{"id":425613,"date":"2024-10-20T06:57:47","date_gmt":"2024-10-20T06:57:47","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bsi-pd-cen-clc-tr-17603-31-132021-3\/"},"modified":"2024-10-26T13:08:02","modified_gmt":"2024-10-26T13:08:02","slug":"bsi-pd-cen-clc-tr-17603-31-132021-3","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bsi-pd-cen-clc-tr-17603-31-132021-3\/","title":{"rendered":"BSI PD CEN\/CLC\/TR 17603-31-13:2021"},"content":{"rendered":"

Fluid loops are used to control the temperature of sensitive components in spacecraft systems in order to ensure that they can function correctly.<\/p>\n

While there are several methods for thermal control (such as passive thermal insulations, thermoelectric devices, phase change materials, heat pipes and short-term discharge systems), fluid loops have a specific application area.<\/p>\n

This Part 13 provides a detailed description of fluid loop systems for use in spacecraft.<\/p>\n

The Thermal design handbook is published in 16 Parts<\/p>\n

TR 17603-31-01 Thermal design handbook \u2013 Part 1: View factors<\/p>\n

TR 17603-31-02 Thermal design handbook \u2013 Part 2: Holes, Grooves and Cavities<\/p>\n

TR 17603-31-03 Thermal design handbook \u2013 Part 3: Spacecraft Surface Temperature<\/p>\n

TR 17603-31-04 Thermal design handbook \u2013 Part 4: Conductive Heat Transfer<\/p>\n

TR 17603-31-05 Thermal design handbook \u2013 Part 5: Structural Materials: Metallic and Composite<\/p>\n

TR 17603-31-06 Thermal design handbook \u2013 Part 6: Thermal Control Surfaces<\/p>\n

TR 17603-31-07 Thermal design handbook \u2013 Part 7: Insulations<\/p>\n

TR 17603-31-08 Thermal design handbook \u2013 Part 8: Heat Pipes<\/p>\n

TR 17603-31-09 Thermal design handbook \u2013 Part 9: Radiators<\/p>\n

TR 17603-31-10 Thermal design handbook \u2013 Part 10: Phase \u2013 Change Capacitors<\/p>\n

TR 17603-31-11 Thermal design handbook \u2013 Part 11: Electrical Heating<\/p>\n

TR 17603-31-12 Thermal design handbook \u2013 Part 12: Louvers<\/p>\n

TR 17603-31-13 Thermal design handbook \u2013 Part 13: Fluid Loops<\/p>\n

TR 17603-31-14 Thermal design handbook \u2013 Part 14: Cryogenic Cooling<\/p>\n

TR 17603-31-15 Thermal design handbook \u2013 Part 15: Existing Satellites<\/p>\n

TR 17603-31-16 Thermal design handbook \u2013 Part 16: Thermal Protection System<\/p>\n

PDF Catalog<\/h4>\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
PDF Pages<\/th>\nPDF Title<\/th>\n<\/tr>\n
2<\/td>\nundefined <\/td>\n<\/tr>\n
32<\/td>\n1 Scope <\/td>\n<\/tr>\n
33<\/td>\n2 References <\/td>\n<\/tr>\n
34<\/td>\n3 Terms, definitions and symbols
3.1 Terms and definitions
3.2 Abbreviated terms <\/td>\n<\/tr>\n
36<\/td>\n3.3 Symbols <\/td>\n<\/tr>\n
48<\/td>\n4 General introduction <\/td>\n<\/tr>\n
49<\/td>\n4.1 Fluid loops <\/td>\n<\/tr>\n
50<\/td>\n4.2 Comparison between fluid loops and alternative systems
4.2.1 Passive thermal insulations
4.2.2 Thermoelectric devices <\/td>\n<\/tr>\n
51<\/td>\n4.2.3 Phase change materials (pcm) <\/td>\n<\/tr>\n
52<\/td>\n4.2.4 Heat pipes
4.2.5 Short-term discharge systems <\/td>\n<\/tr>\n
54<\/td>\n5 Analysis of a fluid loop
5.1 General <\/td>\n<\/tr>\n
55<\/td>\n5.2 Thermal performance <\/td>\n<\/tr>\n
58<\/td>\n5.3 Power requirements <\/td>\n<\/tr>\n
60<\/td>\n6 Thermal analysis
6.1 General
6.2 Analytical background
6.2.1 Heat transfer coefficient <\/td>\n<\/tr>\n
62<\/td>\n6.2.2 Dimensionless groups <\/td>\n<\/tr>\n
63<\/td>\n6.2.3 Simplifying assumptions
6.2.4 Temperature-dependence of fluid properties <\/td>\n<\/tr>\n
65<\/td>\n6.2.5 Laminar versus turbulent fluid flow
6.2.6 Heat transfer to internal flows <\/td>\n<\/tr>\n
67<\/td>\n6.2.7 Heat transfer to external flows <\/td>\n<\/tr>\n
69<\/td>\n6.3 Thermal performance data
6.3.1 Heat transfer to internal flow <\/td>\n<\/tr>\n
71<\/td>\n6.3.1.1 Laminar flow <\/td>\n<\/tr>\n
77<\/td>\n6.3.1.2 Transitional flow <\/td>\n<\/tr>\n
78<\/td>\n6.3.1.3 Turbulent flow <\/td>\n<\/tr>\n
85<\/td>\n6.3.2 Heat transfer to external flows <\/td>\n<\/tr>\n
86<\/td>\n6.3.2.1 Cylindrical bodies <\/td>\n<\/tr>\n
88<\/td>\n6.3.2.2 Tube banks <\/td>\n<\/tr>\n
94<\/td>\n7 Frictional analysis
7.1 General
7.2 Analytical background
7.2.1 Introduction <\/td>\n<\/tr>\n
95<\/td>\n7.2.2 Fully developed flow in straight pipes <\/td>\n<\/tr>\n
99<\/td>\n7.2.2.1 Power-law approximations for the hydraulically smooth regime
7.2.3 Temperature-dependence of fluid properties <\/td>\n<\/tr>\n
100<\/td>\n7.2.4 Several definitions of pressure loss coefficient <\/td>\n<\/tr>\n
102<\/td>\n7.2.5 Entrance effects <\/td>\n<\/tr>\n
103<\/td>\n7.2.6 Interferences and networks <\/td>\n<\/tr>\n
104<\/td>\n7.2.7 Flow chart <\/td>\n<\/tr>\n
107<\/td>\n7.3 Pressure loss data
7.3.1 Straight pipes <\/td>\n<\/tr>\n
108<\/td>\n7.3.2 Bends <\/td>\n<\/tr>\n
115<\/td>\n7.3.3 Sudden changes of area <\/td>\n<\/tr>\n
118<\/td>\n7.3.4 Orifices and diaphragms <\/td>\n<\/tr>\n
121<\/td>\n7.3.5 Screens <\/td>\n<\/tr>\n
122<\/td>\n7.3.6 Valves <\/td>\n<\/tr>\n
123<\/td>\n7.3.7 Tube banks <\/td>\n<\/tr>\n
126<\/td>\n7.3.8 Branching of tubes <\/td>\n<\/tr>\n
127<\/td>\n8 Combined thermal and frictional analysis
8.1 General
8.2 Analogies between momentum and heat transfer
8.2.1 The Reynolds analogy <\/td>\n<\/tr>\n
130<\/td>\n8.2.2 The Prandtl analogy <\/td>\n<\/tr>\n
131<\/td>\n8.2.3 The Von Karman analogy
8.2.4 Other analogies <\/td>\n<\/tr>\n
132<\/td>\n9 Heat transfer enhancement
9.1 General <\/td>\n<\/tr>\n
133<\/td>\n9.1.1 Basic augmentation mechanisms <\/td>\n<\/tr>\n
134<\/td>\n9.1.2 Criterion for the evaluation of the several techniques <\/td>\n<\/tr>\n
135<\/td>\n9.1.3 Index of the compiled data.
9.1.4 Validity of the empirical correlations <\/td>\n<\/tr>\n
138<\/td>\n9.2 Single-phase forced convection data <\/td>\n<\/tr>\n
172<\/td>\n10 Working fluids
10.1 General
10.2 Cooling effectiveness of a fluid <\/td>\n<\/tr>\n
174<\/td>\n10.2.1 Simplified fluid loop configuration
10.2.2 Thermal performance of the simplified loop <\/td>\n<\/tr>\n
175<\/td>\n10.2.3 Power requirements of the simplified loop
10.2.4 Several examples <\/td>\n<\/tr>\n
180<\/td>\n10.3 Properties of liquid coolants <\/td>\n<\/tr>\n
214<\/td>\n10.4 Properties of dry air <\/td>\n<\/tr>\n
216<\/td>\n11 Heat exchangers
11.1 General <\/td>\n<\/tr>\n
219<\/td>\n11.2 Basic analysis
11.2.1 Introduction <\/td>\n<\/tr>\n
220<\/td>\n11.2.2 Analytical background <\/td>\n<\/tr>\n
223<\/td>\n11.2.3 Exchanger performance <\/td>\n<\/tr>\n
238<\/td>\n11.3 Exchanging surface geometries <\/td>\n<\/tr>\n
239<\/td>\n11.3.1 Tubular surfaces <\/td>\n<\/tr>\n
242<\/td>\n11.3.2 Plate-fin surfaces <\/td>\n<\/tr>\n
248<\/td>\n11.3.3 Finned tubes <\/td>\n<\/tr>\n
250<\/td>\n11.3.4 Matrix surfaces <\/td>\n<\/tr>\n
251<\/td>\n11.4 Deviations from basic analysis
11.4.1 Introduction <\/td>\n<\/tr>\n
252<\/td>\n11.4.2 Longitudinal heat conduction <\/td>\n<\/tr>\n
255<\/td>\n11.4.3 Flow maldistribution
11.4.3.1 Simple analyses <\/td>\n<\/tr>\n
260<\/td>\n11.4.3.2 Maldistribution compensating techniques in shell-and-tube heat exchangers <\/td>\n<\/tr>\n
264<\/td>\n11.4.3.3 Maldistribution compensating techniques in parallel counterflow heat exchangers <\/td>\n<\/tr>\n
265<\/td>\n11.5 Manufacturing defects
11.5.1 Introduction
11.5.2 Variations of the flow passages <\/td>\n<\/tr>\n
269<\/td>\n11.5.3 Fin leading edge imperfections
11.5.4 Brazing <\/td>\n<\/tr>\n
273<\/td>\n11.6 In service degradation
11.6.1 Introduction
11.6.2 Fouling <\/td>\n<\/tr>\n
276<\/td>\n11.7 Existing systems <\/td>\n<\/tr>\n
285<\/td>\n12 Pumps
12.1 General <\/td>\n<\/tr>\n
289<\/td>\n12.2 Specified speed <\/td>\n<\/tr>\n
291<\/td>\n12.3 Net suction energy <\/td>\n<\/tr>\n
292<\/td>\n12.4 Requirements for spaceborne pumps <\/td>\n<\/tr>\n
293<\/td>\n12.5 Commercially available pumps <\/td>\n<\/tr>\n
299<\/td>\n12.6 European pump manufacturers <\/td>\n<\/tr>\n
300<\/td>\n13 System optimization
13.1 General
13.2 Basic analysis <\/td>\n<\/tr>\n
301<\/td>\n13.2.1 Interface heat exchanger <\/td>\n<\/tr>\n
302<\/td>\n13.2.2 Supply and return plumbing <\/td>\n<\/tr>\n
303<\/td>\n13.2.3 Radiator
13.3 Special examples <\/td>\n<\/tr>\n
304<\/td>\n13.3.1 Constraints based on source temperature <\/td>\n<\/tr>\n
307<\/td>\n13.3.2 Constraints imposed by the integration <\/td>\n<\/tr>\n
311<\/td>\n14 Two-phase flow
14.1 General <\/td>\n<\/tr>\n
313<\/td>\n14.2 Pressure loss
14.2.1 Lockhart-martinelli correlation <\/td>\n<\/tr>\n
318<\/td>\n14.2.2 Improvements upon martinelli correlation <\/td>\n<\/tr>\n
319<\/td>\n14.3 Annular flow <\/td>\n<\/tr>\n
320<\/td>\n14.3.1 Ideal annular flow model
14.3.1.1 Mass preservation equation for either phase
14.3.1.2 Axial momentum equation for either phase <\/td>\n<\/tr>\n
321<\/td>\n14.3.1.3 Pressure loss vs. friction factors fl and fgi <\/td>\n<\/tr>\n
322<\/td>\n14.3.1.4 Laws of friction for fl and fgi <\/td>\n<\/tr>\n
324<\/td>\n14.3.1.5 Expressions in terms of martinelli parameters <\/td>\n<\/tr>\n
326<\/td>\n14.3.1.6 Summary <\/td>\n<\/tr>\n
328<\/td>\n14.3.1.7 Worked example <\/td>\n<\/tr>\n
329<\/td>\n14.3.2 Annular flow with entrainment model
14.3.2.1 Mass preservation equation for either phase <\/td>\n<\/tr>\n
330<\/td>\n14.3.2.2 Axial momentum equation for either phase
14.3.2.3 Pressure loss vs. friction factors ffand fgi <\/td>\n<\/tr>\n
331<\/td>\n14.3.2.4 Laws of friction for ff and fgi* <\/td>\n<\/tr>\n
332<\/td>\n14.3.2.5 Expressions in terms of martinelli parameters <\/td>\n<\/tr>\n
334<\/td>\n14.3.2.6 Additional data on entrainment <\/td>\n<\/tr>\n
335<\/td>\n14.3.2.7 Summary <\/td>\n<\/tr>\n
337<\/td>\n14.3.2.8 Worked example <\/td>\n<\/tr>\n
341<\/td>\n14.3.2.9 The ideal annular and the annular with entrainment models <\/td>\n<\/tr>\n
343<\/td>\n14.4 Condensation in ducts
14.4.1 Condensing flow model <\/td>\n<\/tr>\n
345<\/td>\n14.4.1.2 Static pressure loss <\/td>\n<\/tr>\n
346<\/td>\n14.4.1.3 Friction terms <\/td>\n<\/tr>\n
347<\/td>\n14.4.1.4 Momentum equation <\/td>\n<\/tr>\n
348<\/td>\n14.4.1.5 Dimensionless energy equation <\/td>\n<\/tr>\n
349<\/td>\n14.4.2 Variation of the vapor quality along the duct in the stratified model <\/td>\n<\/tr>\n
351<\/td>\n14.4.3 Limits of validity of the stratified model <\/td>\n<\/tr>\n
352<\/td>\n14.4.4 Annular flow model <\/td>\n<\/tr>\n
353<\/td>\n14.4.4.1 Heat transfer coefficient in annular flow <\/td>\n<\/tr>\n
356<\/td>\n14.4.5 Variation of the vapor quality along the duct in the annular model <\/td>\n<\/tr>\n
359<\/td>\n15 Two-phase thermal transport systems
15.1 General
15.1.1 Evolution of thermal transport systems <\/td>\n<\/tr>\n
360<\/td>\n15.1.2 Two-phase loop general layout <\/td>\n<\/tr>\n
363<\/td>\n15.1.3 About the nomenclature of this clause
15.2 Tms trade-off study <\/td>\n<\/tr>\n
366<\/td>\n15.2.1 TMS study baseline
15.2.2 TMS design concepts <\/td>\n<\/tr>\n
369<\/td>\n15.2.3 Evaluation of tms concepts <\/td>\n<\/tr>\n
372<\/td>\n15.3 Design for orbital average load
15.3.1 Phase change capacitor performance <\/td>\n<\/tr>\n
378<\/td>\n15.4 Off-design operation <\/td>\n<\/tr>\n
380<\/td>\n15.4.1 Temperature control
15.4.1.1 Pumped liquid loop system <\/td>\n<\/tr>\n
382<\/td>\n15.4.1.2 Two-phase transport system <\/td>\n<\/tr>\n
383<\/td>\n15.4.2 Instrumentation requirements <\/td>\n<\/tr>\n
384<\/td>\n15.5 Radiator-loop interaction <\/td>\n<\/tr>\n
385<\/td>\n15.5.1 Boosting radiator temperature with a heat pump <\/td>\n<\/tr>\n
390<\/td>\n15.5.2 Thermal-storage assisted radiator <\/td>\n<\/tr>\n
392<\/td>\n15.5.2.1 Coating degradation and radiator life <\/td>\n<\/tr>\n
393<\/td>\n15.5.3 Steerable radiators <\/td>\n<\/tr>\n
395<\/td>\n15.5.3.1 Rotary thermal couplings <\/td>\n<\/tr>\n
402<\/td>\n15.5.3.2 Rotatable fluid transfer coupling <\/td>\n<\/tr>\n
404<\/td>\n15.5.4 Radiators coupling <\/td>\n<\/tr>\n
406<\/td>\n15.6 Capillary pumped loop (cpl) technology <\/td>\n<\/tr>\n
410<\/td>\n15.6.1 Advantages of cpl systems
15.6.2 CPL performance constraints
15.6.3 CPL basic system concept <\/td>\n<\/tr>\n
411<\/td>\n15.6.3.1 Heat acquisition <\/td>\n<\/tr>\n
412<\/td>\n15.6.3.2 Heat transport
15.6.3.3 Heat rejection <\/td>\n<\/tr>\n
413<\/td>\n15.6.3.4 Controls
15.7 Components
15.7.1 Pumping systems
15.7.1.1 Monogroove heat pipe <\/td>\n<\/tr>\n
414<\/td>\n15.7.1.2 Capillary pump
15.7.1.3 Vapour compressor
15.7.1.4 Mechanical pump
15.7.1.5 Osmotic pump <\/td>\n<\/tr>\n
415<\/td>\n15.7.1.6 Biomorph pump <\/td>\n<\/tr>\n
416<\/td>\n15.7.2 Mounting plates <\/td>\n<\/tr>\n
418<\/td>\n15.7.3 Vapour quality sensors <\/td>\n<\/tr>\n
419<\/td>\n15.7.3.2 Capacitance methods <\/td>\n<\/tr>\n
422<\/td>\n15.7.4 Fluid disconnects <\/td>\n<\/tr>\n
424<\/td>\n16 Control technology
16.1 Basic definitions <\/td>\n<\/tr>\n
425<\/td>\n16.2 General description of control systems
16.2.1 Introduction <\/td>\n<\/tr>\n
426<\/td>\n16.2.2 Closed-loop control systems
16.2.3 Open-loop control system <\/td>\n<\/tr>\n
427<\/td>\n16.2.4 Adaptative control systems <\/td>\n<\/tr>\n
428<\/td>\n16.2.5 Learning control system
16.2.6 Trade-off of open- and closed-loop control systems <\/td>\n<\/tr>\n
429<\/td>\n16.2.6.1 Effect of feedback on overall gain
16.2.6.2 Effect of feedback on stability <\/td>\n<\/tr>\n
430<\/td>\n16.2.6.3 Effect of feedback on sensitivity <\/td>\n<\/tr>\n
431<\/td>\n16.2.6.4 Effect of feedback on external disturbance or noise <\/td>\n<\/tr>\n
433<\/td>\n16.3 Basic control actions
16.3.1 Introduction <\/td>\n<\/tr>\n
434<\/td>\n16.3.2 Two-position or on-off control action <\/td>\n<\/tr>\n
435<\/td>\n16.3.3 Proportional control action (p controller) <\/td>\n<\/tr>\n
436<\/td>\n16.3.4 Integral control action (i controller). <\/td>\n<\/tr>\n
437<\/td>\n16.3.5 Proportional-integral control action (pi controller) <\/td>\n<\/tr>\n
438<\/td>\n16.3.6 Proportional-derivative control action (pd controller) <\/td>\n<\/tr>\n
439<\/td>\n16.3.7 Proportional-integral-derivative control action (pid controller) <\/td>\n<\/tr>\n
440<\/td>\n16.3.8 Summary <\/td>\n<\/tr>\n
441<\/td>\n16.4 Implementation techniques of control laws
16.4.1 Introduction
16.4.1.1 Digital control systems <\/td>\n<\/tr>\n
443<\/td>\n16.4.1.2 Analog controllers
16.4.2 Devices characterization
16.4.2.1 Pressure systems <\/td>\n<\/tr>\n
444<\/td>\n16.4.2.2 Valves <\/td>\n<\/tr>\n
445<\/td>\n16.4.2.3 Dashpots <\/td>\n<\/tr>\n
447<\/td>\n16.4.3 Analog-controller implementation techniques <\/td>\n<\/tr>\n
448<\/td>\n16.4.3.1 Proportional control actions <\/td>\n<\/tr>\n
450<\/td>\n16.4.3.2 Proportional-derivative control actions <\/td>\n<\/tr>\n
453<\/td>\n16.4.3.3 Integral control actions <\/td>\n<\/tr>\n
454<\/td>\n16.4.3.4 Proportional-integral control actions <\/td>\n<\/tr>\n
457<\/td>\n16.4.3.5 Proportional-integral-derivative control actions <\/td>\n<\/tr>\n
458<\/td>\n16.4.4 Summary <\/td>\n<\/tr>\n
460<\/td>\n16.5 Hardware description
16.5.1 Introduction <\/td>\n<\/tr>\n
462<\/td>\n16.5.2 Controllers
16.5.2.1 Digital\/analog controllers trade\/off <\/td>\n<\/tr>\n
464<\/td>\n16.5.2.2 Digital controllers <\/td>\n<\/tr>\n
467<\/td>\n16.5.3 Sensors
16.5.3.1 Effects of the sensor on system performance <\/td>\n<\/tr>\n
468<\/td>\n16.5.3.2 Temperature sensors <\/td>\n<\/tr>\n
469<\/td>\n16.5.3.3 Pressure sensor
16.5.3.4 Flow sensors <\/td>\n<\/tr>\n
470<\/td>\n16.5.4 Actuators. Control valves <\/td>\n<\/tr>\n
471<\/td>\n16.6 Control software <\/td>\n<\/tr>\n
474<\/td>\n16.7 Existing systems
16.7.1 Space radiator system
16.7.1.1 General description <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":"

Space Engineering. Thermal design handbook – Fluid Loops<\/b><\/p>\n\n\n\n\n
Published By<\/td>\nPublication Date<\/td>\nNumber of Pages<\/td>\n<\/tr>\n
BSI<\/b><\/a><\/td>\n2021<\/td>\n490<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n","protected":false},"featured_media":425623,"template":"","meta":{"rank_math_lock_modified_date":false,"ep_exclude_from_search":false},"product_cat":[2641],"product_tag":[],"class_list":{"0":"post-425613","1":"product","2":"type-product","3":"status-publish","4":"has-post-thumbnail","6":"product_cat-bsi","8":"first","9":"instock","10":"sold-individually","11":"shipping-taxable","12":"purchasable","13":"product-type-simple"},"_links":{"self":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product\/425613","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product"}],"about":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/types\/product"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media\/425623"}],"wp:attachment":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media?parent=425613"}],"wp:term":[{"taxonomy":"product_cat","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_cat?post=425613"},{"taxonomy":"product_tag","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_tag?post=425613"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}