{"id":434991,"date":"2024-10-20T07:47:10","date_gmt":"2024-10-20T07:47:10","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bs-en-iec-62439-32022-tc-2023\/"},"modified":"2024-10-26T14:45:51","modified_gmt":"2024-10-26T14:45:51","slug":"bs-en-iec-62439-32022-tc-2023","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bs-en-iec-62439-32022-tc-2023\/","title":{"rendered":"BS EN IEC 62439-3:2022 – TC 2023"},"content":{"rendered":"
1.1 General The IEC 62439 series is applicable to high-availability automation networks based on the Ethernet technology. This document: – specifies PRP and HSR as two related redundancy protocols designed to provide seamless recovery in case of single failure of an inter-bridge link or bridge in the network, which are based on the same scheme: parallel transmission of duplicated information; – specifies the operation of the precision time protocol (PTP) in networks that implement the two redundancy protocols (Annex A); – specifies PTP profiles with performance suitable for power utilty automation (Annex B) and industrial automation (Annex C); – includes for better understanding a tutorial (Annex D) on the PTP features effectively used in high-availability automation networks; – includes a management information base for PTP (Annex E); – defines a conformance test suite for the above protocols (Annex F). 1.2 Code component distribution This document is associated with Code components. Each Code Component is a ZIP package containing at least the electronic representation of the Code Component itself and a file describing the content of the package (IECManifest.xml). The IECManifest contains different sections giving information on: – the copyright notice; – the identification of the code component; – the publication related to the code component; – the list of the electronic files which compose the code component; – an optional list of history files to track changes during the evolution process of the code component. The Code Components associated with this IEC standard are a set of SNMP MIBs. The Code Component IEC-62439-3-MIB.mib is a file containing the MIBs for PRP\/HSR and PTP_SNMP. It is available in a full version, which contains the MIBs defined in this document with the documentation associated and access is restricted to purchaser of this document. The Code Components are freely accessible on the IEC website for download at: https:\/\/www.iec.ch\/sc65c\/supportingdocuments\/IEC_62439-3.MIB.{VersionStateInfo}.full.zip but the usage remains under the licensing conditions.<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
1<\/td>\n | 30459122 30459122-1-250 <\/td>\n<\/tr>\n | ||||||
265<\/td>\n | 251-364 <\/td>\n<\/tr>\n | ||||||
379<\/td>\n | A-30389552 <\/td>\n<\/tr>\n | ||||||
380<\/td>\n | undefined <\/td>\n<\/tr>\n | ||||||
383<\/td>\n | Annex ZA (normative)Normative references to international publicationswith their corresponding European publications <\/td>\n<\/tr>\n | ||||||
385<\/td>\n | English CONTENTS <\/td>\n<\/tr>\n | ||||||
393<\/td>\n | FOREWORD <\/td>\n<\/tr>\n | ||||||
396<\/td>\n | INTRODUCTION <\/td>\n<\/tr>\n | ||||||
398<\/td>\n | 1 Scope 1.1 General 1.2 Code component distribution <\/td>\n<\/tr>\n | ||||||
399<\/td>\n | 2 Normative references <\/td>\n<\/tr>\n | ||||||
400<\/td>\n | 3 Terms, definitions, abbreviated terms, and conventions 3.1 Terms and definitions <\/td>\n<\/tr>\n | ||||||
402<\/td>\n | 3.2 Abbreviated terms <\/td>\n<\/tr>\n | ||||||
403<\/td>\n | 3.3 Conventions 4 Parallel Redundancy Protocol (PRP) 4.1 PRP principle of operation 4.1.1 PRP network topology <\/td>\n<\/tr>\n | ||||||
404<\/td>\n | Figures Figure 1 \u2013 PRP example of general duplicated network <\/td>\n<\/tr>\n | ||||||
405<\/td>\n | 4.1.2 PRP LANs with linear or bus topology 4.1.3 PRP LANs with ring topology Figure 2 \u2013 PRP example of duplicated network in bus topology <\/td>\n<\/tr>\n | ||||||
406<\/td>\n | 4.1.4 DANP node structure Figure 3 \u2013 PRP example of redundant ring with SANs and DANPs <\/td>\n<\/tr>\n | ||||||
407<\/td>\n | 4.1.5 PRP attachment of singly attached nodes Figure 4 \u2013 PRP with two DANPs communicating <\/td>\n<\/tr>\n | ||||||
408<\/td>\n | 4.1.6 Compatibility between singly and doubly attached nodes 4.1.7 Network management 4.1.8 Implication on application <\/td>\n<\/tr>\n | ||||||
409<\/td>\n | 4.1.9 Transition to a single-thread network 4.1.10 Duplicate handling Figure 5 \u2013 PRP RedBox, transition from single to double LAN <\/td>\n<\/tr>\n | ||||||
410<\/td>\n | Figure 6 \u2013 PRP frame closed by an RCT <\/td>\n<\/tr>\n | ||||||
411<\/td>\n | Figure 7 \u2013 PRP VLAN-tagged frame closed by an RCT Figure 8 \u2013 PRP padded frame closed by an RCT <\/td>\n<\/tr>\n | ||||||
413<\/td>\n | Figure 9 \u2013 Duplicate Discard algorithm boundaries Tables Table 1 \u2013 Duplicate discard cases <\/td>\n<\/tr>\n | ||||||
414<\/td>\n | 4.1.11 Network supervision 4.1.12 Redundancy management interface <\/td>\n<\/tr>\n | ||||||
415<\/td>\n | 4.2 PRP protocol specifications 4.2.1 Installation, configuration and repair guidelines 4.2.2 Unicast MAC addresses 4.2.3 Multicast MAC addresses <\/td>\n<\/tr>\n | ||||||
416<\/td>\n | 4.2.4 IP addresses 4.2.5 Node specifications 4.2.6 Duplicate Accept mode (testing only) <\/td>\n<\/tr>\n | ||||||
417<\/td>\n | 4.2.7 Duplicate Discard mode Table 2 \u2013 Monitoring data set <\/td>\n<\/tr>\n | ||||||
418<\/td>\n | Table 3 \u2013 NodesTable attributes <\/td>\n<\/tr>\n | ||||||
421<\/td>\n | 4.3 PRP_Supervision frame 4.3.1 PRP_Supervision frame format <\/td>\n<\/tr>\n | ||||||
422<\/td>\n | Table 4 \u2013 PRP_Supervision frame with no VLAN tag <\/td>\n<\/tr>\n | ||||||
423<\/td>\n | 4.3.2 PRP_Supervision frame contents Table 5 \u2013 PRP_Supervision frame with (optional) VLAN tag <\/td>\n<\/tr>\n | ||||||
424<\/td>\n | 4.3.3 PRP_Supervision frame for RedBox 4.3.4 Bridging node (deprecated) Table 6 \u2013 PRP_Supervision frame contents Table 7 \u2013 PRP_Supervision TLV for Redbox <\/td>\n<\/tr>\n | ||||||
425<\/td>\n | 4.4 Constants 4.5 PRP layer management entity (LME) 5 High-availability Seamless Redundancy (HSR) 5.1 HSR objectives Table 8 \u2013 PRP constants <\/td>\n<\/tr>\n | ||||||
426<\/td>\n | 5.2 HSR principle of operation 5.2.1 Basic operation with a ring topology Figure 10 \u2013 HSR example of ring traffic for multicast frames <\/td>\n<\/tr>\n | ||||||
427<\/td>\n | Figure 11 \u2013 HSR example of ring traffic for unicast frames <\/td>\n<\/tr>\n | ||||||
428<\/td>\n | 5.2.2 HSR connection to other networks <\/td>\n<\/tr>\n | ||||||
430<\/td>\n | Figure 12 \u2013 HSR example of coupling two redundant PRP LANs to a ring (unicast) <\/td>\n<\/tr>\n | ||||||
432<\/td>\n | Figure 13 \u2013 HSR example of coupling from a ring node to PRP LANs (multicast) <\/td>\n<\/tr>\n | ||||||
433<\/td>\n | Figure 14 \u2013 HSR example of coupling from a ring to two PRP LANs (multicast) <\/td>\n<\/tr>\n | ||||||
434<\/td>\n | Figure 15 \u2013 HSR example of coupling three rings to one PRP LAN <\/td>\n<\/tr>\n | ||||||
435<\/td>\n | Figure 16 \u2013 HSR example of peer coupling of two rings <\/td>\n<\/tr>\n | ||||||
436<\/td>\n | Figure 17 \u2013 HSR example of connected rings <\/td>\n<\/tr>\n | ||||||
437<\/td>\n | Figure 18 \u2013 HSR example of meshed topology <\/td>\n<\/tr>\n | ||||||
438<\/td>\n | Figure 19 \u2013 HSR example of topology using two independent networks <\/td>\n<\/tr>\n | ||||||
439<\/td>\n | Figure 20 \u2013 HSR example of coupling an RSTP LAN to HSR by two bridges <\/td>\n<\/tr>\n | ||||||
440<\/td>\n | 5.2.3 DANH node structure Figure 21 \u2013 HSR structure of a DANH <\/td>\n<\/tr>\n | ||||||
441<\/td>\n | 5.2.4 RedBox structure Figure 22 \u2013 HSR structure of a RedBox <\/td>\n<\/tr>\n | ||||||
442<\/td>\n | 5.3 HSR protocol specifications 5.3.1 HSR layout 5.3.2 HSR operation <\/td>\n<\/tr>\n | ||||||
444<\/td>\n | 5.3.3 DANH sending from its link layer interface <\/td>\n<\/tr>\n | ||||||
445<\/td>\n | 5.3.4 DANH receiving from an HSR port 5.3.5 DANH forwarding rules <\/td>\n<\/tr>\n | ||||||
447<\/td>\n | 5.3.6 HSR Class of Service 5.3.7 HSR clock synchronization 5.3.8 Deterministic transmission delay and jitter 5.4 HSR RedBox specifications 5.4.1 RedBox properties <\/td>\n<\/tr>\n | ||||||
448<\/td>\n | 5.4.2 RedBox receiving from port C (interlink) <\/td>\n<\/tr>\n | ||||||
450<\/td>\n | 5.4.3 RedBox receiving from port A or port B (HSR ring) <\/td>\n<\/tr>\n | ||||||
452<\/td>\n | 5.4.4 RedBox receiving from its link layer interface (local) 5.4.5 Redbox ProxyNodeTable handling 5.4.6 RedBox CoS 5.4.7 RedBox clock synchronization 5.4.8 RedBox medium access <\/td>\n<\/tr>\n | ||||||
453<\/td>\n | 5.5 QuadBox specification 5.6 Duplicate Discard method 5.7 Frame format for HSR 5.7.1 Frame format for all frames Figure 23 \u2013 HSR frame without a VLAN tag <\/td>\n<\/tr>\n | ||||||
454<\/td>\n | 5.7.2 HSR_Supervision frame Figure 24 \u2013 HSR frame with VLAN tag <\/td>\n<\/tr>\n | ||||||
455<\/td>\n | Table 9 \u2013 HSR_Supervision frame with no VLAN tag <\/td>\n<\/tr>\n | ||||||
456<\/td>\n | Table 10 \u2013 HSR_Supervision frame with optional VLAN tag <\/td>\n<\/tr>\n | ||||||
457<\/td>\n | 5.8 HSR constants <\/td>\n<\/tr>\n | ||||||
458<\/td>\n | 5.9 HSR layer management entity (LME) Table 11 \u2013 HSR Constants <\/td>\n<\/tr>\n | ||||||
459<\/td>\n | Figure 25 \u2013 HSR node with management counters <\/td>\n<\/tr>\n | ||||||
460<\/td>\n | 6 Protocol Implementation Conformance Statement (PICS) Figure 26 \u2013 HSR RedBox with management counters <\/td>\n<\/tr>\n | ||||||
461<\/td>\n | Table 12 \u2013 PICS <\/td>\n<\/tr>\n | ||||||
462<\/td>\n | 7 PRP\/HSR Management Information Base (MIB) <\/td>\n<\/tr>\n | ||||||
477<\/td>\n | Annex A (normative)Synchronization of clocks over redundant paths A.1 Overview A.2 PRP mapping to PTP A.2.1 Particular operation of PRP for PTP messages <\/td>\n<\/tr>\n | ||||||
478<\/td>\n | Figure A.1 \u2013 Connection of a DAC master to a DAC slave over PRP <\/td>\n<\/tr>\n | ||||||
479<\/td>\n | A.2.2 Scenarios and device roles <\/td>\n<\/tr>\n | ||||||
480<\/td>\n | Figure A.2 \u2013 Elements of PRP time distribution networks <\/td>\n<\/tr>\n | ||||||
481<\/td>\n | A.2.3 Attachment to redundant LANs by a BC A.2.4 Attachment to redundant LANs by doubly attached clocks Figure A.3 \u2013 Doubly Attached Clock as BC (OC3A is best master) <\/td>\n<\/tr>\n | ||||||
483<\/td>\n | Figure A.4 \u2013 Doubly Attached Clocks OC1 and OC2 <\/td>\n<\/tr>\n | ||||||
485<\/td>\n | A.2.5 Specifications of DANP as DAC Figure A.5 \u2013 Doubly attached clocks when OC1 has the same identity on both LANs <\/td>\n<\/tr>\n | ||||||
486<\/td>\n | A.2.6 PRP-SAN RedBoxes for PTP <\/td>\n<\/tr>\n | ||||||
487<\/td>\n | Figure A.6 \u2013 PRP RedBox as TWBCs <\/td>\n<\/tr>\n | ||||||
488<\/td>\n | Figure A.7 \u2013 RedBox DABC clock model <\/td>\n<\/tr>\n | ||||||
490<\/td>\n | Figure A.8 \u2013 PRP RedBoxes as DABC with E2E \u2013 message flow <\/td>\n<\/tr>\n | ||||||
491<\/td>\n | Figure A.9 \u2013 PRP RedBoxes as DABC with E2E \u2013 timing <\/td>\n<\/tr>\n | ||||||
492<\/td>\n | Figure A.10 \u2013 PRP RedBoxes as DABC with P2P on PRP \u2013 message flow <\/td>\n<\/tr>\n | ||||||
493<\/td>\n | Figure A.11 \u2013 PRP RedBoxes as DABC with P2P on PRP \u2013 timing <\/td>\n<\/tr>\n | ||||||
495<\/td>\n | Figure A.12 \u2013 PRP-SAN RedBox as SLTC with E2E \u2013 message flow <\/td>\n<\/tr>\n | ||||||
497<\/td>\n | Figure A.13 \u2013 PRP RedBox as SLTC with E2E \u2013 timing <\/td>\n<\/tr>\n | ||||||
498<\/td>\n | Figure A.14 \u2013 PRP RedBox as SLTC with P2P \u2013 message flow <\/td>\n<\/tr>\n | ||||||
499<\/td>\n | Figure A.15 \u2013 PRP RedBox as SLTC with P2P \u2013 timing diagram <\/td>\n<\/tr>\n | ||||||
502<\/td>\n | Figure A.16 \u2013 PRP RedBox as DATC with E2E \u2013 message flow <\/td>\n<\/tr>\n | ||||||
503<\/td>\n | Figure A.17 \u2013 PRP RedBox as DATC with E2E \u2013 timing <\/td>\n<\/tr>\n | ||||||
504<\/td>\n | Figure A.18 \u2013 PRP RedBox as DATC with P2P \u2013 message flow <\/td>\n<\/tr>\n | ||||||
505<\/td>\n | Figure A.19 \u2013 PRP RedBox as DATC with P2P \u2013 timing <\/td>\n<\/tr>\n | ||||||
506<\/td>\n | A.3 HSR Mapping to PTP A.3.1 HSR messages and other messages A.3.2 HSR operation with PTP messages <\/td>\n<\/tr>\n | ||||||
508<\/td>\n | A.3.3 HSR with redundant master clocks Figure A.20 \u2013 HSR with two GCs (GC1 is grandmaster, GC2 is back-up) <\/td>\n<\/tr>\n | ||||||
509<\/td>\n | A.3.4 HSR timing diagram for PTP messages Figure A.21 \u2013 PTP messages sent and received by an HSR node (1-step) <\/td>\n<\/tr>\n | ||||||
510<\/td>\n | A.3.5 HSR nodes specifications Figure A.22 \u2013 PTP messages sent and received by an HSR node (2-step) <\/td>\n<\/tr>\n | ||||||
512<\/td>\n | A.4 HSR RedBoxes for PTP A.4.1 HSR-SAN RedBox Figure A.23 \u2013 Attachment of a GC to an HSR ring through a RedBox as TC and BC <\/td>\n<\/tr>\n | ||||||
513<\/td>\n | A.4.2 HSR-PRP RedBox connection by BC <\/td>\n<\/tr>\n | ||||||
514<\/td>\n | Figure A.24 \u2013 PRP to HSR coupling by BCs <\/td>\n<\/tr>\n | ||||||
515<\/td>\n | A.4.3 HSR-PRP RedBox connection by TC <\/td>\n<\/tr>\n | ||||||
516<\/td>\n | Figure A.25 \u2013 PRP to HSR coupling by DATC and SLTC <\/td>\n<\/tr>\n | ||||||
517<\/td>\n | A.4.4 HSR to HSR connection by QuadBoxes Figure A.26 \u2013 HSR coupling to two PRP and one HSR network <\/td>\n<\/tr>\n | ||||||
518<\/td>\n | A.5 Doubly attached clock specification A.5.1 State machine <\/td>\n<\/tr>\n | ||||||
519<\/td>\n | Figure A.27 \u2013 Port states including transitions for redundant operation <\/td>\n<\/tr>\n | ||||||
520<\/td>\n | Table A.1 \u2013 States <\/td>\n<\/tr>\n | ||||||
521<\/td>\n | A.5.2 Supervision of the port Table A.2 \u2013 Transitions Table A.3 \u2013 Variables <\/td>\n<\/tr>\n | ||||||
522<\/td>\n | A.5.3 BMCA for paired ports Figure A.28 \u2013 BMCA for redundant masters <\/td>\n<\/tr>\n | ||||||
523<\/td>\n | A.5.4 Selection of the port state A.6 PTP datasets for high availability A.6.1 General A.6.2 Data types <\/td>\n<\/tr>\n | ||||||
524<\/td>\n | A.6.3 Datasets for OC or BC <\/td>\n<\/tr>\n | ||||||
532<\/td>\n | A.6.4 Datasets for TCs <\/td>\n<\/tr>\n | ||||||
533<\/td>\n | Annex B (normative)PTP profile for Power Utility Automation (PUP) \u2013Redundant clock attachment B.1 Application domain B.2 PTP profile specification B.3 Specifications B.4 Redundant clock attachment <\/td>\n<\/tr>\n | ||||||
534<\/td>\n | Annex C (normative)PTP industry profiles for high-availability automation networks C.1 Application domain C.2 PTP profile specification <\/td>\n<\/tr>\n | ||||||
535<\/td>\n | C.3 Clock types C.4 Protocol specification common C.4.1 Base protocol C.4.2 Version control <\/td>\n<\/tr>\n | ||||||
536<\/td>\n | C.4.3 Time scale C.4.4 BMCA C.4.5 Time correction mechanism C.4.6 Management C.4.7 1 PPS support C.4.8 Leap second transition C.4.9 Use of port number <\/td>\n<\/tr>\n | ||||||
537<\/td>\n | C.4.10 Time distribution security C.5 Protocol specification for L3E2E industry profile C.5.1 Base protocol C.5.2 Multicast address C.5.3 Delay calculation mechanism C.5.4 Sync message padding <\/td>\n<\/tr>\n | ||||||
538<\/td>\n | C.6 Protocol specification for L2P2P industry profile C.6.1 Base protocol C.6.2 Delay measurement mechanism C.6.3 Consideration of media converters C.7 Common timing requirements for L2P2P and L3E2E C.7.1 Measurement conditions C.7.2 Network time inaccuracy <\/td>\n<\/tr>\n | ||||||
539<\/td>\n | C.7.3 Response to time step changes C.7.4 Requirements for GCs Figure C.1 \u2013 Response to a time step <\/td>\n<\/tr>\n | ||||||
540<\/td>\n | Table C.1 \u2013 ClockClass <\/td>\n<\/tr>\n | ||||||
541<\/td>\n | C.7.5 Requirements for TCs C.7.6 Requirements for BCs <\/td>\n<\/tr>\n | ||||||
542<\/td>\n | Figure C.2 \u2013 States of a BC <\/td>\n<\/tr>\n | ||||||
544<\/td>\n | C.8 Requirements for media converters C.9 Requirements for links C.10 Network engineering <\/td>\n<\/tr>\n | ||||||
545<\/td>\n | C.11 Default settings <\/td>\n<\/tr>\n | ||||||
546<\/td>\n | C.12 Handling of doubly attached clocks Table C.2 \u2013 PTP attributes <\/td>\n<\/tr>\n | ||||||
547<\/td>\n | C.13 Protocol Implementation Conformance Statement (PICS) for PTP C.13.1 PICS conventions C.13.2 PICS for PTP Table C.3 \u2013 PICS for clocks <\/td>\n<\/tr>\n | ||||||
549<\/td>\n | C.14 Recommendations for time representation C.14.1 Usage of flags in TimePropertyDS <\/td>\n<\/tr>\n | ||||||
550<\/td>\n | C.14.2 UTC leap second transition <\/td>\n<\/tr>\n | ||||||
551<\/td>\n | C.14.3 ALTERNATE_TIME_OFFSET_INDICATOR_TLV Table C.4 \u2013 Transitions with an inserted leap second (UTC binary and C37.118) Table C.5 \u2013 Transitions with a removed leap second (UTC binary and C37.118) <\/td>\n<\/tr>\n | ||||||
553<\/td>\n | Table C.6 \u2013 ATOI transition to Pacific Summer Time (spring) Table C.7 \u2013 ATOI transitions to Pacific Standard Time (autumn) <\/td>\n<\/tr>\n | ||||||
554<\/td>\n | Table C.8 \u2013 Transitions with an inserted leap second in Pacific Standard Time Table C.9 \u2013 Transitions with a removed leap second in Pacific Standard Time <\/td>\n<\/tr>\n | ||||||
555<\/td>\n | Annex D (informative)Precision Time Protocol tutorial for the PTP Industrial profile D.1 Objective D.2 Precision and accuracy Figure D.1 \u2013 Time error as a probability distribution function <\/td>\n<\/tr>\n | ||||||
556<\/td>\n | D.3 PTP clock types <\/td>\n<\/tr>\n | ||||||
557<\/td>\n | Figure D.2 \u2013 PTP principle with GC, TC and OC <\/td>\n<\/tr>\n | ||||||
558<\/td>\n | D.4 PTP main options Figure D.3 \u2013 PTP elements <\/td>\n<\/tr>\n | ||||||
559<\/td>\n | D.5 Layer 2 and layer 3 communication D.6 1-step and 2-step correction D.6.1 Time correction in TCs Figure D.4 \u2013 Delays and time-stamping logic in TCs <\/td>\n<\/tr>\n | ||||||
560<\/td>\n | D.6.2 2-step to 1-step translation Figure D.5 \u2013 1-step and 2-step correction of a Sync message (peer-to-peer) <\/td>\n<\/tr>\n | ||||||
561<\/td>\n | Figure D.6 \u2013 Translation from 2-step to 1-step correction in TCs <\/td>\n<\/tr>\n | ||||||
562<\/td>\n | D.7 End-to-End link delay measurement D.7.1 General method D.7.2 End-to-end link delay measurement with 1-step clock correction Figure D.7 \u2013 Translation from 2-step to 1-step correction \u2013 message view <\/td>\n<\/tr>\n | ||||||
563<\/td>\n | D.7.3 End-to-end link delay measurement with 2-step clock correction Figure D.8 \u2013 End-to-end link delay measurement with 1-step correction <\/td>\n<\/tr>\n | ||||||
564<\/td>\n | D.7.4 End-to-end link delay calculation by Delay_Req \u2013 Delay_Resp D.7.5 Consideration of media converters in end-to-end delay calculation Figure D.9 \u2013 End-to-end delay measurement with 2-step correction <\/td>\n<\/tr>\n | ||||||
565<\/td>\n | D.8 Peer-to-peer link delay calculation D.8.1 Peer-to-peer link delay calculation with 1-step correction Figure D.10 \u2013 Peer-to-peer link delay measurement with 1-step correction <\/td>\n<\/tr>\n | ||||||
566<\/td>\n | D.8.2 Peer-to-peer link delay calculation with 2-step correction Figure D.11 \u2013 Peer-to-peer link delay measurement with 2-step correction <\/td>\n<\/tr>\n | ||||||
567<\/td>\n | D.8.3 Consideration of media converters in peer delay calculation <\/td>\n<\/tr>\n | ||||||
568<\/td>\n | Figure D.12 \u2013 Peer delay measurement and Sync message delay with media converter <\/td>\n<\/tr>\n | ||||||
569<\/td>\n | Annex E (normative)Management Information base for singly and doubly attached clocks <\/td>\n<\/tr>\n | ||||||
597<\/td>\n | Annex F (normative)Conformance testing for PRP and HSR and handlingof redundancy in PIP and PUP F.1 General F.2 PRP conformance test F.2.1 PRP test set-up <\/td>\n<\/tr>\n | ||||||
598<\/td>\n | F.2.2 PRP test components F.2.3 Test for documentation and labelling Figure F.1 \u2013 Test set-up for PRP <\/td>\n<\/tr>\n | ||||||
599<\/td>\n | F.2.4 Test for (unicast) IP addresses F.2.5 Test for configuration Table F.1 \u2013 Test for PRP documentation and labelling Table F.2 \u2013 Test for (unicast) IP addresses <\/td>\n<\/tr>\n | ||||||
600<\/td>\n | F.2.6 Test of DANP Table F.3 \u2013 Test for PRP configuration (Table 8) Table F.4 \u2013 Test for PRP supervision frames (Table 4 and Table 5) <\/td>\n<\/tr>\n | ||||||
602<\/td>\n | Table F.5 \u2013 Test for PRP tagging (4.1.10.2, 4.2.7.3) <\/td>\n<\/tr>\n | ||||||
603<\/td>\n | Table F.6 \u2013 Test of a DANP without a NodesTable Table F.7 \u2013 Test of a DANP with a NodesTable <\/td>\n<\/tr>\n | ||||||
604<\/td>\n | F.2.7 Test of PRP Redboxes Table F.8 \u2013 Test for discard over different ports <\/td>\n<\/tr>\n | ||||||
605<\/td>\n | Table F.9 \u2013 Test for PRP supervision frames (Table 4 and Table 5) Table F.10 \u2013 Test of RedBox for ProxyNodeTable <\/td>\n<\/tr>\n | ||||||
606<\/td>\n | F.2.8 Test for Management Table F.11 \u2013 Test of RedBox for forwarding <\/td>\n<\/tr>\n | ||||||
607<\/td>\n | Table F.12 \u2013 Test for DANP receive\/transmit counters <\/td>\n<\/tr>\n | ||||||
608<\/td>\n | F.2.9 Test of DANP or RedBox for processing of PTP frames Figure F.2 \u2013 Test set-up for PRP and PTP with L2P2P <\/td>\n<\/tr>\n | ||||||
610<\/td>\n | Table F.13 \u2013 Test procedure for processing of PTP frames <\/td>\n<\/tr>\n | ||||||
611<\/td>\n | Table F.14 \u2013 Test for processing of PTP frames <\/td>\n<\/tr>\n | ||||||
612<\/td>\n | Table F.15 \u2013 Test for processing of PTP frames <\/td>\n<\/tr>\n | ||||||
613<\/td>\n | F.3 HSR conformance test F.3.1 HSR test set-up Table F.16 \u2013 Test procedure for processing of PTP frames <\/td>\n<\/tr>\n | ||||||
614<\/td>\n | F.3.2 HSR test components F.3.3 Test for HSR documentation and labelling Figure F.3 \u2013 Test set-up for HSR (without PTP) <\/td>\n<\/tr>\n | ||||||
615<\/td>\n | F.3.4 Test of DANH or RedBox for IP addresses F.3.5 Test of DANH for configuration Table F.17 \u2013 Test for HSR documentation Table F.18 \u2013 Test for IP addresses <\/td>\n<\/tr>\n | ||||||
616<\/td>\n | F.3.6 Test of DANH Table F.19 \u2013 Test procedure for HSR configuration (Table 11) <\/td>\n<\/tr>\n | ||||||
617<\/td>\n | Table F.20 \u2013 Test for HSR supervision frames (Table 9 and Table 10) <\/td>\n<\/tr>\n | ||||||
618<\/td>\n | Table F.21 \u2013 Test for HSR tagging <\/td>\n<\/tr>\n | ||||||
619<\/td>\n | Table F.22 \u2013 Test of DANH for HSR Mode H multicast Table F.23 \u2013 Test of DANH for HSR Mode H unicast <\/td>\n<\/tr>\n | ||||||
620<\/td>\n | F.3.7 Test of HSR RedBoxes Table F.24 \u2013 Test of DANH for other modes than Mode H Table F.25 \u2013 Test of RedBox for HSR supervision frames (Table 9 and Table 10) <\/td>\n<\/tr>\n | ||||||
621<\/td>\n | Table F.26 \u2013 Test of RedBox for ProxyNodeTable Table F.27 \u2013 Test of RedBox for Mode H Unicast <\/td>\n<\/tr>\n | ||||||
622<\/td>\n | F.3.8 Test of DANH or RedBox for receive\/transmit counters Table F.28 \u2013 Test of DANH or RedBox for receive\/transmit counters <\/td>\n<\/tr>\n | ||||||
623<\/td>\n | F.3.9 Test of DANH or RedBox for processing of PTP frames in L2P2P Figure F.4 \u2013 Test set-up for HSR with L2P2P <\/td>\n<\/tr>\n | ||||||
624<\/td>\n | Table F.29 \u2013 Test for processing of PTP frames (slave) <\/td>\n<\/tr>\n | ||||||
625<\/td>\n | Table F.30 \u2013 Test for processing of PTP frames (master) <\/td>\n<\/tr>\n | ||||||
627<\/td>\n | Bibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" Tracked Changes. Industrial communication networks. High availability automation networks – Parallel Redundancy Protocol (PRP) and High-availability Seamless Redundancy (HSR)<\/b><\/p>\n |