{"id":420453,"date":"2024-10-20T06:31:15","date_gmt":"2024-10-20T06:31:15","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bsi-pd-iec-tr-62939-12014-3\/"},"modified":"2024-10-26T12:11:51","modified_gmt":"2024-10-26T12:11:51","slug":"bsi-pd-iec-tr-62939-12014-3","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bsi-pd-iec-tr-62939-12014-3\/","title":{"rendered":"BSI PD IEC\/TR 62939-1:2014"},"content":{"rendered":"
This part of IEC 62939, which is a technical report, presents an international consensus perspective on the vision for a Smart Grid user interface (SGUI) including: SGUI requirements distilled from use cases for communications across the customer interface (the SGUI); an analysis of existing IEC and other international standards that relate to the SGUI; and an identification of standards gaps that need to be filled and might become potential work items for IEC Project Committee 118.<\/p>\n
The PC 118 scope is, \u201cStandardization in the field of information exchange for demand response and in connecting demand side equipment and\/or systems into the Smart Grid\u201d. This report presents the information exchange and interface requirements leading to standards to support effective integration of consumer systems and devices into the Smart Grid.<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
4<\/td>\n | CONTENTS <\/td>\n<\/tr>\n | ||||||
10<\/td>\n | FOREWORD <\/td>\n<\/tr>\n | ||||||
12<\/td>\n | 0 Introduction 0.1 High-level definition of Smart Grid user interface (SGUI) 0.2 PC 118 history 0.3 Relation of IEC PC 118 to other IEC technical committees <\/td>\n<\/tr>\n | ||||||
13<\/td>\n | 0.4 Report overview 0.5 Key recommendations and findings <\/td>\n<\/tr>\n | ||||||
14<\/td>\n | 1 Scope 2 Smart Grid user interface overview 2.1 SGUI \u2013 Consensus perspective <\/td>\n<\/tr>\n | ||||||
15<\/td>\n | Figures Figure 1 \u2013 High-level view of the SGUI architecture as interface (blue line) between different domains <\/td>\n<\/tr>\n | ||||||
16<\/td>\n | 2.2 Inter-domain interoperability 2.2.1 General 2.2.2 Agreement at the interface \u2013 a contract 2.2.3 Boundary of authority 2.2.4 Decision making in very large networks <\/td>\n<\/tr>\n | ||||||
17<\/td>\n | 2.2.5 The role of standards 2.3 Smart Grid user applications 2.3.1 General 2.3.2 Demand response <\/td>\n<\/tr>\n | ||||||
18<\/td>\n | Figure 2 \u2013 Levels of demand response interactions <\/td>\n<\/tr>\n | ||||||
20<\/td>\n | Figure 3 \u2013 Interactive demand response versus DLC <\/td>\n<\/tr>\n | ||||||
22<\/td>\n | 2.3.3 Other SGUI applications 2.4 SGUI functional requirements <\/td>\n<\/tr>\n | ||||||
24<\/td>\n | 2.5 Architecture Figure 4 \u2013 Information exchange through the SGUI between the grid (external service providers) and users in the Customer Facility domain <\/td>\n<\/tr>\n | ||||||
25<\/td>\n | Figure 5 \u2013 High-level generic Smart Grid user interface architecture <\/td>\n<\/tr>\n | ||||||
26<\/td>\n | 2.6 Actors 2.6.1 Overview 2.6.2 Customer domain characteristics 2.6.3 Grid-side, customer-side, and SGUI actors <\/td>\n<\/tr>\n | ||||||
28<\/td>\n | 2.7 Quality requirements 2.7.1 General <\/td>\n<\/tr>\n | ||||||
29<\/td>\n | 2.7.2 Security and privacy 2.7.3 Scalability and performance <\/td>\n<\/tr>\n | ||||||
30<\/td>\n | 2.7.4 Maintainability 3 Country actions and perspective on Smart Grid user interface 3.1 General 3.2 Overview of country experiences 3.2.1 China perspective <\/td>\n<\/tr>\n | ||||||
31<\/td>\n | 3.2.2 U.S. perspective <\/td>\n<\/tr>\n | ||||||
32<\/td>\n | Figure 6 \u2013 NIST smart grid conceptual model (from NIST Framework 2.0) <\/td>\n<\/tr>\n | ||||||
33<\/td>\n | 3.2.3 European perspective <\/td>\n<\/tr>\n | ||||||
34<\/td>\n | 3.2.4 France perspective Figure 7 \u2013 Architectural details of the EN 50491-12 CEM framework <\/td>\n<\/tr>\n | ||||||
35<\/td>\n | Figure 8 \u2013 Example COSEI architecture diagrams <\/td>\n<\/tr>\n | ||||||
37<\/td>\n | Tables Table 1 \u2013 Correspondence between hardware components in smart homes and their potential integrated functional components <\/td>\n<\/tr>\n | ||||||
38<\/td>\n | 3.2.5 Korea perspective <\/td>\n<\/tr>\n | ||||||
39<\/td>\n | 3.2.6 Japan perspective 3.2.7 India perspective Table 2 \u2013 Korean framework domains and relation to SGUI Table 3 \u2013 Four regional demonstration tests in Japan <\/td>\n<\/tr>\n | ||||||
40<\/td>\n | 3.3 Use cases from PC 118 member countries 3.3.1 General 3.3.2 China use cases Table 4 \u2013 China use case classification and use case summary <\/td>\n<\/tr>\n | ||||||
41<\/td>\n | 3.3.3 Korea use cases 3.3.4 Japan use cases 3.3.5 France use cases Table 5 \u2013 Korea use case category table summary Table 6 \u2013 Japan use case category table summary Table 7 \u2013 France use case category table summary <\/td>\n<\/tr>\n | ||||||
42<\/td>\n | 3.3.6 India use cases 3.3.7 U.S. use cases Table 8 \u2013 India use case category table summary <\/td>\n<\/tr>\n | ||||||
43<\/td>\n | 3.4 Use case analysis 3.4.1 General 3.4.2 Service and control interactions Table 9 \u2013 U.S. use case category table summary <\/td>\n<\/tr>\n | ||||||
44<\/td>\n | 3.4.3 Use case taxonomy 3.4.4 Analysis and classification of use cases Table 10 \u2013 SGUI functional use case classes (UCC) and descriptions <\/td>\n<\/tr>\n | ||||||
45<\/td>\n | Figure 9 \u2013 Summary classification of submitted use caseswith three interaction styles Figure 10 \u2013 Cross-tabulations of use cases by category with three interaction styles <\/td>\n<\/tr>\n | ||||||
46<\/td>\n | 3.4.5 Summary of use case analysis 3.5 Special considerations 3.5.1 General 3.5.2 Meter interactions <\/td>\n<\/tr>\n | ||||||
47<\/td>\n | 3.5.3 Electric vehicles and other storage 4 Smart grid user interface standards 4.1 General 4.2 Overview of existing standards <\/td>\n<\/tr>\n | ||||||
48<\/td>\n | Figure 11 \u2013 Classification of standards in the following tables based on SGUI (Table 11), grid-side domains (Table 12) and facility-side domain (Table 13) Table 11 \u2013 Standards relevant to the SGUI <\/td>\n<\/tr>\n | ||||||
49<\/td>\n | Table 12 \u2013 Standards relevant to the grid-side of the SGUI <\/td>\n<\/tr>\n | ||||||
51<\/td>\n | Table 13 \u2013 Standards relevant to the facility-side of the SGUI <\/td>\n<\/tr>\n | ||||||
52<\/td>\n | 4.3 Standards gap context 4.3.1 General 4.3.2 Standards gap analysis procedure <\/td>\n<\/tr>\n | ||||||
53<\/td>\n | 4.3.3 Use case classification system Figure 12 \u2013 Smart Grid architecture model <\/td>\n<\/tr>\n | ||||||
54<\/td>\n | 4.4 Use case classes and relevant standards 4.4.1 General 4.4.2 UCC 1\u2014Interact with markets Table 14 \u2013 Use case classes and relevant use cases Table 15 \u2013 Functional systems and relevant use cases <\/td>\n<\/tr>\n | ||||||
56<\/td>\n | Table 16 \u2013 Relevant standards for use case class 1 <\/td>\n<\/tr>\n | ||||||
57<\/td>\n | 4.4.3 UCC 2\u2014Convey price information <\/td>\n<\/tr>\n | ||||||
58<\/td>\n | Table 17 \u2013 Relevant standards for use case class 2 <\/td>\n<\/tr>\n | ||||||
60<\/td>\n | 4.4.4 UCC 3\u2014Ancillary services <\/td>\n<\/tr>\n | ||||||
61<\/td>\n | Table 18 \u2013 Relevant standards for use case class 3 <\/td>\n<\/tr>\n | ||||||
63<\/td>\n | 4.4.5 UCC 4\u2014DR & DER requests and supporting services <\/td>\n<\/tr>\n | ||||||
64<\/td>\n | Table 19 \u2013 Relevant standards for use case class 4 <\/td>\n<\/tr>\n | ||||||
66<\/td>\n | 4.4.6 UCC 5\u2014Impending power failure or instability <\/td>\n<\/tr>\n | ||||||
67<\/td>\n | Table 20 \u2013 Relevant standards for use case class 5 <\/td>\n<\/tr>\n | ||||||
68<\/td>\n | 4.4.7 UCC 6\u2014Directed interaction and direct load control <\/td>\n<\/tr>\n | ||||||
69<\/td>\n | Table 21 \u2013 Relevant standards for use case class 6 <\/td>\n<\/tr>\n | ||||||
71<\/td>\n | 4.4.8 UCC 7\u2014Historical, present and future projection information <\/td>\n<\/tr>\n | ||||||
72<\/td>\n | Table 22 \u2013 Relevant standards for use case class 7 <\/td>\n<\/tr>\n | ||||||
73<\/td>\n | 4.4.9 UCC 8\u2014Monitoring and energy efficiency analysis <\/td>\n<\/tr>\n | ||||||
74<\/td>\n | Table 23 \u2013 Relevant standards for use case class 8 <\/td>\n<\/tr>\n | ||||||
75<\/td>\n | 4.5 Smart Grid user interface standards gap analysis conclusions <\/td>\n<\/tr>\n | ||||||
76<\/td>\n | 5 Recommendations for IEC SGUI standards development 5.1 General 5.2 OpenADR 2.0 <\/td>\n<\/tr>\n | ||||||
77<\/td>\n | 5.3 OASIS Energy Interoperation 5.4 Smart Energy SEP 2.0 <\/td>\n<\/tr>\n | ||||||
78<\/td>\n | Annex A (informative) IEC establishment and history of PC 118 <\/td>\n<\/tr>\n | ||||||
79<\/td>\n | Figure A.1 \u2013 Consensus reference drawing for PC 118 work relative to other TCs <\/td>\n<\/tr>\n | ||||||
80<\/td>\n | Table A.1 \u2013 Chart used for capturing existing solutions during PC 118 meetings <\/td>\n<\/tr>\n | ||||||
81<\/td>\n | Figure A.2 \u2013 Top-down approach to identify industry expectations Figure A.3 \u2013 Questions to be addressed by PC 118 working groups leading to work plan <\/td>\n<\/tr>\n | ||||||
82<\/td>\n | Figure A.4 \u2013 Conceptual work plan for PC 118 <\/td>\n<\/tr>\n | ||||||
83<\/td>\n | Annex B (informative) SGUI perspective \u2013 More details B.1 General B.2 European standardization for Smart Grid realization in buildings Figure B.1 \u2013 Reference architecture for smart metering communications [19] <\/td>\n<\/tr>\n | ||||||
84<\/td>\n | Figure B.2 \u2013 Expanded smart metering reference architecture <\/td>\n<\/tr>\n | ||||||
85<\/td>\n | Figure B.3 \u2013 European functional architecture Figure B.4 \u2013 Reality of multiple HBES in market <\/td>\n<\/tr>\n | ||||||
86<\/td>\n | B.3 DR through smart meter infrastructure (France) Figure B.5 \u2013 Common framework with one standard interface for mapping to any HBES <\/td>\n<\/tr>\n | ||||||
87<\/td>\n | Figure B.6 \u2013 DR through smart meter infrastructure, without (Internet) e-Box Figure B.7 \u2013 DR through smart meter infrastructure, with (Internet) e-Box <\/td>\n<\/tr>\n | ||||||
88<\/td>\n | Table B.1 \u2013 DR infrastructure comparison \u2013 Services and roles <\/td>\n<\/tr>\n | ||||||
89<\/td>\n | Annex C (informative) Use cases C.1 General C.2 China use cases C.2.1 CN01 \u2013 Use case of generic use cases C.2.2 CN02 \u2013 Use case of demand response C.2.3 CN03 \u2013 Use case of energy efficiency <\/td>\n<\/tr>\n | ||||||
90<\/td>\n | C.2.4 CN04 \u2013 Use case of distributed energy resource C.2.5 CN05 \u2013 Use case of electric vehicle charging C.2.6 CN06 \u2013 Use case of load management C.3 Korea use cases <\/td>\n<\/tr>\n | ||||||
92<\/td>\n | C.4 Japan use cases C.4.1 General C.4.2 JP01 \u2013 Control battery via home energy management system (HEMS) Table C.1 \u2013 Summary of Japanese use cases <\/td>\n<\/tr>\n | ||||||
93<\/td>\n | C.4.3 JP02 \u2013 Control distributed energy resources (DER) via home energy management system (HEMS) C.4.4 JP03 \u2013 Control energy consumption with smart appliances by building energy management system (BEMS) C.4.5 JP04 \u2013 Control energy consumption with smart appliances by community EMS <\/td>\n<\/tr>\n | ||||||
94<\/td>\n | C.4.6 JP05 \u2013 Control energy consumption with smart appliances by energy provider C.4.7 JP06 \u2013 Control energy consumption via home energy management system (HEMS) with smart appliances C.4.8 JP07 \u2013 Peak shift contribution by battery aggregation (virtual energy storage) C.4.9 JP08 \u2013 Control of smart home appliances based on price information by time slot <\/td>\n<\/tr>\n | ||||||
95<\/td>\n | C.4.10 JP09 \u2013 Control of smart home appliances in response to power saving request from electric power supplier C.4.11 JP10 \u2013 Control of smart home appliance before power cut <\/td>\n<\/tr>\n | ||||||
96<\/td>\n | C.4.12 JP11 \u2013 Control of smart home appliances in case of natural disaster C.5 France use cases C.5.1 General C.5.2 FR01 \u2013 Load control for electrical water heating tank coupled with on\/off peak tariff Table C.2 \u2013 Summary of French use cases <\/td>\n<\/tr>\n | ||||||
97<\/td>\n | C.5.3 FR02 \u2013 Dynamic pricing of electricity and energy management <\/td>\n<\/tr>\n | ||||||
98<\/td>\n | C.5.4 FR03 \u2013 Managing a superseding tariff schedule (peak demand) UC_PC_14 <\/td>\n<\/tr>\n | ||||||
100<\/td>\n | C.5.5 FR04 Handle a tariff event through managed equipment UC_PC_16 <\/td>\n<\/tr>\n | ||||||
101<\/td>\n | C.5.6 FR05 \u2013 Handling a tariff event by local intelligence UC_PC_17 <\/td>\n<\/tr>\n | ||||||
102<\/td>\n | C.6 India use cases C.6.1 IN01 \u2013 Energy efficiency <\/td>\n<\/tr>\n | ||||||
103<\/td>\n | C.6.2 IN02 \u2013 Demand response for peak load reduction C.6.3 IN03 \u2013 Home energy management C.6.4 IN04 \u2013 Building energy management <\/td>\n<\/tr>\n | ||||||
104<\/td>\n | C.6.5 IN05 \u2013 Local markets to enable consumer-prosumer open access transactions <\/td>\n<\/tr>\n | ||||||
105<\/td>\n | C.6.6 IN06 \u2013 Deliver output reports of demand side equipment in standardized data formats to users <\/td>\n<\/tr>\n | ||||||
106<\/td>\n | Annex D (informative) Standards D.1 Short summary of Clause 4 relevant standards D.1.1 General D.1.2 ISO\/IEC 15067-3 D.1.3 ISO\/IEC 15045 series D.1.4 ISO\/IEC 18012 series D.1.5 ISO\/IEC 14543 series D.1.6 ISO\/IEC 14543-3 (EN 50090) KNX <\/td>\n<\/tr>\n | ||||||
107<\/td>\n | D.1.7 ISO\/IEC 14908-1 D.1.8 ISO\u00a016484-5 (ASHRAE\/ANSI 135) D.1.9 ISO\u00a017800 (ASHRAE\/NEMA 201P) <\/td>\n<\/tr>\n | ||||||
108<\/td>\n | D.1.10 ISO\/IEC 14762 D.1.11 ISO\/IEC 29145 D.1.12 ISO\/IEC 30100 D.1.13 IEC\u00a061158-6 D.1.14 IEC\u00a061400-25 series <\/td>\n<\/tr>\n | ||||||
109<\/td>\n | D.1.15 IEC\u00a061588 D.1.16 IEC TR\u00a061850-90-7 <\/td>\n<\/tr>\n | ||||||
110<\/td>\n | D.1.17 IEC TR 61850-90-8 D.1.18 IEC\u00a061968 series <\/td>\n<\/tr>\n | ||||||
111<\/td>\n | D.1.19 IEC\u00a061970 series D.1.20 IEC\u00a062056 series D.1.21 IEC\u00a062325 series <\/td>\n<\/tr>\n | ||||||
112<\/td>\n | D.1.22 IEC\u00a062351 series D.1.23 IEC\u00a062394 D.1.24 IEC\u00a062480 D.1.25 IEC\u00a062488 series <\/td>\n<\/tr>\n | ||||||
113<\/td>\n | D.1.26 IEC\u00a062746 series D.1.27 IEC\u00a0TS 62872 D.1.28 OASIS Energy Interoperation 1.0 D.1.29 OpenADR 2.0 (IEC PAS 62746-10-1) D.1.30 OASIS Energy Market Information Exchange <\/td>\n<\/tr>\n | ||||||
114<\/td>\n | D.1.31 OASIS WS-Calendar D.1.32 CENELEC EN 50491-12 D.1.33 IEEE P2030.5 Smart Energy Profile 2.0 D.1.34 ECHONET <\/td>\n<\/tr>\n | ||||||
115<\/td>\n | D.1.35 ANSI\/CEA-2045, Modular Communication Interface D.1.36 AS\/NZS 4755 D.1.37 IEEE 1547 <\/td>\n<\/tr>\n | ||||||
116<\/td>\n | D.2 Additional standards information D.2.1 General D.2.2 Standard: OASIS Energy Interoperation (EI) <\/td>\n<\/tr>\n | ||||||
117<\/td>\n | Figure D.1 \u2013 Energy Interoperation directed interaction graph <\/td>\n<\/tr>\n | ||||||
118<\/td>\n | D.2.3 Standard: OpenADR 2.0 Profile Specification (OpenADR 2.0) D.2.4 Standard: Smart Energy Profile (SEP) 2.0 <\/td>\n<\/tr>\n | ||||||
121<\/td>\n | D.2.5 Standard: NAESB REQ.21: Energy Services Provider Interface (ESPI) <\/td>\n<\/tr>\n | ||||||
122<\/td>\n | Figure D.2 \u2013 ESPI automated exchange use cases <\/td>\n<\/tr>\n | ||||||
123<\/td>\n | Figure D.3 \u2013 Overview of ESPI actors <\/td>\n<\/tr>\n | ||||||
124<\/td>\n | D.2.6 Standard: ASHRAE\/NEMA 201P Facility Smart Grid Information Model (FSGIM) <\/td>\n<\/tr>\n | ||||||
125<\/td>\n | D.2.7 Standard: ANSI\/CEA-2045: Modular Communication Interface <\/td>\n<\/tr>\n | ||||||
127<\/td>\n | Figure D.4 \u2013 Modular interface concept <\/td>\n<\/tr>\n | ||||||
128<\/td>\n | Figure D.5 \u2013 CEA-2045 modular interface layers <\/td>\n<\/tr>\n | ||||||
129<\/td>\n | Bibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" Smart grid user interface – Interface overview and country perspectives<\/b><\/p>\n |