{"id":401180,"date":"2024-10-20T04:54:54","date_gmt":"2024-10-20T04:54:54","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/ieee-63195-1-2022-3\/"},"modified":"2024-10-26T08:42:07","modified_gmt":"2024-10-26T08:42:07","slug":"ieee-63195-1-2022-3","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/ieee\/ieee-63195-1-2022-3\/","title":{"rendered":"IEEE 63195-1-2022"},"content":{"rendered":"
New IEEE Standard – Active.<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
1<\/td>\n | Front cover <\/td>\n<\/tr>\n | ||||||
3<\/td>\n | Title page <\/td>\n<\/tr>\n | ||||||
4<\/td>\n | English CONTENTS <\/td>\n<\/tr>\n | ||||||
11<\/td>\n | FOREWORD <\/td>\n<\/tr>\n | ||||||
13<\/td>\n | INTRODUCTION <\/td>\n<\/tr>\n | ||||||
14<\/td>\n | 1 Scope <\/td>\n<\/tr>\n | ||||||
15<\/td>\n | 2 Normative references 3 Terms and definitions 3.1 Exposure metrics and parameters <\/td>\n<\/tr>\n | ||||||
18<\/td>\n | 3.2 Spatial, physical, and geometrical parameters associated with exposure metrics <\/td>\n<\/tr>\n | ||||||
19<\/td>\n | 3.3 Measurement instrumentation, field probe, and data-processing parameters <\/td>\n<\/tr>\n | ||||||
22<\/td>\n | 3.4 RF power parameters <\/td>\n<\/tr>\n | ||||||
23<\/td>\n | 3.5 Test device technical operating and antenna parameters <\/td>\n<\/tr>\n | ||||||
25<\/td>\n | 3.6 Test device physical configurations <\/td>\n<\/tr>\n | ||||||
26<\/td>\n | 3.7 Uncertainty parameters <\/td>\n<\/tr>\n | ||||||
27<\/td>\n | 4 Symbols and abbreviated terms 4.1 Symbols 4.1.1 Physical quantities <\/td>\n<\/tr>\n | ||||||
28<\/td>\n | 4.1.2 Constants 4.2 Abbreviated terms <\/td>\n<\/tr>\n | ||||||
29<\/td>\n | 5 Quick start guide and application of this document 5.1 Quick start guide <\/td>\n<\/tr>\n | ||||||
30<\/td>\n | Tables Table 1 \u2013 Evaluation plan check-list <\/td>\n<\/tr>\n | ||||||
31<\/td>\n | Figures Figure 1 \u2013 Quick Start Guide <\/td>\n<\/tr>\n | ||||||
32<\/td>\n | 5.2 Application of this document 5.3 Stipulations 6 Measurement system and laboratory requirements 6.1 General requirements <\/td>\n<\/tr>\n | ||||||
33<\/td>\n | 6.2 Laboratory requirements <\/td>\n<\/tr>\n | ||||||
34<\/td>\n | 6.3 Field probe requirements 6.4 Measurement instrumentation requirements <\/td>\n<\/tr>\n | ||||||
35<\/td>\n | 6.5 Scanning system requirements 6.5.1 Single-probe systems 6.5.2 Multiple field-probe systems <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | 6.6 Device holder requirements <\/td>\n<\/tr>\n | ||||||
37<\/td>\n | 6.7 Post-processing quantities, procedures, and requirements 6.7.1 Formulas for calculation of sPD <\/td>\n<\/tr>\n | ||||||
39<\/td>\n | 6.7.2 Post-processing procedure <\/td>\n<\/tr>\n | ||||||
40<\/td>\n | 6.7.3 Requirements Figure\u00a02 \u2013 Simplified view of a generic measurement setupinvolving the use of reconstruction algorithms <\/td>\n<\/tr>\n | ||||||
41<\/td>\n | 7 Protocol for PD assessment 7.1 General 7.2 Measurement preparation 7.2.1 Relative system check 7.2.2 DUT requirements <\/td>\n<\/tr>\n | ||||||
42<\/td>\n | 7.2.3 DUT preparation <\/td>\n<\/tr>\n | ||||||
43<\/td>\n | 7.2.4 Selecting evaluation surfaces <\/td>\n<\/tr>\n | ||||||
44<\/td>\n | Figure 3 \u2013 Cross-sectional view of SAM phantom for SAR evaluationsat the reference plane, as described in IEC\/IEEE\u00a062209-1528:2020 Figure 4 \u2013 Cross-sectional view of SAM virtual phantom for PD evaluations at the reference plane (shell thickness is 2 mm everywhere, including at the pinna) <\/td>\n<\/tr>\n | ||||||
46<\/td>\n | 7.3 Tests to be performed 7.3.1 General Figure 5 \u2013 Example reference coordinate system forthe left-ear ERP of the SAM phantom Figure 6 \u2013 Example reference points and vertical and horizontal lines on a DUT <\/td>\n<\/tr>\n | ||||||
48<\/td>\n | 7.3.2 Tests to be performed when supported by simulations of the antenna array Figure 7 \u2013 Flow chart for test procedure in 7.3 <\/td>\n<\/tr>\n | ||||||
50<\/td>\n | 7.3.3 Tests to be performed by measurements of the antenna array 7.4 Measurement procedure 7.4.1 General measurement procedure <\/td>\n<\/tr>\n | ||||||
51<\/td>\n | 7.4.2 Power density assessment methods Figure 8 \u2013 Flow chart for general measurement procedure in 7.4.1 <\/td>\n<\/tr>\n | ||||||
52<\/td>\n | Figure\u00a09 \u2013 Flow chart for power density assessment methods in 7.4.2 Table\u00a02 \u2013 Minimum evaluation distance between the DUT antenna andthe evaluation surface for which the plane wave equivalent approximation applies <\/td>\n<\/tr>\n | ||||||
53<\/td>\n | 7.4.3 Power scaling for operating mode and channel <\/td>\n<\/tr>\n | ||||||
55<\/td>\n | 7.4.4 Correction for DUT drift <\/td>\n<\/tr>\n | ||||||
56<\/td>\n | 7.5 Exposure combining 7.5.1 General <\/td>\n<\/tr>\n | ||||||
57<\/td>\n | 7.5.2 Combining power density and SAR results <\/td>\n<\/tr>\n | ||||||
59<\/td>\n | Figure 10 \u2013 SAR and power density evaluation at a point r Figure\u00a011 \u2013 Combining SAR (top) and power density (bottom) for the SAM phantom <\/td>\n<\/tr>\n | ||||||
60<\/td>\n | 8 Uncertainty estimation 8.1 General 8.2 Requirements for uncertainty evaluations 8.3 Description of uncertainty models <\/td>\n<\/tr>\n | ||||||
61<\/td>\n | 8.4 Uncertainty terms dependent on the measurement system 8.4.1 CAL \u2013 Calibration of the measurement equipment 8.4.2 COR \u2013 Probe correction 8.4.3 FRS \u2013 Frequency response <\/td>\n<\/tr>\n | ||||||
62<\/td>\n | 8.4.4 SCC \u2013 Sensor cross coupling <\/td>\n<\/tr>\n | ||||||
63<\/td>\n | 8.4.5 ISO \u2013 Isotropy 8.4.6 LIN \u2013 System linearity error 8.4.7 PSC \u2013 Probe scattering <\/td>\n<\/tr>\n | ||||||
64<\/td>\n | 8.4.8 PPO \u2013 Probe positioning offset 8.4.9 PPR \u2013 Probe positioning repeatability <\/td>\n<\/tr>\n | ||||||
65<\/td>\n | 8.4.10 SMO \u2013 Sensor mechanical offset 8.4.11 PSR \u2013 Probe spatial resolution 8.4.12 FLD \u2013 Field impedance dependence (ratio |E|\/|H|) 8.4.13 MED \u2013 Measurement drift <\/td>\n<\/tr>\n | ||||||
66<\/td>\n | 8.4.14 APN \u2013 Amplitude and phase noise 8.4.15 TR \u2013 Measurement area truncation 8.4.16 DAQ \u2013 Data acquisition 8.4.17 SMP \u2013 Sampling 8.4.18 REC \u2013 Field reconstruction <\/td>\n<\/tr>\n | ||||||
67<\/td>\n | 8.4.19 SNR \u2013 Signal-to-noise ratio 8.4.20 TRA \u2013 Forward transformation and backward transformation <\/td>\n<\/tr>\n | ||||||
68<\/td>\n | 8.4.21 SCA \u2013 Power density scaling 8.4.22 SAV \u2013 Spatial averaging 8.4.23 COM \u2013 Exposure combining 8.5 Uncertainty terms dependent on the DUT and environmental factors 8.5.1 PC \u2013 Probe coupling with DUT <\/td>\n<\/tr>\n | ||||||
69<\/td>\n | 8.5.2 MOD \u2013 Modulation response 8.5.3 IT \u2013 Integration time <\/td>\n<\/tr>\n | ||||||
70<\/td>\n | 8.5.4 RT \u2013 Response time 8.5.5 DH \u2013 Device holder influence 8.5.6 DA \u2013 DUT alignment 8.5.7 AC \u2013 RF ambient conditions 8.5.8 TEM \u2013 Laboratory temperature <\/td>\n<\/tr>\n | ||||||
71<\/td>\n | 8.5.9 REF \u2013 Reflections in laboratory 8.5.10 MSI \u2013 Measurement system immunity\/secondary reception 8.5.11 DRI \u2013 DUT drift 8.6 Combined and expanded uncertainty <\/td>\n<\/tr>\n | ||||||
72<\/td>\n | Table 3 \u2013 Template of measurement uncertainty for power density measurements <\/td>\n<\/tr>\n | ||||||
74<\/td>\n | Table 4 \u2013 Example measurement uncertainty budget forpower density measurement results <\/td>\n<\/tr>\n | ||||||
75<\/td>\n | 9 Measurement report 9.1 General 9.2 Items to be recorded in measurement reports <\/td>\n<\/tr>\n | ||||||
78<\/td>\n | Annex\u00a0A (normative)Measurement system check and system validation tests A.1 Overview <\/td>\n<\/tr>\n | ||||||
79<\/td>\n | A.2 Normalization to total radiated power A.2.1 General A.2.2 Option 1: Accepted power measurement <\/td>\n<\/tr>\n | ||||||
80<\/td>\n | Figure A.1 \u2013 Recommended accepted power measurement setupfor relative system check, absolute system check and system validation Figure A.2 \u2013 Equipment setup for measurement offorward power Pf and forward coupled power Pfc Figure A.3 \u2013 Equipment setup for measuringthe shorted reverse coupled power Prcs <\/td>\n<\/tr>\n | ||||||
81<\/td>\n | Figure A.4 \u2013 Equipment setup for measuring thepower with the reference antenna <\/td>\n<\/tr>\n | ||||||
82<\/td>\n | Figure\u00a0A.5 \u2013 Port numbering for the S-parametermeasurements of the directional coupler <\/td>\n<\/tr>\n | ||||||
83<\/td>\n | A.2.3 Option 2: Total radiated power measurement Table A.1 \u2013 Example of power measurement uncertainty <\/td>\n<\/tr>\n | ||||||
84<\/td>\n | A.3 Relative system check A.3.1 Purpose A.3.2 Antenna and test conditions <\/td>\n<\/tr>\n | ||||||
85<\/td>\n | A.3.3 Procedure A.3.4 Acceptance criteria <\/td>\n<\/tr>\n | ||||||
87<\/td>\n | A.4 Absolute system check A.4.1 Purpose A.4.2 Antenna and test conditions A.4.3 Procedure A.4.4 Acceptance criteria <\/td>\n<\/tr>\n | ||||||
88<\/td>\n | A.5 System validation A.5.1 Purpose A.5.2 Procedure <\/td>\n<\/tr>\n | ||||||
89<\/td>\n | A.5.3 Validation of modulation response A.5.4 Acceptance criteria Table A.2 \u2013 Communication signals for modulation response test <\/td>\n<\/tr>\n | ||||||
91<\/td>\n | Annex\u00a0B (normative)Antennas for system check and system validation tests B.1 General <\/td>\n<\/tr>\n | ||||||
92<\/td>\n | B.2 Pyramidal horn antennas for system checks Table B.1 \u2013 Target values for pyramidal horn antennas at different frequencies <\/td>\n<\/tr>\n | ||||||
93<\/td>\n | B.3 Cavity-fed dipole arrays for system validation B.3.1 Description Table B.2 \u2013 Main dimensions for the cavity-fed dipole arraysat each frequency of interest <\/td>\n<\/tr>\n | ||||||
94<\/td>\n | Figure B.1 \u2013 Main dimensions for the cavity-fed dipole arrays \u2013 30 GHz design <\/td>\n<\/tr>\n | ||||||
95<\/td>\n | Table B.3 \u2013 Geometrical parameters of the cavity-fed dipole arraysat each frequency of interest Table B.4 \u2013 Substrate and metallic block parameters for the cavity-fed dipole arrays at each frequency of interest <\/td>\n<\/tr>\n | ||||||
96<\/td>\n | B.3.2 Numerical target values for cavity-fed dipole arrays B.3.3 Field and power density distribution patterns Table B.5 \u2013 Target values for the cavity-fed dipole arrays at10 GHz, 30 GHz, 60 GHz, and 90 GHz <\/td>\n<\/tr>\n | ||||||
97<\/td>\n | Figure\u00a0B.2 \u2013 10 GHz patterns of |Etotal| and Re{S}total for the cavity-fed dipole arrays at distances ofa) 2 mm, b) 5 mm, c) 10 mm, and d) 50 mm from the upper surface of the dielectric substrate <\/td>\n<\/tr>\n | ||||||
98<\/td>\n | Figure\u00a0B.3 \u2013 30 GHz patterns of |Etotal| and Re{S}total for the cavity-fed dipole arrays at distances ofa) 2 mm, b) 5 mm, c) 10 mm, and d) 50 mm from the upper surface of the dielectric substrate <\/td>\n<\/tr>\n | ||||||
99<\/td>\n | Figure\u00a0B.4 \u2013 60 GHz patterns of |Etotal| and Re{S}total for the cavity-fed dipole arrays at distances ofa) 2 mm, b) 5 mm, c) 10 mm, and d) 50 mm from the upper surface of the dielectric substrate <\/td>\n<\/tr>\n | ||||||
100<\/td>\n | Figure\u00a0B.5 \u2013 90 GHz patterns of |Etotal| and Re{S}total for the cavity-fed dipole arrays at distances ofa) 2 mm, b) 5 mm, c) 10 mm, and d) 50 mm from the upper surface of the dielectric substrate <\/td>\n<\/tr>\n | ||||||
101<\/td>\n | B.3.4 Far-field radiation patterns <\/td>\n<\/tr>\n | ||||||
102<\/td>\n | Figure B.6 \u2013 Far-field radiation patterns of a) 10 GHz, b) 30 GHz,c) 60 GHz, and d) 90 GHz cavity-fed dipole arrays <\/td>\n<\/tr>\n | ||||||
103<\/td>\n | B.4 Pyramidal horns with slot arrays for system validation B.4.1 Description Figure B.7 \u2013 Main dimensions for the 0,15 mm stainless steel stencil with slot array <\/td>\n<\/tr>\n | ||||||
104<\/td>\n | Figure B.8 \u2013 Main dimensions for the pyramidal horn antennas Table B.6 \u2013 Main dimensions for the stencilwith slot array for each frequency <\/td>\n<\/tr>\n | ||||||
105<\/td>\n | B.4.2 Numerical target values for pyramidal horns loaded with a slot array Table B.7 \u2013 Primary dimensions for the correspondingpyramidal horns at each frequency <\/td>\n<\/tr>\n | ||||||
106<\/td>\n | B.4.3 Field and power density distribution patterns Table B.8 \u2013 Target values for the pyramidal horns loaded with slot arraysat 10\u00a0GHz, 30 GHz, 60 GHz, and 90 GHz <\/td>\n<\/tr>\n | ||||||
107<\/td>\n | Figure\u00a0B.9 \u2013 10 GHz patterns of |Etotal| and Re{S}total for the pyramidal horn loaded with a slot arrayat distances of a) 2 mm, b) 5 mm, c) 10 mm, and d) 50 mm from the upper surface of the slot array <\/td>\n<\/tr>\n | ||||||
108<\/td>\n | Figure\u00a0B.10 \u2013 30 GHz patterns of |Etotal| and Re{S}total for the pyramidal horn loaded with a slot arrayat distances of a) 2 mm, b) 5 mm, c) 10 mm, and d) 50 mm from the upper surface of the slot array <\/td>\n<\/tr>\n | ||||||
109<\/td>\n | Figure\u00a0B.11 \u2013 60 GHz patterns of |Etotal| and Re{S}total for the pyramidal horn loaded with a slot arrayat distances of a) 2 mm, b) 5 mm, c) 10 mm, and d) 50 mm from the upper surface of the slot array <\/td>\n<\/tr>\n | ||||||
110<\/td>\n | Figure\u00a0B.12 \u2013 90 GHz patterns of |Etotal| and Re{S}total for the pyramidal horn loaded with a slot arrayat distances of a) 2 mm, b) 5 mm, c) 10 mm, and d) 50 mm from the upper surface of the slot array <\/td>\n<\/tr>\n | ||||||
111<\/td>\n | B.4.4 Far-field radiation patterns <\/td>\n<\/tr>\n | ||||||
112<\/td>\n | B.5 Antenna validation procedure B.5.1 General Figure B.13 \u2013 Far-field radiation patterns of a)\u00a010\u00a0GHz, b)\u00a030\u00a0GHz,c)\u00a060\u00a0GHz, and d)\u00a090\u00a0GHz pyramidal horn loaded with a slot array <\/td>\n<\/tr>\n | ||||||
113<\/td>\n | B.5.2 Objectives, scope, and usage specifications B.5.3 Antenna design B.5.4 Numerical targets B.5.5 Reference antennas calibration B.5.6 Antenna verification and life expectation B.5.7 Uncertainty budget considerations <\/td>\n<\/tr>\n | ||||||
114<\/td>\n | B.6 Validation procedure for wideband signals B.6.1 General B.6.2 Validation signals B.6.3 Validation antennas and setup B.6.4 Target values for validation antennas transmitting wideband signals B.6.5 Wideband signal uncertainty <\/td>\n<\/tr>\n | ||||||
115<\/td>\n | B.6.6 Validation procedure <\/td>\n<\/tr>\n | ||||||
116<\/td>\n | Annex\u00a0C (normative)Calibration and characterization of measurement probes C.1 General C.2 Calibration of waveguide probes C.2.1 General C.2.2 Sensitivity C.2.3 Linearity <\/td>\n<\/tr>\n | ||||||
117<\/td>\n | C.2.4 Lower detection limit C.2.5 Isotropy C.2.6 Response time C.3 Calibration for isotropic scalar E-field or H-field probes C.3.1 General C.3.2 Sensitivity C.3.3 Isotropy <\/td>\n<\/tr>\n | ||||||
118<\/td>\n | C.3.4 Linearity C.3.5 Lower detection limit C.3.6 Response time C.4 Calibration of phasor E-field or H-field probes C.4.1 General C.4.2 Sensitivity <\/td>\n<\/tr>\n | ||||||
119<\/td>\n | C.4.3 Isotropy C.4.4 Linearity C.4.5 Lower detection limit C.5 Calibration uncertainty parameters C.5.1 General C.5.2 Input power to the antenna C.5.3 Mismatch effect (input power measurement) <\/td>\n<\/tr>\n | ||||||
120<\/td>\n | C.5.4 Gain and offset distance C.5.5 Signal spectrum C.5.6 Setup stability <\/td>\n<\/tr>\n | ||||||
121<\/td>\n | C.5.7 Uncertainty for field impedance variations C.6 Uncertainty budget template Table C.1 \u2013 Uncertainty analysis of the probe calibration <\/td>\n<\/tr>\n | ||||||
123<\/td>\n | Annex\u00a0D (informative)Information on use of square or circular shapes for power density averaging area in conformity evaluations D.1 General D.2 Method using computational analysis D.3 Areas averaged with square and circular shapes on planar evaluation surface Figure D.1 \u2013 Schematic view of the assessment of the variationof sPD using square shape by rotating AUT (antenna under test) <\/td>\n<\/tr>\n | ||||||
124<\/td>\n | Figure D.2 \u2013 Comparison of psPD averaged using square versus circular shaped areas on planar evaluation surfaces <\/td>\n<\/tr>\n | ||||||
125<\/td>\n | D.4 Areas averaged with square and circular shapes on nonplanar evaluation surface Figure D.3 \u2013 Example PD distributions withdevice next to ear evaluation surface Table\u00a0D.1 \u2013 Phase shift values for the array antenna <\/td>\n<\/tr>\n | ||||||
126<\/td>\n | Figure D.4 \u2013 Comparison of psPD averaged using cube cross-section (square-like) versus sphere cross-section (circular-like) shaped areas fordevice next to ear evaluation surface <\/td>\n<\/tr>\n | ||||||
127<\/td>\n | Annex\u00a0E (informative)Reconstruction algorithms E.1 General E.2 Methodologies to extract local field components and power densities E.2.1 General <\/td>\n<\/tr>\n | ||||||
128<\/td>\n | E.2.2 Phase-less approaches E.2.3 Approaches using E-field polarization ellipse measurements E.2.4 Direct near-field measurements <\/td>\n<\/tr>\n | ||||||
129<\/td>\n | E.3 Forward transformation (propagation) of the fields E.3.1 General Figure E.1 \u2013 Simulation (left) and forward transformation from measurements applying methods described in [29] (right) of power density in the xz-plane (above) and yz-plane (below) at a distance of 2\u00a0mm for a cavity-fed dipole array at 30\u00a0GHz (see Annex\u00a0B) <\/td>\n<\/tr>\n | ||||||
130<\/td>\n | E.3.2 Field expansion methods E.3.3 Field integral equation methods <\/td>\n<\/tr>\n | ||||||
131<\/td>\n | E.4 Backward transformation (propagation) of the fields E.4.1 General E.4.2 Field expansion methods \u2013 the plane wave expansion <\/td>\n<\/tr>\n | ||||||
132<\/td>\n | E.4.3 Inverse source methods <\/td>\n<\/tr>\n | ||||||
133<\/td>\n | E.5 Analytical reference functions Table\u00a0E.1 \u2013 List of analytical reference functionsand associated psPDn+ target values <\/td>\n<\/tr>\n | ||||||
134<\/td>\n | Table\u00a0E.2 \u2013 List of analytical reference functionsand associated psPDtot+ target values Table\u00a0E.3 \u2013 List of analytical reference functionsand associated psPDmod+ target values <\/td>\n<\/tr>\n | ||||||
135<\/td>\n | Annex\u00a0F (normative)Interlaboratory comparisons F.1 Purpose F.2 Reference devices F.3 Power setup F.4 Interlaboratory comparison \u2013 procedure <\/td>\n<\/tr>\n | ||||||
136<\/td>\n | Annex\u00a0G (informative)PD test and verification example G.1 Purpose G.2 DUT overview G.3 Test system verification G.4 Test setup G.5 Power density results G.6 Combined exposure (Total Exposure Ratio) <\/td>\n<\/tr>\n | ||||||
137<\/td>\n | Annex\u00a0H (informative)Applicability of plane-wave equivalent approximations H.1 Objective H.2 Method H.3 Results <\/td>\n<\/tr>\n | ||||||
139<\/td>\n | H.4 Discussion Figure\u00a0H.1 \u2013 psPDpwe \/ psPDtot as function of distance (in units of \u03bb) from cavity-fed dipole array (CDA##G, left-side) and pyramidal horn with slot arrays (SH##G,right-side) operating at 10 GHz, 30 GHz, 60 GHz, and 90 GHz <\/td>\n<\/tr>\n | ||||||
140<\/td>\n | Annex\u00a0I (informative)Rationales for concepts and methods applied inthis document and IEC\/IEEE\u00a063195-2 I.1 Frequency range I.2 Calculation of sPD I.2.1 Application of the Poynting vector for calculation of incident power density <\/td>\n<\/tr>\n | ||||||
141<\/td>\n | I.2.2 Averaging area <\/td>\n<\/tr>\n | ||||||
142<\/td>\n | Bibliography <\/td>\n<\/tr>\n | ||||||
146<\/td>\n | Fran\u00e7ais SOMMAIRE <\/td>\n<\/tr>\n | ||||||
154<\/td>\n | AVANT-PROPOS <\/td>\n<\/tr>\n | ||||||
156<\/td>\n | INTRODUCTION <\/td>\n<\/tr>\n | ||||||
157<\/td>\n | 1 Domaine d’application <\/td>\n<\/tr>\n | ||||||
158<\/td>\n | 2 R\u00e9f\u00e9rences normatives 3 Termes et d\u00e9finitions 3.1 Param\u00e8tres et indicateurs d’exposition <\/td>\n<\/tr>\n | ||||||
161<\/td>\n | 3.2 Param\u00e8tres spatiaux, physiques et g\u00e9om\u00e9triques associ\u00e9s aux indicateurs d’exposition <\/td>\n<\/tr>\n | ||||||
163<\/td>\n | 3.3 Instrumentation de mesure, sonde de champ et param\u00e8tres de traitement des donn\u00e9es <\/td>\n<\/tr>\n | ||||||
166<\/td>\n | 3.4 Param\u00e8tres de puissance RF <\/td>\n<\/tr>\n | ||||||
167<\/td>\n | 3.5 Param\u00e8tres techniques de fonctionnement et d’antenne du dispositif d’essai <\/td>\n<\/tr>\n | ||||||
168<\/td>\n | 3.6 Configurations physiques des dispositifs d’essai <\/td>\n<\/tr>\n | ||||||
170<\/td>\n | 3.7 Param\u00e8tres d’incertitude <\/td>\n<\/tr>\n | ||||||
171<\/td>\n | 4 Symboles et termes abr\u00e9g\u00e9s 4.1 Symboles 4.1.1 Grandeurs physiques <\/td>\n<\/tr>\n | ||||||
172<\/td>\n | 4.1.2 Constantes 4.2 Termes abr\u00e9g\u00e9s <\/td>\n<\/tr>\n | ||||||
173<\/td>\n | 5 Guide de d\u00e9marrage rapide et application du pr\u00e9sent document 5.1 Guide de d\u00e9marrage rapide <\/td>\n<\/tr>\n | ||||||
174<\/td>\n | Tableaux Tableau\u00a01 \u2013 Liste de v\u00e9rification du plan d’\u00e9valuation <\/td>\n<\/tr>\n | ||||||
175<\/td>\n | Figure\u00a01\u00a0\u2013 Guide de d\u00e9marrage rapide Untitled <\/td>\n<\/tr>\n | ||||||
176<\/td>\n | 5.2 Application du pr\u00e9sent document 5.3 Conditions 6 Exigences relatives au syst\u00e8me de mesure et au laboratoire 6.1 Exigences g\u00e9n\u00e9rales <\/td>\n<\/tr>\n | ||||||
178<\/td>\n | 6.2 Exigences relatives au laboratoire 6.3 Exigences relatives \u00e0 la sonde de champ <\/td>\n<\/tr>\n | ||||||
179<\/td>\n | 6.4 Exigences relatives \u00e0 l’instrumentation de mesure 6.5 Exigences relatives au syst\u00e8me de balayage 6.5.1 Syst\u00e8mes \u00e0 sonde unique <\/td>\n<\/tr>\n | ||||||
180<\/td>\n | 6.5.2 Syst\u00e8mes \u00e0 sonde de champ multiple 6.6 Exigences relatives au support de dispositif <\/td>\n<\/tr>\n | ||||||
181<\/td>\n | 6.7 Grandeurs, proc\u00e9dures et exigences relatives au post-traitement 6.7.1 Formules de calcul de la sPD <\/td>\n<\/tr>\n | ||||||
183<\/td>\n | 6.7.2 Proc\u00e9dure de post-traitement <\/td>\n<\/tr>\n | ||||||
184<\/td>\n | 6.7.3 Exigences Figure\u00a02 \u2013 Repr\u00e9sentation simplifi\u00e9e d’un montage de mesure g\u00e9n\u00e9rique impliquant l’utilisation d’algorithmes de reconstruction <\/td>\n<\/tr>\n | ||||||
185<\/td>\n | 7 Protocole d’\u00e9valuation de la densit\u00e9 de puissance 7.1 G\u00e9n\u00e9ralit\u00e9s 7.2 Pr\u00e9paration du mesurage 7.2.1 V\u00e9rification relative du syst\u00e8me 7.2.2 Exigences relatives au DUT <\/td>\n<\/tr>\n | ||||||
186<\/td>\n | 7.2.3 Pr\u00e9paration du DUT <\/td>\n<\/tr>\n | ||||||
187<\/td>\n | 7.2.4 Choix des surfaces d’\u00e9valuation <\/td>\n<\/tr>\n | ||||||
189<\/td>\n | Figure\u00a03 \u2013 Vue transversale du fant\u00f4me SAM pour les \u00e9valuations du DAS au niveau du plan de r\u00e9f\u00e9rence, comme cela est d\u00e9crit dans l’IEC\/IEEE\u00a062209-1528:2020 Figure\u00a04 \u2013 Vue transversale du fant\u00f4me SAM virtuel pour les \u00e9valuations de la densit\u00e9 de puissance au niveau du plan de r\u00e9f\u00e9rence (l’\u00e9paisseur de l’enveloppe est de 2\u00a0mm en tout point, y compris au niveau du pavillon) <\/td>\n<\/tr>\n | ||||||
191<\/td>\n | 7.3 Essais \u00e0 r\u00e9aliser 7.3.1 G\u00e9n\u00e9ralit\u00e9s Figure\u00a05 \u2013 Exemple de syst\u00e8me de coordonn\u00e9es de r\u00e9f\u00e9rence pour l’ERP gauche du fant\u00f4me SAM Figure\u00a06 \u2013 Exemple de points de r\u00e9f\u00e9rence et de lignes verticales et horizontales sur un DUT <\/td>\n<\/tr>\n | ||||||
193<\/td>\n | 7.3.2 Essais \u00e0 r\u00e9aliser en cas de prise en charge par simulations du r\u00e9seau d’antenne Figure\u00a07 \u2013 Logigramme de la proc\u00e9dure d’essai donn\u00e9e en 7.3 <\/td>\n<\/tr>\n | ||||||
195<\/td>\n | 7.3.3 Essais \u00e0 r\u00e9aliser par des mesures du r\u00e9seau d’antenne 7.4 Proc\u00e9dure de mesure 7.4.1 Proc\u00e9dure de mesure g\u00e9n\u00e9rale <\/td>\n<\/tr>\n | ||||||
196<\/td>\n | Figure\u00a08 \u2013 Logigramme de la proc\u00e9dure de mesure g\u00e9n\u00e9rale donn\u00e9e en 7.4.1 <\/td>\n<\/tr>\n | ||||||
197<\/td>\n | 7.4.2 M\u00e9thodes d’\u00e9valuation de la densit\u00e9 de puissance <\/td>\n<\/tr>\n | ||||||
198<\/td>\n | Tableau\u00a02 \u2013 Distance d’\u00e9valuation minimale entre l’antenne du DUT et la surface d’\u00e9valuation pour laquelle l’approximation de l’onde plane \u00e9quivalente s’applique Figure\u00a09 \u2013 Logigramme des m\u00e9thodes d’\u00e9valuation de la densit\u00e9 de puissance donn\u00e9es en 7.4.2 <\/td>\n<\/tr>\n | ||||||
199<\/td>\n | 7.4.3 Mise \u00e0 l’\u00e9chelle de la puissance selon le mode de fonctionnement et le canal <\/td>\n<\/tr>\n | ||||||
201<\/td>\n | 7.4.4 Correction de la d\u00e9rive du DUT <\/td>\n<\/tr>\n | ||||||
202<\/td>\n | 7.5 Combinaison d’expositions 7.5.1 G\u00e9n\u00e9ralit\u00e9s <\/td>\n<\/tr>\n | ||||||
204<\/td>\n | 7.5.2 Combinaison des r\u00e9sultats de la densit\u00e9 de puissance et du DAS <\/td>\n<\/tr>\n | ||||||
205<\/td>\n | Figure\u00a010 \u2013 Evaluation du DAS et de la densit\u00e9 de puissance en un point r <\/td>\n<\/tr>\n | ||||||
206<\/td>\n | Figure\u00a011 \u2013 Combinaison du DAS (en haut) et de la densit\u00e9 de puissance (en bas) pour le fant\u00f4me SAM 8 Estimation de l’incertitude 8.1 G\u00e9n\u00e9ralit\u00e9s <\/td>\n<\/tr>\n | ||||||
207<\/td>\n | 8.2 Exigences relatives aux \u00e9valuations de l’incertitude 8.3 Description des mod\u00e8les d’incertitude <\/td>\n<\/tr>\n | ||||||
208<\/td>\n | 8.4 Termes d’incertitude d\u00e9pendant du syst\u00e8me de mesure 8.4.1 CAL \u2013 Etalonnage de l’\u00e9quipement de mesure (CALibration) 8.4.2 COR \u2013 Correction de la sonde 8.4.3 FRS \u2013 R\u00e9ponse en fr\u00e9quence (Frequency ReSponse) <\/td>\n<\/tr>\n | ||||||
209<\/td>\n | 8.4.4 SCC \u2013 Couplage crois\u00e9 de capteurs (Sensor Cross Coupling) <\/td>\n<\/tr>\n | ||||||
210<\/td>\n | 8.4.5 ISO \u2013 Isotropie 8.4.6 LIN \u2013 Erreur de lin\u00e9arit\u00e9 du syst\u00e8me <\/td>\n<\/tr>\n | ||||||
211<\/td>\n | 8.4.7 PSC \u2013 Diffusion de la sonde (Probe SCattering) 8.4.8 PPO \u2013 D\u00e9calage de positionnement de la sonde (Probe Positioning Offset) <\/td>\n<\/tr>\n | ||||||
212<\/td>\n | 8.4.9 PPR \u2013 R\u00e9p\u00e9tabilit\u00e9 du positionnement de la sonde (Probe Positioning Repeatability) <\/td>\n<\/tr>\n | ||||||
213<\/td>\n | 8.4.10 SMO \u2013 D\u00e9calage m\u00e9canique du capteur (Sensor Mechanical Offset) 8.4.11 PSR \u2013 R\u00e9solution spatiale de la sonde (Probe Spatial Resolution) 8.4.12 FLD \u2013 Influence de l’imp\u00e9dance de champ (FieLD impedance dependence) (rapport |E|\/|H|) 8.4.13 MED \u2013 D\u00e9rive de mesure (MEasurement Drift) <\/td>\n<\/tr>\n | ||||||
214<\/td>\n | 8.4.14 APN \u2013 Bruit d’amplitude et de phase (Amplitude and Phase Noise) 8.4.15 TR \u2013 Troncature de la zone de mesure 8.4.16 DAQ \u2013 Acquisition de donn\u00e9es (Data AcQuisition) 8.4.17 SMP \u2013 Echantillonnage (SaMPling) 8.4.18 REC \u2013 Reconstruction de champ <\/td>\n<\/tr>\n | ||||||
215<\/td>\n | 8.4.19 SNR \u2013 Rapport signal sur bruit (Signal to Noise Ratio) 8.4.20 TRA \u2013 Transformation directe et transformation inverse <\/td>\n<\/tr>\n | ||||||
216<\/td>\n | 8.4.21 SCA \u2013 Mise \u00e0 l’\u00e9chelle de la densit\u00e9 de puissance (SCaling) 8.4.22 SAV \u2013 Moyennage spatial (Spatial AVeraging) 8.4.23 COM \u2013 Combinaison d’expositions 8.5 Termes d’incertitude d\u00e9pendant du DUT et des facteurs environnementaux 8.5.1 PC \u2013 Couplage de la sonde avec le DUT (Probe Coupling) <\/td>\n<\/tr>\n | ||||||
217<\/td>\n | 8.5.2 MOD \u2013 R\u00e9ponse en modulation <\/td>\n<\/tr>\n | ||||||
218<\/td>\n | 8.5.3 IT \u2013 Temps d’int\u00e9gration (Integration Time) 8.5.4 RT \u2013 Temps de r\u00e9ponse (Response Time) 8.5.5 DH \u2013 Influence du support de dispositif (Device Holder influence) 8.5.6 DA \u2013 Alignement du DUT (DUT Alignment) <\/td>\n<\/tr>\n | ||||||
219<\/td>\n | 8.5.7 AC \u2013 Conditions\u00a0radiofr\u00e9quences ambiantes (RF Ambient Conditions) 8.5.8 TEM – Temp\u00e9rature du laboratoire 8.5.9 REF – R\u00e9flexions dans le laboratoire 8.5.10 MSI \u2013 Immunit\u00e9 du syst\u00e8me de mesure\/r\u00e9ception secondaire (Measurement System Immunity) 8.5.11 DRI \u2013 D\u00e9rive du DUT (DRIft) <\/td>\n<\/tr>\n | ||||||
220<\/td>\n | 8.6 Incertitude compos\u00e9e et \u00e9largie <\/td>\n<\/tr>\n | ||||||
221<\/td>\n | Tableau\u00a03 \u2013 Mod\u00e8le d’incertitude de mesure pour les mesures de la densit\u00e9 de puissance <\/td>\n<\/tr>\n | ||||||
222<\/td>\n | Tableau\u00a04 \u2013 Exemple de bilan d’incertitudes de mesure pour les r\u00e9sultats de mesure de la densit\u00e9 de puissance <\/td>\n<\/tr>\n | ||||||
223<\/td>\n | 9 Rapport de mesure 9.1 G\u00e9n\u00e9ralit\u00e9s 9.2 El\u00e9ments \u00e0 enregistrer dans les rapports de mesure <\/td>\n<\/tr>\n | ||||||
227<\/td>\n | Annexe\u00a0A (normative)V\u00e9rification du syst\u00e8me de mesure et essais de validation du syst\u00e8me A.1 Vue d’ensemble <\/td>\n<\/tr>\n | ||||||
228<\/td>\n | A.2 Normalisation en fonction de la puissance totale rayonn\u00e9e A.2.1 G\u00e9n\u00e9ralit\u00e9s A.2.2 Option 1: Mesure de la puissance accept\u00e9e <\/td>\n<\/tr>\n | ||||||
229<\/td>\n | Figure\u00a0A.1 \u2013 Montage de mesure de la puissance accept\u00e9e recommand\u00e9 pour la v\u00e9rification relative du syst\u00e8me, la v\u00e9rification absolue du syst\u00e8me et la validation du syst\u00e8me Figure A.2 \u2013 Configuration de l’\u00e9quipement pour la mesure de la puissance incidente Pf et de la puissance coupl\u00e9e incidente Pfc <\/td>\n<\/tr>\n | ||||||
230<\/td>\n | Figure\u00a0A.3 \u2013 Configuration de l’\u00e9quipement pour la mesure de la puissance coupl\u00e9e inverse en court-circuit Prcs Figure\u00a0A.4 \u2013 Configuration de l’\u00e9quipement pour la mesure de la puissance avec l’antenne de r\u00e9f\u00e9rence <\/td>\n<\/tr>\n | ||||||
232<\/td>\n | Tableau\u00a0A.1 \u2013 Exemple d’incertitude de mesure de la puissance Figure\u00a0A.5 \u2013 Num\u00e9rotation des acc\u00e8s pour les mesures du param\u00e8tre S du coupleur directif <\/td>\n<\/tr>\n | ||||||
233<\/td>\n | A.2.3 Option 2: Mesure de la puissance totale rayonn\u00e9e A.3 V\u00e9rification relative du syst\u00e8me A.3.1 Objet <\/td>\n<\/tr>\n | ||||||
234<\/td>\n | A.3.2 Antenne et conditions d’essai A.3.3 Proc\u00e9dure A.3.4 Crit\u00e8res d’acceptation <\/td>\n<\/tr>\n | ||||||
236<\/td>\n | A.4 V\u00e9rification absolue du syst\u00e8me A.4.1 Objet A.4.2 Antenne et conditions d’essai A.4.3 Proc\u00e9dure <\/td>\n<\/tr>\n | ||||||
237<\/td>\n | A.4.4 Crit\u00e8res d’acceptation A.5 Validation du syst\u00e8me A.5.1 Objet <\/td>\n<\/tr>\n | ||||||
238<\/td>\n | A.5.2 Proc\u00e9dure A.5.3 Validation de la r\u00e9ponse en modulation <\/td>\n<\/tr>\n | ||||||
239<\/td>\n | Tableau\u00a0A.2 \u2013 Signaux de communication pour l’essai de r\u00e9ponse en modulation A.5.4 Crit\u00e8res d’acceptation <\/td>\n<\/tr>\n | ||||||
241<\/td>\n | Annexe\u00a0B (normative)Antennes pour la v\u00e9rification du syst\u00e8me et les essais de validation du syst\u00e8me B.1 G\u00e9n\u00e9ralit\u00e9s <\/td>\n<\/tr>\n | ||||||
242<\/td>\n | Tableau\u00a0B.1 \u2013 Valeurs cibles pour les antennes cornets pyramidales \u00e0 diff\u00e9rentes fr\u00e9quences B.2 Antennes cornets pyramidales pour les v\u00e9rifications du syst\u00e8me <\/td>\n<\/tr>\n | ||||||
243<\/td>\n | Tableau\u00a0B.2 \u2013 Dimensions principales des r\u00e9seaux de dip\u00f4les aliment\u00e9s par cavit\u00e9 pour chaque fr\u00e9quence d’int\u00e9r\u00eat B.3 R\u00e9seaux de dip\u00f4les aliment\u00e9s par cavit\u00e9 pour la validation du syst\u00e8me B.3.1 Description <\/td>\n<\/tr>\n | ||||||
244<\/td>\n | Figure\u00a0B.1 \u2013 Dimensions principales des r\u00e9seaux de dip\u00f4les aliment\u00e9s par cavit\u00e9 \u2013 Mod\u00e8le \u00e0 30\u00a0GHz <\/td>\n<\/tr>\n | ||||||
245<\/td>\n | Tableau\u00a0B.3 \u2013 Param\u00e8tres g\u00e9om\u00e9triques des r\u00e9seaux de dip\u00f4les aliment\u00e9s par cavit\u00e9 pour chaque fr\u00e9quence d’int\u00e9r\u00eat Tableau\u00a0B.4 \u2013 Param\u00e8tres du substrat et du bloc m\u00e9tallique des r\u00e9seaux de dip\u00f4les aliment\u00e9s par cavit\u00e9 pour chaque fr\u00e9quence d’int\u00e9r\u00eat <\/td>\n<\/tr>\n | ||||||
246<\/td>\n | Tableau\u00a0B.5 \u2013 Valeurs cibles pour les r\u00e9seaux de dip\u00f4les aliment\u00e9s par cavit\u00e9 \u00e0 10\u00a0GHz, 30\u00a0GHz, 60\u00a0GHz et 90\u00a0GHz B.3.2 Valeurs num\u00e9riques cibles pour les r\u00e9seaux de dip\u00f4les aliment\u00e9s par cavit\u00e9 B.3.3 Mod\u00e8les de distribution du champ et de la densit\u00e9 de puissance <\/td>\n<\/tr>\n | ||||||
247<\/td>\n | Figure\u00a0B.2 \u2013 Mod\u00e8les 10\u00a0GHz de |Etotal| et Re{S}total pour les r\u00e9seaux de dip\u00f4les aliment\u00e9s par cavit\u00e9 aux distances dea) 2\u00a0mm, b) 5\u00a0mm, c) 10\u00a0mm, et d) 50\u00a0mm de la surface sup\u00e9rieure du substrat di\u00e9lectrique <\/td>\n<\/tr>\n | ||||||
248<\/td>\n | Figure\u00a0B.3 \u2013 Mod\u00e8les 30 GHz de |Etotal| et Re{S}total pour les r\u00e9seaux de dip\u00f4les aliment\u00e9s par cavit\u00e9 aux distances dea) 2\u00a0mm, b) 5\u00a0mm, c) 10\u00a0mm, et d) 50\u00a0mm de la surface sup\u00e9rieure du substrat di\u00e9lectrique <\/td>\n<\/tr>\n | ||||||
249<\/td>\n | Figure\u00a0B.4 \u2013 Mod\u00e8les 60 GHz de |Etotal| et Re{S}total pour les r\u00e9seaux de dip\u00f4les aliment\u00e9s par cavit\u00e9 aux distances dea) 2\u00a0mm, b) 5\u00a0mm, c) 10\u00a0mm, et d) 50\u00a0mm de la surface sup\u00e9rieure du substrat di\u00e9lectrique <\/td>\n<\/tr>\n | ||||||
250<\/td>\n | Figure\u00a0B.5 \u2013 Mod\u00e8les 90 GHz de |Etotal| et Re{S}total pour les r\u00e9seaux de dip\u00f4les aliment\u00e9s par cavit\u00e9 aux distances dea) 2\u00a0mm, b) 5\u00a0mm, c) 10\u00a0mm, et d) 50\u00a0mm de la surface sup\u00e9rieure du substrat di\u00e9lectrique <\/td>\n<\/tr>\n | ||||||
251<\/td>\n | B.3.4 Diagrammes de rayonnement en champ lointain <\/td>\n<\/tr>\n | ||||||
252<\/td>\n | Figure\u00a0B.6\u00a0\u2013 Diagrammes de rayonnement en champ lointain de r\u00e9seaux de dip\u00f4les aliment\u00e9s par cavit\u00e9 \u00e0 a) 10\u00a0GHz, b) 30\u00a0GHz, c) 60\u00a0GHz et d) 90\u00a0GHz <\/td>\n<\/tr>\n | ||||||
253<\/td>\n | B.4 Cornets pyramidaux \u00e0 r\u00e9seaux de fentes rayonnantes pour la validation du syst\u00e8me B.4.1 Description Figure\u00a0B.7 \u2013 Dimensions principales du gabarit en acier inoxydable de 0,15\u00a0mm avec r\u00e9seau de fentes rayonnantes <\/td>\n<\/tr>\n | ||||||
254<\/td>\n | Tableau\u00a0B.6 \u2013 Dimensions principales du gabarit avec r\u00e9seau de fentes rayonnantes pour chaque fr\u00e9quence Figure\u00a0B.8 \u2013 Dimensions principales des antennes cornets pyramidales <\/td>\n<\/tr>\n | ||||||
255<\/td>\n | Tableau\u00a0B.7 \u2013 Dimensions primaires des cornets pyramidaux correspondants pour chaque fr\u00e9quence B.4.2 Valeurs num\u00e9riques cibles pour les cornets pyramidaux charg\u00e9s d’un r\u00e9seau de fentes rayonnantes <\/td>\n<\/tr>\n | ||||||
256<\/td>\n | Tableau\u00a0B.8 \u2013 Valeurs cibles pour les cornets pyramidaux charg\u00e9s de r\u00e9seaux de fentes rayonnantes \u00e0 10\u00a0GHz, 30\u00a0GHz, 60\u00a0GHz et 90\u00a0GHz B.4.3 Mod\u00e8les de distribution du champ et de la densit\u00e9 de puissance <\/td>\n<\/tr>\n | ||||||
257<\/td>\n | Figure\u00a0B.9 \u2013 Mod\u00e8les 10\u00a0GHz de |Etotal| et Re{S}total pour le cornet pyramidal charg\u00e9 d’un r\u00e9seau de fentes rayonnantes aux distances de a)\u00a02\u00a0mm, b) 5\u00a0mm, c) 10\u00a0mm, et d) 50\u00a0mm de la surface sup\u00e9rieure du r\u00e9seau de fentes rayonnantes <\/td>\n<\/tr>\n | ||||||
258<\/td>\n | Figure\u00a0B.10 \u2013 Mod\u00e8les 30 GHz de |Etotal| et Re{S}total pour le cornet pyramidal charg\u00e9 d’un r\u00e9seau de fentes rayonnantes aux distances de a) 2\u00a0mm, b) 5\u00a0mm, c) 10\u00a0mm, et d) 50\u00a0mm de la surface sup\u00e9rieure du r\u00e9seau de fentes rayonnantes <\/td>\n<\/tr>\n | ||||||
259<\/td>\n | Figure\u00a0B.11 \u2013 Mod\u00e8les 60 GHz de |Etotal| et Re{S}total pour le cornet pyramidal charg\u00e9 d’un r\u00e9seau de fentes rayonnantes aux distances de a) 2\u00a0mm, b) 5\u00a0mm, c) 10\u00a0mm, et d) 50\u00a0mm de la surface sup\u00e9rieure du r\u00e9seau de fentes rayonnantes <\/td>\n<\/tr>\n | ||||||
260<\/td>\n | Figure\u00a0B.12 \u2013 Mod\u00e8les 90 GHz de |Etotal| et Re{S}total pour le cornet pyramidal charg\u00e9 d’un r\u00e9seau de fentes rayonnantes aux distances de a) 2\u00a0mm, b) 5\u00a0mm, c) 10\u00a0mm, et d) 50\u00a0mm de la surface sup\u00e9rieure du r\u00e9seau de fentes rayonnantes <\/td>\n<\/tr>\n | ||||||
261<\/td>\n | B.4.4 Diagrammes de rayonnement en champ lointain <\/td>\n<\/tr>\n | ||||||
262<\/td>\n | B.5 Proc\u00e9dure de validation de l’antenne B.5.1 G\u00e9n\u00e9ralit\u00e9s Figure\u00a0B.13 \u2013 Diagrammes de rayonnement en champ lointain d’un cornet pyramidal \u00e0 a)\u00a010\u00a0GHz, b)\u00a030\u00a0GHz, c)\u00a060\u00a0GHz et d)\u00a090\u00a0GHz charg\u00e9 d’un r\u00e9seau de fentes rayonnantes <\/td>\n<\/tr>\n | ||||||
263<\/td>\n | B.5.2 Objectifs, domaine d’application et sp\u00e9cifications d’usage B.5.3 Conception de l’antenne B.5.4 Cibles num\u00e9riques B.5.5 Etalonnage des antennes de r\u00e9f\u00e9rence B.5.6 V\u00e9rification des antennes et esp\u00e9rance de vie <\/td>\n<\/tr>\n | ||||||
264<\/td>\n | B.5.7 Consid\u00e9rations relatives au bilan d’incertitudes B.6 Proc\u00e9dure de validation pour les signaux \u00e0 large bande B.6.1 G\u00e9n\u00e9ralit\u00e9s B.6.2 Signaux de validation B.6.3 Antennes et configuration de validation B.6.4 Valeurs cibles des antennes de validation \u00e9mettant des signaux \u00e0 large bande <\/td>\n<\/tr>\n | ||||||
265<\/td>\n | B.6.5 Incertitude relative au signal \u00e0 large bande B.6.6 Proc\u00e9dure de validation <\/td>\n<\/tr>\n | ||||||
266<\/td>\n | Annexe\u00a0C (normative)Etalonnage et caract\u00e9risation des sondes de mesure C.1 G\u00e9n\u00e9ralit\u00e9s C.2 Etalonnage des sondes \u00e0 guide d’ondes C.2.1 G\u00e9n\u00e9ralit\u00e9s C.2.2 Sensibilit\u00e9 <\/td>\n<\/tr>\n | ||||||
267<\/td>\n | C.2.3 Lin\u00e9arit\u00e9 C.2.4 Limite de d\u00e9tection inf\u00e9rieure C.2.5 Isotropie C.2.6 Temps de r\u00e9ponse C.3 Etalonnage des sondes scalaires isotropes de champ E ou de champ H C.3.1 G\u00e9n\u00e9ralit\u00e9s C.3.2 Sensibilit\u00e9 <\/td>\n<\/tr>\n | ||||||
268<\/td>\n | C.3.3 Isotropie C.3.4 Lin\u00e9arit\u00e9 C.3.5 Limite de d\u00e9tection inf\u00e9rieure C.3.6 Temps de r\u00e9ponse C.4 Etalonnage des sondes de phaseur de champ E ou de champ H C.4.1 G\u00e9n\u00e9ralit\u00e9s <\/td>\n<\/tr>\n | ||||||
269<\/td>\n | C.4.2 Sensibilit\u00e9 C.4.3 Isotropie C.4.4 Lin\u00e9arit\u00e9 C.4.5 Limite de d\u00e9tection inf\u00e9rieure <\/td>\n<\/tr>\n | ||||||
270<\/td>\n | C.5 Param\u00e8tres relatifs \u00e0 l’incertitude de l’\u00e9talonnage C.5.1 G\u00e9n\u00e9ralit\u00e9s C.5.2 Puissance d’entr\u00e9e de l’antenne C.5.3 Effet de d\u00e9sadaptation (mesure de la puissance d’entr\u00e9e) C.5.4 Gain et distance de d\u00e9calage <\/td>\n<\/tr>\n | ||||||
271<\/td>\n | C.5.5 Spectre du signal C.5.6 Stabilit\u00e9 de la configuration C.5.7 Incertitude relative aux variations d’imp\u00e9dance de champ <\/td>\n<\/tr>\n | ||||||
272<\/td>\n | Tableau\u00a0C.1 \u2013 Analyse de l’incertitude de l’\u00e9talonnage de la sonde C.6 Mod\u00e8le de bilan d’incertitudes <\/td>\n<\/tr>\n | ||||||
274<\/td>\n | Annexe\u00a0D (informative)Informations sur l’utilisation d’une forme carr\u00e9e ou d’une forme circulaire pour la zone de moyennage de la densit\u00e9 de puissance dans le cadre des \u00e9valuations de conformit\u00e9 D.1 G\u00e9n\u00e9ralit\u00e9s D.2 M\u00e9thode utilisant l’analyse computationnelle Figure\u00a0D.1 \u2013 Vue sch\u00e9matique de l’\u00e9valuation de la variation de la sPD avec une forme carr\u00e9e en faisant pivoter l’antenne en essai <\/td>\n<\/tr>\n | ||||||
275<\/td>\n | D.3 Zones de moyennage de forme carr\u00e9e et de forme circulaire sur une surface d’\u00e9valuation plane <\/td>\n<\/tr>\n | ||||||
276<\/td>\n | Figure\u00a0D.2 \u2013 Comparaison de la psPD moyenn\u00e9e \u00e0 l’aide de zones de forme carr\u00e9e par rapport \u00e0 celle moyenn\u00e9e \u00e0 l’aide de zones de forme circulaire sur des surfaces d’\u00e9valuation planes <\/td>\n<\/tr>\n | ||||||
277<\/td>\n | Tableau\u00a0D.1 \u2013 Valeurs de modulation de phase pour l’antenne en r\u00e9seau D.4 Zones de moyennage de forme carr\u00e9e et de forme circulaire sur une surface d’\u00e9valuation non plane Figure\u00a0D.3 \u2013 Exemples de distributions de la PD dans une surface d’\u00e9valuation o\u00f9 le dispositif est tenu pr\u00e8s de l’oreille <\/td>\n<\/tr>\n | ||||||
278<\/td>\n | Figure\u00a0D.4 \u2013 Comparaison de la psPD moyenn\u00e9e en utilisant une zone en forme de section transversale de cube (carr\u00e9e) par rapport \u00e0 une zone en forme de section transversale de sph\u00e8re (circulaire) comme surface d’\u00e9valuation o\u00f9 le dispositif est tenu pr\u00e8s de l’oreille <\/td>\n<\/tr>\n | ||||||
279<\/td>\n | Annexe\u00a0E (informative)Algorithmes de reconstruction E.1 G\u00e9n\u00e9ralit\u00e9s E.2 M\u00e9thodes d’extraction des composantes de champ et des densit\u00e9s de puissance locales E.2.1 G\u00e9n\u00e9ralit\u00e9s <\/td>\n<\/tr>\n | ||||||
280<\/td>\n | E.2.2 Approches sans la phase E.2.3 Approches utilisant les mesures des ellipses de polarisation du champ\u00a0E E.2.4 Mesures directes en champ proche <\/td>\n<\/tr>\n | ||||||
281<\/td>\n | E.3 Transformation (propagation) directe des champs E.3.1 G\u00e9n\u00e9ralit\u00e9s Figure\u00a0E.1 \u2013 Simulation (\u00e0 gauche) et transformation directe \u00e0 partir de mesures en appliquant les m\u00e9thodes d\u00e9crites dans [29] (\u00e0 droite) de la densit\u00e9 de puissance dans le plan xz (en haut) et le plan yz (en bas) \u00e0 une distance de 2\u00a0mm pour un r\u00e9seau de dip\u00f4les aliment\u00e9 par cavit\u00e9 \u00e0 30\u00a0GHz (voir Annexe\u00a0B) <\/td>\n<\/tr>\n | ||||||
282<\/td>\n | E.3.2 M\u00e9thodes d’expansion de champ E.3.3 M\u00e9thodes utilisant des \u00e9quations int\u00e9grales de champ <\/td>\n<\/tr>\n | ||||||
283<\/td>\n | E.4 Transformation (propagation) inverse des champs E.4.1 G\u00e9n\u00e9ralit\u00e9s <\/td>\n<\/tr>\n | ||||||
284<\/td>\n | E.4.2 M\u00e9thodes d’expansion de champ \u2013 expansion en onde plane E.4.3 M\u00e9thodes de source inverse <\/td>\n<\/tr>\n | ||||||
285<\/td>\n | E.5 Fonctions analytiques de r\u00e9f\u00e9rence <\/td>\n<\/tr>\n | ||||||
286<\/td>\n | Tableau\u00a0E.1 \u2013 Liste des fonctions analytiques de r\u00e9f\u00e9rence et des valeurs cibles de psPDn+ associ\u00e9es Tableau\u00a0E.2 \u2013 Liste des fonctions analytiques de r\u00e9f\u00e9rence et des valeurs cibles de psPDtot+ associ\u00e9es <\/td>\n<\/tr>\n | ||||||
287<\/td>\n | Tableau\u00a0E.3 \u2013 Liste des fonctions analytiques de r\u00e9f\u00e9rence et des valeurs cibles de psPDmod+ associ\u00e9es <\/td>\n<\/tr>\n | ||||||
288<\/td>\n | Annexe\u00a0F (informative)Comparaisons interlaboratoires F.1 Objet F.2 Dispositifs de r\u00e9f\u00e9rence F.3 Configuration d’alimentation F.4 Comparaisons interlaboratoires \u2013 proc\u00e9dure <\/td>\n<\/tr>\n | ||||||
289<\/td>\n | Annexe\u00a0G (informative)Exemple d’essai et de v\u00e9rification de la densit\u00e9 de puissance G.1 Objet G.2 Pr\u00e9sentation du DUT G.3 V\u00e9rification du syst\u00e8me d’essai G.4 Montage d’essai G.5 R\u00e9sultats de densit\u00e9 de puissance G.6 Exposition combin\u00e9e (rapport d’exposition totale) <\/td>\n<\/tr>\n | ||||||
290<\/td>\n | Annexe\u00a0H (informative)Applicabilit\u00e9 des approximations d’onde plane \u00e9quivalente H.1 Objectif H.2 M\u00e9thode <\/td>\n<\/tr>\n | ||||||
291<\/td>\n | H.3 R\u00e9sultats <\/td>\n<\/tr>\n | ||||||
292<\/td>\n | H.4 Discussion Figure\u00a0H.1 \u2013 psPDpwe \/ psPDtot comme fonction de la distance (en unit\u00e9s de \u03bb) entre le r\u00e9seau de dip\u00f4les aliment\u00e9 par cavit\u00e9 (CDA##G, c\u00f4t\u00e9 gauche) et le cornet pyramidal avec r\u00e9seaux de fentes rayonnantes (SH##G, c\u00f4t\u00e9 droit) fonctionnant \u00e0 10\u00a0GHz, 30\u00a0GHz, 60\u00a0GHz et 90\u00a0GHz <\/td>\n<\/tr>\n | ||||||
293<\/td>\n | Annexe\u00a0I (informative)Justifications des concepts et m\u00e9thodes appliqu\u00e9s dans le pr\u00e9sent document et l’IEC\/IEEE\u00a063195-2 I.1 Plage de fr\u00e9quences I.2 Calcul de la sPD I.2.1 Application du vecteur de Poynting pour le calcul de la densit\u00e9 de puissance incidente <\/td>\n<\/tr>\n | ||||||
294<\/td>\n | I.2.2 Zone de moyennage <\/td>\n<\/tr>\n | ||||||
295<\/td>\n | Bibliographie <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" IEEE\/IEC International Standard Assessment of power density of human exposure to radio frequency fields from wireless devices in close proximity to the head and body (frequency range of 6 GHz to 300 GHz)–Part 1: Measurement procedure<\/b><\/p>\n |