Table A.52 \u2013 Data objects of DFPM <\/td>\n<\/tr>\n | ||||||
301<\/td>\n | Figure A.15 \u2013 Class diagram FuelSystemLNs::Fuel System Logical Nodes <\/td>\n<\/tr>\n | ||||||
302<\/td>\n | Table A.53 \u2013 List of classes defined in FuelSystemLNs package Table A.54 \u2013 Data objects of KFUL <\/td>\n<\/tr>\n | ||||||
304<\/td>\n | Table A.55 \u2013 Data objects of KFLV <\/td>\n<\/tr>\n | ||||||
307<\/td>\n | Figure A.16 \u2013 Class diagram CHP_LNs::Combined Heat and Power Logical Nodes Table A.56 \u2013 List of classes defined in CHP_LNs package <\/td>\n<\/tr>\n | ||||||
308<\/td>\n | Table A.57 \u2013 Data objects of DCHC <\/td>\n<\/tr>\n | ||||||
311<\/td>\n | Table A.58 \u2013 Data objects of DCTS <\/td>\n<\/tr>\n | ||||||
313<\/td>\n | Table A.59 \u2013 Data objects of DCHB <\/td>\n<\/tr>\n | ||||||
315<\/td>\n | Figure A.17 \u2013 Class diagram DERExcitationLNs::DER Excitation Logical Node <\/td>\n<\/tr>\n | ||||||
316<\/td>\n | Table A.60 \u2013 List of classes defined in DERExcitationLNs package Table A.61 \u2013 Data objects of DEXC <\/td>\n<\/tr>\n | ||||||
319<\/td>\n | Figure A.18 \u2013 Class diagram DERInverterLNs::DER Inverter Logical Nodes <\/td>\n<\/tr>\n | ||||||
320<\/td>\n | Table A.62 \u2013 List of classes defined in DERInverterLNs package Table A.63 \u2013 Data objects of DINV <\/td>\n<\/tr>\n | ||||||
324<\/td>\n | Table A.64 \u2013 Data objects of DRTF <\/td>\n<\/tr>\n | ||||||
327<\/td>\n | Table A.65 \u2013 Data objects of SINV <\/td>\n<\/tr>\n | ||||||
329<\/td>\n | Figure A.19 \u2013 Class diagram DERFinancialLNs_7_420::DERFinancialLNs_7_420 Table A.66 \u2013 List of classes defined in DERFinancialLNs_7_420 package <\/td>\n<\/tr>\n | ||||||
330<\/td>\n | Table A.67 \u2013 Data objects of DCCT <\/td>\n<\/tr>\n | ||||||
332<\/td>\n | Table A.68 \u2013 Data objects of DCST <\/td>\n<\/tr>\n | ||||||
334<\/td>\n | Figure A.20 \u2013 Class diagram MeasurementExtLN::Measurement LN extensions <\/td>\n<\/tr>\n | ||||||
335<\/td>\n | Table A.69 \u2013 List of classes defined in MeasurementExtLN package Table A.70 \u2013 Data objects of MMETExt <\/td>\n<\/tr>\n | ||||||
338<\/td>\n | Table A.71 \u2013 Data objects of MMXUExt <\/td>\n<\/tr>\n | ||||||
341<\/td>\n | A.3.2 DER Operational functions (LogicalNodes_7_420_Operational_Functions) <\/td>\n<\/tr>\n | ||||||
342<\/td>\n | Table A.72 \u2013 List of classes defined in LogicalNodes_7_420_Operational_Functions package <\/td>\n<\/tr>\n | ||||||
344<\/td>\n | Figure A.21 \u2013 Class diagram Overview_Operational_Functions::DER operational functions LNs overview <\/td>\n<\/tr>\n | ||||||
345<\/td>\n | Figure A.22 \u2013 Class diagram AbstractLNs7_420_Operational_Functions::Abstract operational functions LNs overview <\/td>\n<\/tr>\n | ||||||
346<\/td>\n | Table A.73 \u2013 List of classes defined in AbstractLNs7_420_Operational_Functions package Table A.74 \u2013 List of classes defined in AbstractLNs7_420_Op_Functions package <\/td>\n<\/tr>\n | ||||||
347<\/td>\n | Table A.75 \u2013 Data objects of LowPassFilterOnFunctionInputLN Table A.76 \u2013 Data objects of LowPassFilterOnFunctionOutputLN <\/td>\n<\/tr>\n | ||||||
348<\/td>\n | Table A.77 \u2013 Data objects of ElectricalContextReferenceLN Table A.78 \u2013 Data objects of OperationalFunctionLN <\/td>\n<\/tr>\n | ||||||
349<\/td>\n | Table A.79 \u2013 Data objects of RampRatesLN <\/td>\n<\/tr>\n | ||||||
350<\/td>\n | Table A.80 \u2013 Data objects of ActivePowerLN <\/td>\n<\/tr>\n | ||||||
351<\/td>\n | Table A.81 \u2013 List of classes defined in AbstractLNs7_420GridCodeModes package Table A.82 \u2013 Data objects of HysteresisSnapshotLN <\/td>\n<\/tr>\n | ||||||
353<\/td>\n | Table A.83 \u2013 Data objects of FrequencyActivePowerLN <\/td>\n<\/tr>\n | ||||||
354<\/td>\n | Table A.84 \u2013 Data objects of RideThroughLN <\/td>\n<\/tr>\n | ||||||
355<\/td>\n | Table A.85 \u2013 Data objects of ReactivePowerLN <\/td>\n<\/tr>\n | ||||||
356<\/td>\n | Figure A.23 \u2013 Class diagram CeasetoEnergizeLN::Ceaze to Energize LNs Table A.86 \u2013 List of classes defined in CeasetoEnergizeLN package <\/td>\n<\/tr>\n | ||||||
357<\/td>\n | Table A.87 \u2013 Data objects of DCTE <\/td>\n<\/tr>\n | ||||||
361<\/td>\n | Figure A.24 \u2013 Class diagram Voltage_Ride-ThroughLNs::Voltage ride-through LNs Table A.88 \u2013 List of classes defined in Voltage_Ride-ThroughLNs package <\/td>\n<\/tr>\n | ||||||
362<\/td>\n | Table A.89 \u2013 Data objects of DHVT <\/td>\n<\/tr>\n | ||||||
365<\/td>\n | Table A.90 \u2013 Data objects of DLVT <\/td>\n<\/tr>\n | ||||||
369<\/td>\n | Figure A.25 \u2013 Class diagram Frequency_Ride-ThroughLNs::Frequency ride-through LNs Table A.91 \u2013 List of classes defined in Frequency_Ride-ThroughLNs package <\/td>\n<\/tr>\n | ||||||
370<\/td>\n | Table A.92 \u2013 Data objects of DHFT <\/td>\n<\/tr>\n | ||||||
374<\/td>\n | Table A.93 \u2013 Data objects of DLFT <\/td>\n<\/tr>\n | ||||||
377<\/td>\n | Figure A.26 \u2013 Class diagram Frequency-ActivePowerLNs::Frequency vs active power LNs <\/td>\n<\/tr>\n | ||||||
378<\/td>\n | Table A.94 \u2013 List of classes defined in Frequency-ActivePowerLNs package Table A.95 \u2013 Data objects of DHFW <\/td>\n<\/tr>\n | ||||||
385<\/td>\n | Table A.96 \u2013 Data objects of DLFW <\/td>\n<\/tr>\n | ||||||
391<\/td>\n | Figure A.27 \u2013 Class diagram ActivePowerLNs::Active Power LNs <\/td>\n<\/tr>\n | ||||||
392<\/td>\n | Table A.97 \u2013 List of classes defined in ActivePowerLNs package <\/td>\n<\/tr>\n | ||||||
393<\/td>\n | Table A.98 \u2013 Data objects of DAGC <\/td>\n<\/tr>\n | ||||||
398<\/td>\n | Table A.99 \u2013 Data objects of DTCD <\/td>\n<\/tr>\n | ||||||
403<\/td>\n | Table A.100 \u2013 Data objects of DVWC <\/td>\n<\/tr>\n | ||||||
409<\/td>\n | Table A.101 \u2013 Data objects of DWFL <\/td>\n<\/tr>\n | ||||||
414<\/td>\n | Table A.102 \u2013 Data objects of DWGC <\/td>\n<\/tr>\n | ||||||
419<\/td>\n | Table A.103 \u2013 Data objects of DWMN <\/td>\n<\/tr>\n | ||||||
423<\/td>\n | Table A.104 \u2013 Data objects of DWMX <\/td>\n<\/tr>\n | ||||||
428<\/td>\n | Figure A.28 \u2013 Class diagram PowerFactorLNs::Power Factor LNs Table A.105 \u2013 List of classes defined in PowerFactorLNs package <\/td>\n<\/tr>\n | ||||||
429<\/td>\n | Table A.106 \u2013 Data objects of DFPF <\/td>\n<\/tr>\n | ||||||
434<\/td>\n | Figure A.29 \u2013 Class diagram ReactivePowerLNs::Reactive Power LNs <\/td>\n<\/tr>\n | ||||||
435<\/td>\n | Table A.107 \u2013 List of classes defined in ReactivePowerLNs package Table A.108 \u2013 Data objects of DVVR <\/td>\n<\/tr>\n | ||||||
441<\/td>\n | Table A.109 \u2013 Data objects of DVAR <\/td>\n<\/tr>\n | ||||||
446<\/td>\n | Table A.110 \u2013 Data objects of DWVR <\/td>\n<\/tr>\n | ||||||
451<\/td>\n | Table A.111 \u2013 Data objects of DRGS <\/td>\n<\/tr>\n | ||||||
456<\/td>\n | A.3.3 Data semantics Table A.112 \u2013 Attributes defined on classes of LogicalNodes_7_420 package <\/td>\n<\/tr>\n | ||||||
488<\/td>\n | A.3.4 Enumerated data attribute types <\/td>\n<\/tr>\n | ||||||
489<\/td>\n | Figure A.30 \u2013 Class diagram DOEnums_7_420::DOEnums_7_420 <\/td>\n<\/tr>\n | ||||||
490<\/td>\n | Figure A.31 \u2013 Class diagram DOEnums_7_420::DOEnums_7_420 \u2013 2 <\/td>\n<\/tr>\n | ||||||
491<\/td>\n | Figure A.32 \u2013 Class diagram DOEnums_7_420::DOEnums_7_420 \u2013 3 Table A.113 \u2013 List of classes defined in DOEnums_7_420 package <\/td>\n<\/tr>\n | ||||||
493<\/td>\n | Table A.114 \u2013 Literals of ACSystemKind Table A.115 \u2013 Literals of ACToDCConversionKind Table A.116 \u2013 Literals of BatteryTypeKind <\/td>\n<\/tr>\n | ||||||
494<\/td>\n | Table A.117 \u2013 Literals of BoilerKind Table A.118 \u2013 Literals of CeasetoEnergizeStateKind Table A.119 \u2013 Literals of CeasetoEnergizeStateTransitionKind <\/td>\n<\/tr>\n | ||||||
495<\/td>\n | Table A.120 \u2013 Literals of ChargeSourceKind Table A.121 \u2013 Literals of CHPEnergyConverterKind Table A.122 \u2013 Literals of CHPGeneratorKind <\/td>\n<\/tr>\n | ||||||
496<\/td>\n | Table A.123 \u2013 Literals of CHPOperatingModeKind Table A.124 \u2013 Literals of CoolingMethodKind Table A.125 \u2013 Literals of DERStateKind <\/td>\n<\/tr>\n | ||||||
497<\/td>\n | Table A.126 \u2013 Literals of DERStateTransitionKind <\/td>\n<\/tr>\n | ||||||
498<\/td>\n | Table A.127 \u2013 Literals of DERSynchronizationKind Table A.128 \u2013 Literals of DERUnitKind <\/td>\n<\/tr>\n | ||||||
499<\/td>\n | Table A.129 \u2013 Literals of ECPConnKind Table A.130 \u2013 Literals of ECPIslandStateKind <\/td>\n<\/tr>\n | ||||||
500<\/td>\n | Table A.131 \u2013 Literals of EquipmentTestResultKind Table A.132 \u2013 Literals of ExciterKind Table A.133 \u2013 Literals of FrequencyActivePowerRefParamKind <\/td>\n<\/tr>\n | ||||||
501<\/td>\n | Table A.134 \u2013 Literals of FuelDeliveryKind Table A.135 \u2013 Literals of FuelKind <\/td>\n<\/tr>\n | ||||||
502<\/td>\n | Table A.136 \u2013 Literals of FuelProcessingInFuelKind <\/td>\n<\/tr>\n | ||||||
503<\/td>\n | Table A.137 \u2013 Literals of FuelProcessingKind Table A.138 \u2013 Literals of FuelProcessingOutFuelKind Table A.139 \u2013 Literals of GroundingSystemKind <\/td>\n<\/tr>\n | ||||||
504<\/td>\n | Table A.140 \u2013 Literals of InverterControlSourceKind Table A.141 \u2013 Literals of InverterSwitchKind Table A.142 \u2013 Literals of IsolationKind <\/td>\n<\/tr>\n | ||||||
505<\/td>\n | Table A.143 \u2013 Literals of OutputFilterKind Table A.144 \u2013 Literals of PhaseFeedKind <\/td>\n<\/tr>\n | ||||||
506<\/td>\n | Table A.145 \u2013 Literals of PhaseKind Table A.146 \u2013 Literals of PVArrayControlModeKind Table A.147 \u2013 Literals of PVAssemblyKind <\/td>\n<\/tr>\n | ||||||
507<\/td>\n | Table A.148 \u2013 Literals of PVConfigKind Table A.149 \u2013 Literals of PVControlStateKind Table A.150 \u2013 Literals of PVGroundingKind <\/td>\n<\/tr>\n | ||||||
508<\/td>\n | Table A.151 \u2013 Literals of PVTrackingControlKind Table A.152 \u2013 Literals of PVTrackingKind <\/td>\n<\/tr>\n | ||||||
509<\/td>\n | Table A.153 \u2013 Literals of PVTrackingStatusKind Table A.154 \u2013 Literals of PVTrackingTechnologyKind Table A.155 \u2013 Literals of QuadrantRunningStateKind <\/td>\n<\/tr>\n | ||||||
510<\/td>\n | Table A.156 \u2013 Literals of ReactivePowerRefParamKind Table A.157 \u2013 Literals of ThermalEnergyMediumKind <\/td>\n<\/tr>\n | ||||||
511<\/td>\n | Table A.158 \u2013 Literals of ThermalEnergyStorageKind Table A.159 \u2013 Literals of VoltageRegulationKind Table A.160 \u2013 Literals of WaveformConditioningKind <\/td>\n<\/tr>\n | ||||||
512<\/td>\n | Table A.161 \u2013 Literals of VoltageActivePowerRefParamKind <\/td>\n<\/tr>\n | ||||||
513<\/td>\n | Annex B (informative)DER hierarchy modelling rules and examples B.1 Main principles application B.1.1 General B.1.2 Applying the DER composition modelling rules B.1.3 Applying the DER class model B.1.4 Exposing some DER properties through the generic interface B.1.5 Applying the dynamic relationships between the core DER modelling elements B.2 Examples B.2.1 Global DER models applying to a campus of two buildings <\/td>\n<\/tr>\n | ||||||
514<\/td>\n | Figure B.1 \u2013 Example of power management hierarchical interactions \u2013architecture case Figure B.2 \u2013 Example of power management hierarchical interactions \u2013 single DER power management architecture (focused on one sub-resource level “building 2”) <\/td>\n<\/tr>\n | ||||||
516<\/td>\n | Figure B.3 \u2013 Example of power management hierarchical interactions \u2013single DER power management architecture with insight on internal interactions (focused on one sub-resource level “building 2”) <\/td>\n<\/tr>\n | ||||||
517<\/td>\n | Figure B.4 \u2013 Example of power management hierarchical interactions \u2013 “site” level Figure B.5 \u2013 Example of power balancing on a mixed resource (generation and loads) <\/td>\n<\/tr>\n | ||||||
518<\/td>\n | B.2.2 Example of modelling a composed DER made of (PV+BAT)+BAT on a single plant Figure B.6 \u2013 Global DER modelling applying to a composed DER made of (PV+BAT)+BAT on a single plant <\/td>\n<\/tr>\n | ||||||
519<\/td>\n | B.2.3 Global DER modelling applying to shared DER (30 %PV + 30 %BAT) and (70 %PV + 70 %BAT) on a single plant Figure B.7 \u2013 Global DER modelling applying to shared DER (30 %PV + 30 %BAT) and (70 %PV + 70 %BAT) on a single plant <\/td>\n<\/tr>\n | ||||||
520<\/td>\n | B.2.4 Mapping example in case of a complex storage installation Figure B.8 \u2013 A simple electrical energy storage system <\/td>\n<\/tr>\n | ||||||
521<\/td>\n | Figure B.9 \u2013 A more complex electrical mixed system, including storage \u2013example of possible LN mapping <\/td>\n<\/tr>\n | ||||||
522<\/td>\n | Annex C (normative)Backward compatibility with IEC 61850-7-420 Edition 1 Table C.1 \u2013 Compatibility assessment Table C.2 \u2013 Compatibility tables <\/td>\n<\/tr>\n | ||||||
530<\/td>\n | Annex D (informative)DER operational functions D.1 List of DER mandatory grid codes D.2 Table of DER functions <\/td>\n<\/tr>\n | ||||||
531<\/td>\n | Table D.1 \u2013 DER functions and operational functions <\/td>\n<\/tr>\n | ||||||
538<\/td>\n | D.3 Combining DER operational functions using the concepts of Ideal, Max, Min instantiations <\/td>\n<\/tr>\n | ||||||
539<\/td>\n | Table D.2 \u2013 Ideal, Max, Min, & Priority of DTCD and DWFL over a day <\/td>\n<\/tr>\n | ||||||
541<\/td>\n | D.4 Scheduling with Ideal, Max, Min <\/td>\n<\/tr>\n | ||||||
543<\/td>\n | Annex E (informative)Examples of implementation to support Low Voltage ride through E.1 Case of European grid codes Figure E.1 \u2013 European low voltage ride through requirement (EN 50549-1) Figure E.2 \u2013 Undervoltage curve one to support European low voltage ride through <\/td>\n<\/tr>\n | ||||||
544<\/td>\n | Figure E.3 \u2013 Undervoltage curve two to support European low voltage ride through Figure E.4 \u2013 LN mapping example to support Europeanlow voltage ride through requirements <\/td>\n<\/tr>\n | ||||||
545<\/td>\n | E.2 Case of IEEE 1547 requirements Table E.1 \u2013 IEEE 1547 shall trip requirements for DER category III Table E.2 \u2013 IEEE 1547 voltage ride through requirements for DER category III <\/td>\n<\/tr>\n | ||||||
546<\/td>\n | Figure E.5 \u2013 LN mapping example to support IEEE1547low voltage ride through requirements of DER category III Table E.3 \u2013 LN instances for Voltage disturbances ofDER category III according to IEEE 1547 <\/td>\n<\/tr>\n | ||||||
547<\/td>\n | Figure E.6 \u2013 IEC 61850 model for IEEE 1547 voltage disturbances <\/td>\n<\/tr>\n | ||||||
548<\/td>\n | Annex F (Informative)Handling of setpoints with IEC 61850-7-3 Ed 2.1 and Ed 2.2 F.1 Main features associated to setpoints <\/td>\n<\/tr>\n | ||||||
550<\/td>\n | F.2 Main 61850 client-server modelling principles F.3 Modelling rules for implementing computed setpoints <\/td>\n<\/tr>\n | ||||||
551<\/td>\n | F.4 Implementing setpoints with Edition 2.1 Figure F.1 \u2013 (draft) Client\/server interaction mechanismto handle setpoints based on IEC 61850-7-3 Ed 2.2 <\/td>\n<\/tr>\n | ||||||
552<\/td>\n | Figure F.2 \u2013 Client\/server interaction mechanism to handle setpoints <\/td>\n<\/tr>\n | ||||||
553<\/td>\n | Bibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" Communication networks and systems for power utility automation – Basic communication structure. Distributed energy resources and distribution automation logical nodes<\/b><\/p>\n |