{"id":394838,"date":"2024-10-20T04:15:59","date_gmt":"2024-10-20T04:15:59","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bsi-pd-cen-tr-17603-32-022022\/"},"modified":"2024-10-26T07:59:15","modified_gmt":"2024-10-26T07:59:15","slug":"bsi-pd-cen-tr-17603-32-022022","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bsi-pd-cen-tr-17603-32-022022\/","title":{"rendered":"BSI PD CEN\/TR 17603-32-02:2022"},"content":{"rendered":"

The structural materials handbook, SMH, combines materials and design information on established polymer matrix composites with provisional information on the emerging groups of newer advanced materials and their composites. Design aspects are described, along with factors associated with joining and manufacturing. Where possible, these are illustrated by examples or case studies. The Structural materials handbook contains 8 Parts. A glossary of terms, definitions and abbreviated terms for these handbooks is contained in Part 8. The parts are as follows: Part 1 Overview and material properties and applications Clauses 1 \u2010 9 Part 2 Design calculation methods and general design aspects Clauses 10 \u2010 22 Part 3 Load transfer and design of joints and design of structures Clauses 23 \u2010 32 Part 4 Integrity control, verification guidelines and manufacturing Clauses 33 \u2010 45 Part 5 New advanced materials, advanced metallic materials, general design aspects and load transfer and design of joints Clauses 46 \u2010 63 Part 6 Fracture and material modelling, case studies and design and integrity control and inspection Clauses 64 \u2010 81 Part 7 Thermal and environmental integrity, manufacturing aspects, in\u2010orbit and health monitoring, soft materials, hybrid materials and nanotechnoligies Clauses 82 \u2010 107 Part 8 Glossary NOTE: The 8 parts will be numbered TR17603-32-01 to TR 17603-32-08<\/p>\n

PDF Catalog<\/h4>\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
PDF Pages<\/th>\nPDF Title<\/th>\n<\/tr>\n
2<\/td>\nundefined <\/td>\n<\/tr>\n
29<\/td>\n10 Stress-strain relationships
10.1 Introduction
10.2 Elastic property prediction for UD ply from constituent properties <\/td>\n<\/tr>\n
31<\/td>\n10.3 Analytical notation for elastic constant methods
10.4 Calculation methods for elastic constants of UD ply <\/td>\n<\/tr>\n
33<\/td>\n10.5 Longitudinal modulus <\/td>\n<\/tr>\n
35<\/td>\n10.6 Longitudinal Poisson’s ratio <\/td>\n<\/tr>\n
36<\/td>\n10.7 Transverse modulus
10.7.1 General
10.7.2 Jones method
10.7.3 F\u00f6rster\/Knappe method <\/td>\n<\/tr>\n
37<\/td>\n10.7.4 Schneider method
10.7.5 Puck method
10.7.6 Tsai method <\/td>\n<\/tr>\n
38<\/td>\n10.7.7 HSB method
10.7.8 Graphs <\/td>\n<\/tr>\n
41<\/td>\n10.8 Transverse Poisson’s ratio
10.9 Transverse shear modulus
10.9.1 General
10.9.2 Jones method
10.9.3 F\u00f6rster\/Knappe method
10.9.4 Schneider method <\/td>\n<\/tr>\n
42<\/td>\n10.9.5 Puck method
10.9.6 Tsai method
10.9.7 HSB method <\/td>\n<\/tr>\n
43<\/td>\n10.9.8 Graphs <\/td>\n<\/tr>\n
45<\/td>\n10.10 In-plane stress calculation methods
10.11 Analytical notation for in-plane methods <\/td>\n<\/tr>\n
47<\/td>\n10.12 Stress-strain relations for unidirectional plies
10.12.1 Fibre-oriented co-ordinate system
10.13 On axis stress strain relations
10.13.1 General <\/td>\n<\/tr>\n
48<\/td>\n10.13.2 Compliance matrix
10.13.3 Modulus matrix
10.13.4 Symmetry of compliance and modulus matrices
10.14 Stress-strain relations for a ply of arbitrary orientation
10.14.1 General <\/td>\n<\/tr>\n
50<\/td>\n10.14.2 Off axis stiffness of a unidirectional ply <\/td>\n<\/tr>\n
51<\/td>\n10.15 Stiffness matrix for a laminate
10.15.1 General laminates <\/td>\n<\/tr>\n
53<\/td>\n10.15.2 Symmetric laminates <\/td>\n<\/tr>\n
54<\/td>\n10.15.3 Flow chart <\/td>\n<\/tr>\n
55<\/td>\n10.16 Calculation methods with interlaminar stresses and strains
10.16.1 Calculation with free-edge stresses <\/td>\n<\/tr>\n
57<\/td>\n10.17 Qualitative evaluation of interlaminar strength for design purposes
10.17.1 General <\/td>\n<\/tr>\n
59<\/td>\n10.17.2 Variation of fibre direction within a [\u00b1 , 0 , \u00b1 ] laminate
10.17.3 Variation of the thickness of the 0 layer within the [\u00b1 30 , 0n , \u00b1 30 ] laminate <\/td>\n<\/tr>\n
60<\/td>\n10.17.4 Variation of the sequence of layers
10.18 References
10.18.1 General <\/td>\n<\/tr>\n
62<\/td>\n11 Strength prediction and failure criteria
11.1 Introduction
11.1.1 Micro-mechanical strength models
11.1.1.1 Fibres
11.1.1.2 UD composites
11.1.1.3 Laminate
11.1.2 Lamina failure models
11.1.2.1 Complex stressing <\/td>\n<\/tr>\n
63<\/td>\n11.1.2.2 Failure theories
11.1.3 Failure criteria studies
11.1.3.1 ESA failure criteria study
11.1.3.2 WWFE worldwide failure exercise <\/td>\n<\/tr>\n
64<\/td>\n11.1.4 Summary of World Wide Failure Exercise (WWFE)
11.1.4.1 WWFE I
11.1.4.2 WWFE II <\/td>\n<\/tr>\n
65<\/td>\n11.1.4.3 WWFE III <\/td>\n<\/tr>\n
66<\/td>\n11.2 Tensile strength of UD composites in fibre direction
11.2.1 General
11.2.2 Weakest-link failure model
11.2.3 Cumulative weakening failure model <\/td>\n<\/tr>\n
68<\/td>\n11.2.4 Fibre break propagation model
11.2.5 Cumulative group mode failure model
11.2.6 Status of models
11.3 Compressive strength of UD composites in fibre direction
11.3.1 General <\/td>\n<\/tr>\n
69<\/td>\n11.3.2 Extension mode buckling
11.3.3 Shear mode buckling <\/td>\n<\/tr>\n
70<\/td>\n11.3.4 Analysis of compression failure
11.3.4.1 General
11.3.4.2 Extension mode buckling
11.3.4.3 Shear mode buckling <\/td>\n<\/tr>\n
72<\/td>\n11.3.4.4 Debonding
11.4 Transverse tensile strength of UD composites
11.4.1 General <\/td>\n<\/tr>\n
73<\/td>\n11.4.2 Prediction of transverse tensile strength
11.4.3 Empirical analysis <\/td>\n<\/tr>\n
74<\/td>\n11.5 Static strength criteria for composites
11.6 Analytical notation for static strength criteria for composites
11.6.1 Co-ordinate system <\/td>\n<\/tr>\n
75<\/td>\n11.6.2 Formulae <\/td>\n<\/tr>\n
76<\/td>\n11.7 Different types of failure criteria
11.7.1 General <\/td>\n<\/tr>\n
77<\/td>\n11.7.2 Evaluation studies
11.8 Overview – Failure criteria
11.8.1 Introduction <\/td>\n<\/tr>\n
78<\/td>\n11.8.2 Independent conditions
11.8.2.1 Maximum stress
11.8.2.2 Maximum strain <\/td>\n<\/tr>\n
79<\/td>\n11.8.3 Interactive conditions \u2013 Pure interpolative conditions
11.8.3.1 General
11.8.3.2 Tensor criteria <\/td>\n<\/tr>\n
80<\/td>\n11.8.3.3 Consideration of maximum strength in fibre direction
11.8.4 Interactive conditions – Physical considerations
11.8.4.1 Hashin\u2019s failure criterion <\/td>\n<\/tr>\n
81<\/td>\n11.8.4.2 Puck\u2019s action plane failure criterion <\/td>\n<\/tr>\n
83<\/td>\n11.8.4.3 Simplified parabolic model
11.8.4.4 Cuntze FMC-based UD failure criterion <\/td>\n<\/tr>\n
88<\/td>\n11.8.4.5 Other failure criterion <\/td>\n<\/tr>\n
89<\/td>\n11.9 Comparison between test data and various failure criteria
11.9.1 Effects on failure mode <\/td>\n<\/tr>\n
93<\/td>\n11.10 Description of failure modes
11.10.1 Laminates
11.10.1.1 General
11.10.1.2 Role of fibres
11.10.1.3 Role of matrix
11.10.1.4 Loading
11.10.1.5 Fibre orientation
11.10.2 Failure <\/td>\n<\/tr>\n
98<\/td>\n11.11 Fatigue strength of composites
11.11.1 Background
11.11.1.1 General
11.11.1.2 Factors influencing residual strength
11.11.1.3 Analysis <\/td>\n<\/tr>\n
99<\/td>\n11.11.2 Analytical notation
11.11.3 Approximation of fatigue life <\/td>\n<\/tr>\n
101<\/td>\n11.12 References
11.12.1 General <\/td>\n<\/tr>\n
105<\/td>\n12 Calculation of thermal stress and displacement
12.1 Introduction
12.1.1 General
12.1.2 Longitudinal CTE
12.1.3 Transverse CTE <\/td>\n<\/tr>\n
106<\/td>\n12.2 Analytical notation for thermal stress calculations <\/td>\n<\/tr>\n
107<\/td>\n12.3 Calculation of CTE from constituents
12.3.1 CTE in fibre direction
12.3.2 CTE perpendicular to fibre direction
12.3.2.1 Calculation Methods <\/td>\n<\/tr>\n
108<\/td>\n12.4 CTE for a laminate <\/td>\n<\/tr>\n
110<\/td>\n12.5 Thermal stresses within laminate layers
12.5.1 General
12.5.2 Residual curing stresses <\/td>\n<\/tr>\n
111<\/td>\n12.6 Stress strain temperature relation
12.6.1 General
12.6.2 Mechanical strains
12.6.3 Incremental strain theory <\/td>\n<\/tr>\n
113<\/td>\n12.7 Microstress analysis
12.7.1 General
12.7.2 Microstresses on fibre axis
12.7.3 Microstresses normal to fibre axis
12.8 References
12.8.1 General <\/td>\n<\/tr>\n
115<\/td>\n13 Moisture effects on composite properties
13.1 Introduction
13.1.1 General
13.1.2 Moisture penetration
13.1.3 Moisture effects
13.1.3.1 Swelling <\/td>\n<\/tr>\n
116<\/td>\n13.1.3.2 Mechanical properties
13.1.3.3 Prediction of moisture effects
13.2 Analytical notation for moisture effects <\/td>\n<\/tr>\n
117<\/td>\n13.3 Typical effects of moisture
13.3.1 General
13.3.2 Sample data: Effects of moisture
13.3.2.1 General <\/td>\n<\/tr>\n
118<\/td>\n13.3.2.2 Matrix plasticising <\/td>\n<\/tr>\n
119<\/td>\n13.3.2.3 Matrix swelling
13.3.2.4 Temperature-time dependence of moisture absorption <\/td>\n<\/tr>\n
120<\/td>\n13.3.2.5 Changes in strength <\/td>\n<\/tr>\n
121<\/td>\n13.3.2.6 Changes in moduli
13.3.2.7 Changes in fatigue behaviour <\/td>\n<\/tr>\n
122<\/td>\n13.4 Approximate method for calculation of strength and modulus retention of [0 \/90 ] laminates
13.4.1 General
13.4.2 Modulus retention <\/td>\n<\/tr>\n
124<\/td>\n13.4.3 Strength retention <\/td>\n<\/tr>\n
125<\/td>\n13.5 Moisture content
13.5.1 Fick’s law <\/td>\n<\/tr>\n
126<\/td>\n13.5.2 Determination of moisture content <\/td>\n<\/tr>\n
127<\/td>\n13.5.3 Maximum moisture content <\/td>\n<\/tr>\n
128<\/td>\n13.5.4 Experimental determination of the diffusion coefficient <\/td>\n<\/tr>\n
130<\/td>\n13.6 Calculation of swelling coefficient from constituents
13.6.1 General
13.6.2 Swelling coefficient 1 in fibre direction
13.6.3 Swelling coefficient 2 transverse to fibres <\/td>\n<\/tr>\n
131<\/td>\n13.6.4 Swelling coefficient for a laminate <\/td>\n<\/tr>\n
133<\/td>\n13.7 Coefficient of moisture expansion (CME)
13.7.1 Resin behaviour
13.7.1.1 General
13.7.1.2 In-plane
13.7.1.3 Through-thickness (transverse)
13.7.1.4 Measurement of CME <\/td>\n<\/tr>\n
134<\/td>\n13.7.2 Composite behaviour
13.7.2.1 General <\/td>\n<\/tr>\n
135<\/td>\n13.7.2.2 CFRP composites
13.8 References
13.8.1 General <\/td>\n<\/tr>\n
137<\/td>\n14 Stress concentrations and fracture
14.1 Introduction
14.1.1 General
14.1.2 Fracture mechanics models <\/td>\n<\/tr>\n
138<\/td>\n14.2 Analytical notation for stress concentrations
14.3 Summary of fracture models <\/td>\n<\/tr>\n
139<\/td>\n14.4 Evaluation of fracture models <\/td>\n<\/tr>\n
140<\/td>\n14.5 WEK fracture model
14.5.1 General
14.5.2 Circular holes <\/td>\n<\/tr>\n
143<\/td>\n14.5.3 Straight crack <\/td>\n<\/tr>\n
146<\/td>\n14.6 WN fracture model
14.6.1 General
14.6.2 Failure criteria
14.6.2.1 Point stress criterion <\/td>\n<\/tr>\n
147<\/td>\n14.6.2.2 Average stress criterion <\/td>\n<\/tr>\n
148<\/td>\n14.6.3 Characteristics of WN fracture model <\/td>\n<\/tr>\n
149<\/td>\n14.6.4 Circular holes <\/td>\n<\/tr>\n
153<\/td>\n14.6.5 Straight cracks <\/td>\n<\/tr>\n
154<\/td>\n14.6.6 Point stress criteria <\/td>\n<\/tr>\n
155<\/td>\n14.6.7 Average stress criterion <\/td>\n<\/tr>\n
159<\/td>\n14.7 Finite plate models
14.8 Finite width correction (FWC)
14.8.1 General <\/td>\n<\/tr>\n
161<\/td>\n14.8.2 Circular holes <\/td>\n<\/tr>\n
162<\/td>\n14.8.3 Centre crack
14.9 Calculated stress concentration factor at circular holes
14.9.1 NASA results <\/td>\n<\/tr>\n
164<\/td>\n14.9.2 Finite width correction (FWC)
14.9.3 MBB\/ERNO study <\/td>\n<\/tr>\n
169<\/td>\n14.10 Stress distribution around circular holes
14.10.1 General
14.10.2 Stress concentration due to tensile load <\/td>\n<\/tr>\n
170<\/td>\n14.10.3 Stress concentration due to shear load <\/td>\n<\/tr>\n
172<\/td>\n14.11 Interlaminar fracture mechanics
14.11.1 Nomenclature
14.11.2 Delamination and fracture mechanics overview
14.11.2.1 Delamination initiation and growth <\/td>\n<\/tr>\n
173<\/td>\n14.11.2.2 Linear elastic fracture mechanics and the strain energy release rate approach <\/td>\n<\/tr>\n
174<\/td>\n14.11.2.3 Using fracture mechanics to identify the critical delamination location <\/td>\n<\/tr>\n
175<\/td>\n14.11.2.4 Fracture mechanics prediction procedure <\/td>\n<\/tr>\n
176<\/td>\n14.11.3 Standard test methods (static and fatigue)
14.11.3.1 General
14.11.3.2 Interlaminar fracture toughness testing <\/td>\n<\/tr>\n
177<\/td>\n14.11.3.3 Types of test methods <\/td>\n<\/tr>\n
178<\/td>\n14.11.3.4 Fatigue delamination characterisation <\/td>\n<\/tr>\n
180<\/td>\n14.11.4 Calculation of strain energy release rate in structural analysis
14.11.4.1 Global energy comparisons <\/td>\n<\/tr>\n
181<\/td>\n14.11.4.2 Virtual crack closure technique (VCCT)
14.11.4.3 2D VCCT <\/td>\n<\/tr>\n
182<\/td>\n14.11.4.4 3D VCCT <\/td>\n<\/tr>\n
184<\/td>\n14.11.4.5 Using interlaminar fracture mechanics in design <\/td>\n<\/tr>\n
186<\/td>\n14.12 References
14.12.1 General <\/td>\n<\/tr>\n
190<\/td>\n15 Prediction of dynamic characteristics
15.1 Introduction
15.2 Definition of damping terms
15.2.1 General terms
15.2.1.1 Specific energy <\/td>\n<\/tr>\n
191<\/td>\n15.2.1.2 Loss factors <\/td>\n<\/tr>\n
192<\/td>\n15.2.2 Complex modulus model
15.2.2.1 General
15.2.2.2 Energy dissipation under steady state sinusoidal excitation
15.2.2.3 Bandwidth of half power points in steady state sinusoidal excitation
15.2.2.4 Quality factor
15.2.2.5 Loss tangent under sinusoidal excitation <\/td>\n<\/tr>\n
193<\/td>\n15.2.2.6 Decay of free vibration
15.2.2.7 Interrelationships
15.3 Prediction methods for damping <\/td>\n<\/tr>\n
194<\/td>\n15.4 Determination of damping characteristics
15.4.1 Unidirectional characteristics
15.4.2 Off axis characteristics <\/td>\n<\/tr>\n
195<\/td>\n15.4.3 Laminate characteristics
15.5 Approximate data on damping <\/td>\n<\/tr>\n
196<\/td>\n15.6 References
15.6.1 General <\/td>\n<\/tr>\n
197<\/td>\n16 Computer analysis of composites
16.1 Introduction
16.2 Computer programs: Analysis of composites
16.2.1 General <\/td>\n<\/tr>\n
199<\/td>\n16.2.2 Finite element programs <\/td>\n<\/tr>\n
200<\/td>\n16.2.3 Laminate analysis programs <\/td>\n<\/tr>\n
202<\/td>\n16.2.4 Special applications programs <\/td>\n<\/tr>\n
204<\/td>\n16.3 ESDU data for composite analysis
16.3.1 General
16.3.2 ESDU data items <\/td>\n<\/tr>\n
206<\/td>\n16.3.3 ESDUpac
16.4 Buckling of orthotropic plates
16.4.1 Title
16.4.2 Usage and scope
16.4.3 Analysis
16.4.4 ESDUpac A7303
16.4.4.1 General
16.4.4.2 Input <\/td>\n<\/tr>\n
207<\/td>\n16.4.4.3 Output
16.4.5 Notes
16.5 Flexural stiffness of flat strips
16.5.1 Title
16.5.2 Usage and scope
16.5.3 Analysis <\/td>\n<\/tr>\n
208<\/td>\n16.6 Metallic skin stiffeners reinforced by composite – local buckling
16.6.1 Title
16.6.2 Usage and scope
16.6.3 Analysis and data <\/td>\n<\/tr>\n
209<\/td>\n16.7 Laminate stress analysis
16.7.1 Title
16.7.2 Usage and scope
16.7.3 Analysis <\/td>\n<\/tr>\n
210<\/td>\n16.8 Plate stiffnesses (In-plane)
16.8.1 Title
16.8.2 Usage and scope
16.8.3 Analysis and methods <\/td>\n<\/tr>\n
211<\/td>\n16.9 Bonded joints – 1
16.9.1 Title
16.9.2 Usage and scope
16.9.3 Analysis and data <\/td>\n<\/tr>\n
212<\/td>\n16.10 Bonded joints – 2
16.10.1 Title
16.10.2 Usage and scope
16.10.3 Analysis and data <\/td>\n<\/tr>\n
213<\/td>\n16.10.4 ESDUpac A7916
16.10.4.1 General
16.10.4.2 Input
16.10.4.3 Output
16.11 Bonded joints – 3
16.11.1 Title
16.11.2 Usage and scope <\/td>\n<\/tr>\n
214<\/td>\n16.11.3 Analysis and data
16.12 Buckling of rectangular specially orthotropic plates
16.12.1 Title
16.12.2 Usage and scope
16.12.3 Analysis and data <\/td>\n<\/tr>\n
215<\/td>\n16.13 Bonded joints – 4
16.13.1 Title
16.13.2 Usage and scope
16.13.3 Analysis and data <\/td>\n<\/tr>\n
216<\/td>\n16.13.4 ESDUpac A8039
16.13.4.1 General
16.13.4.2 Input
16.13.4.3 Output
16.14 Bonded joints – 5
16.14.1 Title
16.14.2 Usage and scope
16.14.3 Information and guidance <\/td>\n<\/tr>\n
217<\/td>\n16.15 Buckling of orthotropic plates
16.15.1 Title
16.15.2 Usage and scope
16.15.3 Analysis and data
16.15.4 ESDUpac A8147
16.15.4.1 General
16.15.4.2 Plate materials <\/td>\n<\/tr>\n
218<\/td>\n16.15.4.3 Plate loadings
16.15.4.4 Plate boundary conditions
16.16 Lay-up arrangements for special orthotropy
16.16.1 Title
16.16.2 Usage and scope
16.16.3 Analysis and data <\/td>\n<\/tr>\n
219<\/td>\n16.17 Failure modes of laminated composites
16.17.1 Title
16.17.2 Usage and scope
16.17.3 Analysis and failure modes <\/td>\n<\/tr>\n
220<\/td>\n16.18 Failure criteria for layers of a laminated composite
16.18.1 Title
16.18.2 Usage and scope
16.18.3 Analysis and data
16.19 Plate stiffnesses and apparent elastic properties
16.19.1 Title
16.19.2 Usage and scope <\/td>\n<\/tr>\n
221<\/td>\n16.19.3 Analysis for stiffnesses and elastic properties
16.19.4 ESDUpac A8335
16.19.4.1 General
16.19.4.2 Input
16.19.4.3 Output
16.19.4.4 Limitations
16.20 Natural frequencies of laminated flat plates
16.20.1 Title <\/td>\n<\/tr>\n
222<\/td>\n16.20.2 Usage and scope
16.20.3 Calculation of natural frequencies
16.20.4 ESDUpac A8336
16.20.4.1 General
16.20.4.2 Input
16.20.4.3 Output
16.20.4.4 Limitations <\/td>\n<\/tr>\n
223<\/td>\n16.21 Strain in skin panels under acoustic loading
16.21.1 Title
16.21.2 Usage and scope
16.21.3 Calculation of surface strains
16.21.4 ESDUpac A8408
16.21.4.1 General
16.21.4.2 Input
16.21.4.3 Output <\/td>\n<\/tr>\n
224<\/td>\n16.21.4.4 Limitations
16.22 Failure analysis
16.22.1 Title
16.22.2 Usage and scope
16.22.3 Analysis <\/td>\n<\/tr>\n
225<\/td>\n16.22.4 ESDUpac A8418
16.22.4.1 General
16.22.4.2 Input
16.22.4.3 Output options
16.22.4.4 Output <\/td>\n<\/tr>\n
226<\/td>\n16.23 Endurance under acoustic loading
16.23.1 Title
16.23.2 Usage and scope
16.24 Stress and strain around circular holes
16.24.1 Title <\/td>\n<\/tr>\n
227<\/td>\n16.24.2 Usage and scope
16.24.3 Analysis
16.24.4 ESDUpac A8501
16.24.4.1 General
16.24.4.2 Input
16.24.4.3 Output <\/td>\n<\/tr>\n
228<\/td>\n16.25 Damping in composite plates
16.25.1 Title
16.25.2 Usage and scope
16.25.3 Calculation of damping
16.25.4 ESDUpac 8512
16.25.4.1 General
16.25.4.2 Input <\/td>\n<\/tr>\n
229<\/td>\n16.25.4.3 Output
16.25.4.4 Limitations
16.26 Sandwich panel natural frequencies
16.26.1 Title
16.26.2 Usage and scope
16.26.3 Calculation of natural frequencies <\/td>\n<\/tr>\n
230<\/td>\n16.26.4 ESDUpac A8537
16.26.4.1 General
16.26.4.2 Input
16.26.4.3 Output
16.26.4.4 Limitations
16.27 Selection of reinforcement around circular holes
16.27.1.1 Title
16.27.1.2 Usage and scope
16.27.1.3 Analysis and data <\/td>\n<\/tr>\n
231<\/td>\n16.28 Buckling of unbalanced composite plates
16.28.1 Title
16.28.2 Usage and scope
16.28.3 Analysis and data <\/td>\n<\/tr>\n
232<\/td>\n16.28.4 ESDUpac A8620
16.28.4.1 General
16.28.4.2 Input
16.28.4.3 Output
16.29 Sandwich panel response to acoustic loading
16.29.1 Title
16.29.2 Usage and scope <\/td>\n<\/tr>\n
233<\/td>\n16.29.3 Calculation of natural frequencies and surface strains
16.29.4 ESDUpac A8624
16.29.4.1 General
16.29.4.2 Input
16.29.4.3 Output
16.29.4.4 Limitations
16.30 Sandwich column and beam face plate wrinkling
16.30.1 Title
16.30.2 Usage and scope <\/td>\n<\/tr>\n
234<\/td>\n16.30.3 Analysis
16.30.4 ESDUpac A8713
16.30.4.1 General
16.30.4.2 Input
16.30.4.3 Output <\/td>\n<\/tr>\n
235<\/td>\n16.31 Buckling of curved composite panels
16.31.1 Title
16.31.2 Usage and scope
16.31.3 Analysis and data
16.31.4 ESDUpac A8725
16.31.4.1 General
16.31.4.2 Input <\/td>\n<\/tr>\n
236<\/td>\n16.31.4.3 Output
16.32 Sandwich panel face plate wrinkling
16.32.1 Title
16.32.2 Usage and scope
16.32.3 Analysis <\/td>\n<\/tr>\n
237<\/td>\n16.32.4 ESDUpac A8815
16.32.4.1 General
16.32.4.2 Input
16.32.4.3 Output
16.33 Vibration of singly-curved laminated plates
16.33.1 Title
16.33.2 Usage and scope <\/td>\n<\/tr>\n
238<\/td>\n16.33.3 Calculation of natural frequencies
16.33.4 ESDUpac A8911
16.33.4.1 General
16.33.4.2 Input
16.33.4.3 Output
16.33.4.4 Limitations
16.34 Plate through-the-thickness shear stiffnesses
16.34.1 Title <\/td>\n<\/tr>\n
239<\/td>\n16.34.2 Usage and scope
16.34.3 Analysis
16.34.4 ESDUpac A8913
16.34.4.1 Input
16.34.4.2 Output
16.34.4.3 Limitations
16.34.5 Notes <\/td>\n<\/tr>\n
240<\/td>\n16.35 Vibration of plates with in-plane loading
16.35.1 Title
16.35.2 Usage and scope
16.35.3 Calculation of natural frequencies
16.35.4 ESDUpac A9016
16.35.4.1 General
16.35.4.2 Input <\/td>\n<\/tr>\n
241<\/td>\n16.35.4.3 Output
16.35.4.4 Limitations
16.36 Delamination and free edge stresses
16.36.1 Title
16.36.2 Usage and scope
16.36.3 Analysis <\/td>\n<\/tr>\n
242<\/td>\n16.36.4 ESDUpac A9021
16.36.4.1 Input
16.36.4.2 Output
16.36.4.3 Limitations
16.36.5 Notes
16.37 Delamination at termination of plies
16.37.1 Title <\/td>\n<\/tr>\n
243<\/td>\n16.37.2 Usage and scope
16.37.3 Analysis
16.37.4 ESDUpac A9103
16.37.4.1 General
16.37.4.2 Input
16.37.4.3 Output <\/td>\n<\/tr>\n
244<\/td>\n16.38 Thickness selection to meet a loading combination
16.38.1 Title
16.38.2 Usage and scope
16.38.3 Analysis
16.38.4 ESDUpac A9233
16.38.4.1 Input <\/td>\n<\/tr>\n
245<\/td>\n16.38.4.2 Output
16.39 ESAComp <\/td>\n<\/tr>\n
246<\/td>\n17 Composite adequate design
17.1 Introduction
17.2 Anisotropy of composites <\/td>\n<\/tr>\n
248<\/td>\n17.3 Stress-strain relationships
17.3.1 Reinforcing fibres
17.3.2 Stress concentrations <\/td>\n<\/tr>\n
250<\/td>\n17.4 Fibre strength and stiffness
17.4.1 General <\/td>\n<\/tr>\n
251<\/td>\n17.4.2 High stiffness applications
17.4.2.1 Glass fibres
17.4.2.2 Carbon fibres
17.4.2.3 Boron fibres <\/td>\n<\/tr>\n
252<\/td>\n17.4.2.4 Aramid fibres
17.5 Basic design rules
17.5.1 General
17.5.2 Aspects of construction
17.5.2.1 Changes in thickness <\/td>\n<\/tr>\n
253<\/td>\n17.5.2.2 Radii, curves and sharp corners <\/td>\n<\/tr>\n
254<\/td>\n17.5.2.3 Openings
17.5.2.4 Other design considerations <\/td>\n<\/tr>\n
255<\/td>\n17.5.3 Aspects of laminate lay up
17.5.3.1 Fibre forms <\/td>\n<\/tr>\n
256<\/td>\n17.5.3.2 Lay up <\/td>\n<\/tr>\n
258<\/td>\n17.5.4 Fabrication aspects
17.5.4.1 Cost effectiveness <\/td>\n<\/tr>\n
260<\/td>\n17.5.4.2 Criteria for cost effectiveness
17.5.4.3 Processing technique <\/td>\n<\/tr>\n
261<\/td>\n17.6 First steps in designing a composite
17.6.1 General
17.6.2 Carpet plots <\/td>\n<\/tr>\n
263<\/td>\n17.6.3 Use of carpet plots
17.6.3.1 General
17.6.3.2 Method 1 <\/td>\n<\/tr>\n
264<\/td>\n17.6.3.3 Method 2
17.6.3.4 Other parameters
17.7 References
17.7.1 General <\/td>\n<\/tr>\n
266<\/td>\n18 Curing stresses: Effects and prediction
18.1 Introduction
18.2 Cure process
18.2.1 Composite materials
18.2.1.1 Thermosetting resin
18.2.1.2 Thermoplastic composites <\/td>\n<\/tr>\n
267<\/td>\n18.2.2 Cure parameters
18.2.2.1 General
18.2.2.2 Temperature
18.2.2.3 Pressure <\/td>\n<\/tr>\n
268<\/td>\n18.3 Analytical notation for residual stress
18.4 Residual stresses
18.4.1 General
18.4.2 Types of residual stresses
18.4.2.1 Micro-residual stresses <\/td>\n<\/tr>\n
269<\/td>\n18.4.2.2 Macro-residual stresses
18.5 Calculation of curing stresses
18.5.1 Residual stresses after curing
18.5.1.1 General
18.5.1.2 Symmetric laminates <\/td>\n<\/tr>\n
270<\/td>\n18.6 Reduction of thermal stresses and distortions
18.6.1 General <\/td>\n<\/tr>\n
272<\/td>\n18.6.2 Stress relieving
18.6.2.1 Annealing
18.6.2.2 Low temperature thermal cycling
18.7 References
18.7.1 General <\/td>\n<\/tr>\n
274<\/td>\n19 Manufacturing faults and service damage
19.1 Introduction <\/td>\n<\/tr>\n
276<\/td>\n19.2 Manufacturing defects in composite materials
19.2.1 General <\/td>\n<\/tr>\n
277<\/td>\n19.2.2 Description of manufacturing defects
19.2.2.1 Porosity
19.2.2.2 Prepreg gaps <\/td>\n<\/tr>\n
278<\/td>\n19.2.2.3 Contamination
19.2.2.4 Fibre alignment
19.2.2.5 Lay up order
19.2.2.6 State of cure <\/td>\n<\/tr>\n
279<\/td>\n19.2.2.7 Local fibre\/resin ratio variations
19.2.2.8 Prepreg joints
19.2.2.9 Inter-ply delaminations <\/td>\n<\/tr>\n
280<\/td>\n19.2.2.10 Skin to core debonding
19.2.2.11 Resin microcracks
19.2.2.12 Damaged honeycomb core
19.2.2.13 Misplaced potting compound <\/td>\n<\/tr>\n
281<\/td>\n19.2.2.14 Edge member debond
19.2.3 Detection of defects
19.3 Service threats for composite structures <\/td>\n<\/tr>\n
282<\/td>\n19.4 Impact behaviour of laminates and sandwich constructions
19.4.1 General <\/td>\n<\/tr>\n
283<\/td>\n19.4.2 Laminates
19.4.2.1 General <\/td>\n<\/tr>\n
284<\/td>\n19.4.2.2 Fibre breakage
19.4.2.3 Matrix damage
19.4.2.4 Delamination and debonds <\/td>\n<\/tr>\n
285<\/td>\n19.4.2.5 Combinations of damage <\/td>\n<\/tr>\n
286<\/td>\n19.4.3 Sandwich panels
19.5 Impact behaviour
19.5.1 General <\/td>\n<\/tr>\n
287<\/td>\n19.5.2 BVID <\/td>\n<\/tr>\n
288<\/td>\n19.5.3 Impact tests <\/td>\n<\/tr>\n
290<\/td>\n19.5.4 Compression after impact (CAI)
19.6 Detection of defects
19.6.1 Damage detection techniques
19.6.2 Laboratory and production based NDT
19.6.3 Other techniques <\/td>\n<\/tr>\n
291<\/td>\n19.7 References
19.7.1 General
19.7.2 ASTM standards <\/td>\n<\/tr>\n
292<\/td>\n20 Environmental aspects of design
20.1 Introduction
20.2 Description of environments
20.2.1 Earth environment <\/td>\n<\/tr>\n
293<\/td>\n20.2.2 Space environment <\/td>\n<\/tr>\n
297<\/td>\n20.2.3 Composite structures
20.2.3.1 General
20.2.3.2 Temperature range
20.2.3.3 Elevated temperature and vacuum
20.2.3.4 Ultraviolet radiation <\/td>\n<\/tr>\n
298<\/td>\n20.2.3.5 Penetrating radiation
20.2.3.6 Meteoroids and debris
20.3 Low earth orbit (LEO) <\/td>\n<\/tr>\n
299<\/td>\n20.4 Geostationary orbit (GEO)
20.5 Deep space exploration <\/td>\n<\/tr>\n
300<\/td>\n20.6 Galvanic corrosion
20.6.1 General
20.6.2 Physical basis of galvanic corrosion <\/td>\n<\/tr>\n
301<\/td>\n20.6.2.1 Carbon fibre to metal connections <\/td>\n<\/tr>\n
302<\/td>\n20.6.3 Prevention of galvanic corrosion in space structures
20.6.3.1 General
20.6.3.2 Guidelines
20.7 Effects of moisture on composites
20.7.1 General
20.7.2 Modification of CTE by outgassing <\/td>\n<\/tr>\n
303<\/td>\n20.7.3 Low coefficient of moisture expansion (CME) resins
20.7.4 Hot\/wet performance
20.7.4.1 Epoxy resins
20.7.4.2 Cyanate ester resins
20.7.4.3 Others <\/td>\n<\/tr>\n
304<\/td>\n20.8 LDEF in LEO
20.8.1 Mission
20.8.2 Materials and experiments
20.8.2.1 General
20.8.2.2 Material performance <\/td>\n<\/tr>\n
305<\/td>\n20.8.3 Variations in exposure conditions <\/td>\n<\/tr>\n
307<\/td>\n20.8.4 Composite materials aboard LDEF <\/td>\n<\/tr>\n
309<\/td>\n20.8.5 LDEF experiments M0003-9\/10
20.8.5.1 General
20.8.5.2 The Aerospace Corporation <\/td>\n<\/tr>\n
310<\/td>\n20.8.5.3 General Dynamics Space Systems Division
20.8.5.4 Lockheed Missiles and Space Company
20.8.5.5 Boeing Defence and Space Group <\/td>\n<\/tr>\n
311<\/td>\n20.8.6 LDEF experiment AO 171
20.8.6.1 NASA Marshall Space Flight Center <\/td>\n<\/tr>\n
313<\/td>\n20.8.7 LDEF experiment AO 180
20.8.7.1 University of Toronto Institute for Aerospace Studies
20.8.8 Surface characterisation of eroded composites <\/td>\n<\/tr>\n
314<\/td>\n20.8.9 Overall conclusions on LDEF
20.8.10 Non-polymeric composites on LDEF
20.8.11 Polymer films on LDEF
20.8.11.1 Silvered Teflon (Ag\/FEP)
20.8.11.2 Kapton
20.8.12 Lubricants, adhesives and seals on LDEF
20.8.12.1 General <\/td>\n<\/tr>\n
315<\/td>\n20.8.12.2 Lubricants
20.8.12.3 Adhesives
20.8.12.4 Seals
20.9 Thermal cycling
20.9.1 Conditions <\/td>\n<\/tr>\n
316<\/td>\n20.9.2 Damage mechanisms
20.9.2.1 General <\/td>\n<\/tr>\n
319<\/td>\n20.9.2.2 Microcracking
20.9.2.3 ECSS requirements
20.10 Vacuum
20.10.1 Effects of vacuum
20.10.1.1 General
20.10.1.2 Outgassing
20.10.1.3 Resin matrix characteristics <\/td>\n<\/tr>\n
320<\/td>\n20.10.1.4 Offgassing
20.10.1.5 ECSS requirements
20.11 Radiation
20.11.1 Radiation spectra
20.11.1.1 General <\/td>\n<\/tr>\n
321<\/td>\n20.11.1.2 UV radiation
20.11.1.3 Particle radiation <\/td>\n<\/tr>\n
323<\/td>\n20.11.2 T300\/934 in GEO
20.11.2.1 General <\/td>\n<\/tr>\n
324<\/td>\n20.11.2.2 ST- requirements
20.12 Damage by combined environmental factors
20.12.1 General
20.12.2 P75\/930 in GEO <\/td>\n<\/tr>\n
328<\/td>\n20.12.3 UHM CFRP in GEO and LEO <\/td>\n<\/tr>\n
331<\/td>\n20.12.4 PEI CFRP in LEO and GEO <\/td>\n<\/tr>\n
333<\/td>\n20.13 Atomic oxygen
20.13.1 Effects of atomic oxygen
20.13.1.1 Typical exposure levels <\/td>\n<\/tr>\n
334<\/td>\n20.13.1.2 Material sensitivity
20.13.1.3 Damage to composites <\/td>\n<\/tr>\n
335<\/td>\n20.13.1.4 Property loss
20.13.1.5 Protection against ATOX
20.13.1.6 ECSS requirements
20.14 Siloxanes and silicon polymers
20.14.1 Protection methods against ATOX <\/td>\n<\/tr>\n
336<\/td>\n20.14.2 Protection of polymer films
20.14.3 Protection of composites
20.14.3.1 General
20.14.3.2 Siloxane modified cyanate ester resin <\/td>\n<\/tr>\n
337<\/td>\n20.14.3.3 Anoxic siloxane molecular composites <\/td>\n<\/tr>\n
338<\/td>\n20.15 Protective coatings
20.15.1 Surface coatings
20.15.1.1 General
20.15.1.2 Atomic oxygen protection methods for CFRP <\/td>\n<\/tr>\n
339<\/td>\n20.16 Debris
20.16.1 Classification of debris
20.16.1.1 General
20.16.1.2 Micrometeoroids
20.16.1.3 Orbital debris <\/td>\n<\/tr>\n
340<\/td>\n20.16.2 Damage to LDEF
20.16.3 Damage to composites <\/td>\n<\/tr>\n
341<\/td>\n20.16.4 Damage to aluminium alloys
20.16.5 Damage to thermal control materials
20.16.5.1 General <\/td>\n<\/tr>\n
342<\/td>\n20.16.5.2 Thermal blankets
20.16.5.3 Thermal control painted materials
20.16.6 Significance of impact events
20.16.7 Protective shielding
20.16.7.1 General <\/td>\n<\/tr>\n
343<\/td>\n20.16.7.2 Columbus bumper shield concepts
20.17 References
20.17.1 General <\/td>\n<\/tr>\n
347<\/td>\n20.17.2 ECSS documents <\/td>\n<\/tr>\n
349<\/td>\n21 Bonded joints
21.1 Introduction
21.2 Adhesives
21.2.1 General
21.2.2 Types of adhesives
21.2.2.1 General <\/td>\n<\/tr>\n
352<\/td>\n21.2.2.2 Epoxy
21.2.2.3 Polyimides
21.2.2.4 Fluorocarbon (Viton)
21.2.2.5 Polyamides
21.2.2.6 Silicones
21.2.2.7 Phenolic
21.2.3 Adhesives for joining different materials <\/td>\n<\/tr>\n
354<\/td>\n21.3 Design of bonded joints
21.3.1 Basic considerations
21.3.1.1 Adherends
21.3.1.2 Loading
21.3.1.3 Environment
21.3.2 Basic guidelines
21.3.3 Failure modes <\/td>\n<\/tr>\n
355<\/td>\n21.3.4 Features
21.3.4.1 Polymer composites <\/td>\n<\/tr>\n
356<\/td>\n21.3.4.2 Advantages
21.3.4.3 Disadvantages
21.3.4.4 Non-polymer composites <\/td>\n<\/tr>\n
357<\/td>\n21.4 Joint configuration
21.4.1 Basic configurations
21.4.1.1 General
21.4.1.2 Single lap joints
21.4.1.3 Double lap joints
21.4.1.4 Strap joints
21.4.1.5 Stepped-lap joints <\/td>\n<\/tr>\n
358<\/td>\n21.4.1.6 Scarf joints
21.4.1.7 Shim insert joints
21.4.1.8 Other configurations <\/td>\n<\/tr>\n
360<\/td>\n21.4.2 Orientation of surface fibres <\/td>\n<\/tr>\n
361<\/td>\n21.5 Environmental factors for bonded joints
21.5.1 General
21.5.2 Effect of moisture <\/td>\n<\/tr>\n
364<\/td>\n21.5.3 Effect of temperature
21.5.4 Combined moisture and temperature <\/td>\n<\/tr>\n
365<\/td>\n21.6 Bonding defects
21.6.1 General
21.6.2 Description of bonding defects
21.6.2.1 Flaws and porosity <\/td>\n<\/tr>\n
370<\/td>\n21.6.2.2 Variation in thickness <\/td>\n<\/tr>\n
372<\/td>\n21.6.2.3 Undercuring
21.6.2.4 Variation in resin fraction
21.6.2.5 Variation in density
21.6.3 Inspection of bonded joints <\/td>\n<\/tr>\n
374<\/td>\n21.7 Bonded joint failure modes
21.7.1 Typical failure modes
21.7.2 Loading modes <\/td>\n<\/tr>\n
375<\/td>\n21.8 Calculation of bonded joint strength <\/td>\n<\/tr>\n
376<\/td>\n21.9 Analysis of joint configurations
21.9.1 Analytical notation
21.9.2 Single lap shear joint
21.9.2.1 Symmetrical <\/td>\n<\/tr>\n
378<\/td>\n21.9.2.2 Analysis of R-degree peeling <\/td>\n<\/tr>\n
380<\/td>\n21.9.3 Double lap shear joint <\/td>\n<\/tr>\n
382<\/td>\n21.9.4 Double-lap shear joint under mechanical and temperature loads
21.9.4.1 Joint with standard overlap length <\/td>\n<\/tr>\n
385<\/td>\n21.9.4.2 Large overlap length and adherends of the same materials and thicknesses <\/td>\n<\/tr>\n
386<\/td>\n21.9.4.3 Shear stresses in the adhesive due to temperature <\/td>\n<\/tr>\n
390<\/td>\n21.9.5 Single taper scarf joint <\/td>\n<\/tr>\n
391<\/td>\n21.9.6 Double taper scarf joint
21.9.6.1 Symmetrical <\/td>\n<\/tr>\n
392<\/td>\n21.9.7 Stepped lap joint
21.9.7.1 Recessed and simple
21.9.7.2 Three or fewer steps <\/td>\n<\/tr>\n
393<\/td>\n21.9.7.3 Four or more steps <\/td>\n<\/tr>\n
394<\/td>\n21.10 Bonded joint design curves and test data
21.10.1 General
21.10.1.1 Design curves <\/td>\n<\/tr>\n
405<\/td>\n21.11 Acoustic fatigue of bonded configurations <\/td>\n<\/tr>\n
407<\/td>\n21.12 References
21.12.1 General <\/td>\n<\/tr>\n
408<\/td>\n21.12.2 ECSS documents <\/td>\n<\/tr>\n
409<\/td>\n22 Mechanically fastened joints
22.1 Introduction
22.2 Basic considerations for design
22.2.1 Advantages
22.2.2 Disadvantages <\/td>\n<\/tr>\n
410<\/td>\n22.3 Factors affecting design
22.3.1 General <\/td>\n<\/tr>\n
411<\/td>\n22.3.2 Material parameters <\/td>\n<\/tr>\n
413<\/td>\n22.3.3 Fastener parameters
22.3.4 Design parameters
22.3.4.1 Joint types <\/td>\n<\/tr>\n
414<\/td>\n22.3.4.2 End-distance effects
22.3.4.3 Width effects
22.3.4.4 Row and pitch distance <\/td>\n<\/tr>\n
416<\/td>\n22.3.4.5 Diameter thickness effect
22.3.4.6 Failure criteria and modes <\/td>\n<\/tr>\n
418<\/td>\n22.4 Bolted joints
22.4.1 Material parameters
22.4.2 Fastener parameters <\/td>\n<\/tr>\n
420<\/td>\n22.4.3 Design parameters
22.5 Bolted joint: Analysis
22.5.1 General
22.5.2 Analytical methods
22.5.2.1 Two-dimensional analysis
22.5.2.2 Three-dimensional analysis
22.5.3 Stress distribution
22.5.3.1 Infinite isotropic plate containing a circular unloaded hole <\/td>\n<\/tr>\n
421<\/td>\n22.5.3.2 Infinite orthotropic plate containing a circular unloaded hole <\/td>\n<\/tr>\n
422<\/td>\n22.5.3.3 Finite width isotropic plate containing a circular loaded hole <\/td>\n<\/tr>\n
423<\/td>\n22.5.4 Failure prediction
22.5.4.1 General
22.5.4.2 Yamada failure criterion <\/td>\n<\/tr>\n
424<\/td>\n22.5.4.3 Whitney\/Nuismer failure hypothesis <\/td>\n<\/tr>\n
425<\/td>\n22.5.5 Experimental data
22.5.5.1 Shear load carrying capabilities of bolts in CFRP facings <\/td>\n<\/tr>\n
429<\/td>\n22.6 Riveted joints
22.6.1 General
22.6.2 Installation damage of riveted joints
22.6.2.1 Interference
22.6.2.2 Impact forces
22.6.2.3 Preload <\/td>\n<\/tr>\n
430<\/td>\n22.6.3 Pull through strength
22.6.3.1 General
22.6.3.2 Footprint <\/td>\n<\/tr>\n
431<\/td>\n22.6.3.3 Flush head configuration
22.6.4 Fasteners used in composite structures <\/td>\n<\/tr>\n
432<\/td>\n22.6.4.1 Types of rivets <\/td>\n<\/tr>\n
433<\/td>\n22.7 References
22.7.1 General <\/td>\n<\/tr>\n
434<\/td>\n22.7.2 ECSS standards <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":"

Space engineering. Structural materials handbook – Design calculation methods and general design aspects<\/b><\/p>\n\n\n\n\n
Published By<\/td>\nPublication Date<\/td>\nNumber of Pages<\/td>\n<\/tr>\n
BSI<\/b><\/a><\/td>\n2022<\/td>\n436<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n","protected":false},"featured_media":394848,"template":"","meta":{"rank_math_lock_modified_date":false,"ep_exclude_from_search":false},"product_cat":[2641],"product_tag":[],"class_list":{"0":"post-394838","1":"product","2":"type-product","3":"status-publish","4":"has-post-thumbnail","6":"product_cat-bsi","8":"first","9":"instock","10":"sold-individually","11":"shipping-taxable","12":"purchasable","13":"product-type-simple"},"_links":{"self":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product\/394838","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product"}],"about":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/types\/product"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media\/394848"}],"wp:attachment":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media?parent=394838"}],"wp:term":[{"taxonomy":"product_cat","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_cat?post=394838"},{"taxonomy":"product_tag","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_tag?post=394838"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}