{"id":439276,"date":"2024-10-20T08:08:10","date_gmt":"2024-10-20T08:08:10","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bsi-pd-6694-12011a12020-4\/"},"modified":"2024-10-26T15:14:47","modified_gmt":"2024-10-26T15:14:47","slug":"bsi-pd-6694-12011a12020-4","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bsi-pd-6694-12011a12020-4\/","title":{"rendered":"BSI PD 6694-1:2011+A1:2020"},"content":{"rendered":"
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
6<\/td>\n | Foreword <\/td>\n<\/tr>\n | ||||||
9<\/td>\n | 0 Introduction 1 Scope 2 Normative references <\/td>\n<\/tr>\n | ||||||
10<\/td>\n | 3 Terms, definitions, symbols and abbreviations 3.1 Terms and definitions <\/td>\n<\/tr>\n | ||||||
11<\/td>\n | 3.2 Symbols Table 1 \u2014 Latin letters <\/td>\n<\/tr>\n | ||||||
12<\/td>\n | Table 2 \u2014 Greek letters 3.3 Abbreviations Table 3 \u2014 Abbreviations 4 Basis of design 4.1 Geotechnical category 4.2 Design methods <\/td>\n<\/tr>\n | ||||||
13<\/td>\n | 4.3 Actions 4.4 Dispersion of vertical loads through the fill 4.5 The serviceability limit state 4.6 Treatment of permanent actions arising from a single source <\/td>\n<\/tr>\n | ||||||
14<\/td>\n | 4.7 Model factors on earth pressure coefficients <\/td>\n<\/tr>\n | ||||||
15<\/td>\n | 4.8 Constant volume (critical state) angles of shearing resistance 5 Spread foundations 5.1 Horizontal earth pressures to be used for the design of spread foundations <\/td>\n<\/tr>\n | ||||||
16<\/td>\n | 5.2 Bearing resistance 5.3 Drained and undrained bearing resistance <\/td>\n<\/tr>\n | ||||||
17<\/td>\n | 5.4 Sliding 6 Piled foundations 6.1 Piles subject to horizontal loading 6.2 Design of pile groups <\/td>\n<\/tr>\n | ||||||
18<\/td>\n | 7 Gravity bridge abutments and retaining structures 7.1 Backfill parameters 7.2 Earth pressures <\/td>\n<\/tr>\n | ||||||
19<\/td>\n | Table 4 \u2014 Values of Ka for a vertical face when \u03b4 = \u03b2 <\/td>\n<\/tr>\n | ||||||
20<\/td>\n | Figure 1 \u2014 Earth pressure on retaining structures <\/td>\n<\/tr>\n | ||||||
21<\/td>\n | 7.3 Earth pressures for structural analysis <\/td>\n<\/tr>\n | ||||||
22<\/td>\n | 7.4 Ductile structures and brittle failure modes 7.5 Movement required to generate passive pressure <\/td>\n<\/tr>\n | ||||||
23<\/td>\n | 7.6 Horizontal earth pressure due to traffic loading on earth retaining structures <\/td>\n<\/tr>\n | ||||||
24<\/td>\n | Table 5 \u2014 Simplified traffic surcharge model for walls and other retaining structures adjacent to the carriageway, where the traffic does not cross over the structure <\/td>\n<\/tr>\n | ||||||
25<\/td>\n | Table 6 \u2014 Simplified traffic surcharge model for abutments <\/td>\n<\/tr>\n | ||||||
26<\/td>\n | Figure 2 \u2014 Horizontal surcharge model for abutments <\/td>\n<\/tr>\n | ||||||
27<\/td>\n | Figure 3 \u2014 Lateral and vertical dispersion of finite line loads for calculating horizontal surcharge pressure <\/td>\n<\/tr>\n | ||||||
28<\/td>\n | 7.7 Hydrostatic pressure <\/td>\n<\/tr>\n | ||||||
29<\/td>\n | 8 Embedded walls 9 Integral bridges 9.1 General <\/td>\n<\/tr>\n | ||||||
30<\/td>\n | 9.2 Methods of analysis <\/td>\n<\/tr>\n | ||||||
31<\/td>\n | 9.3 Types of abutment for integral construction <\/td>\n<\/tr>\n | ||||||
32<\/td>\n | Figure 4 \u2014 Types of abutment for integral bridge construction <\/td>\n<\/tr>\n | ||||||
33<\/td>\n | 9.4 Earth pressures behind integral abutments and end screen walls <\/td>\n<\/tr>\n | ||||||
34<\/td>\n | Table 7 \u2014 Maximum (unfavourable) vaues of Kp;t <\/td>\n<\/tr>\n | ||||||
35<\/td>\n | Figure 5 \u2014 Earth pressure distributions for abutments which accommodate thermal expansion by rotation and\/or flexure <\/td>\n<\/tr>\n | ||||||
39<\/td>\n | Figure 6 \u2014 Pressure coefficient envelope <\/td>\n<\/tr>\n | ||||||
40<\/td>\n | 9.5 Longitudinal loads 9.6 Thermal distortions 9.7 Foundations <\/td>\n<\/tr>\n | ||||||
41<\/td>\n | 9.8 Skew effects <\/td>\n<\/tr>\n | ||||||
42<\/td>\n | Figure 7 \u2014 Twisting of skewed structure 9.9 Wing walls <\/td>\n<\/tr>\n | ||||||
43<\/td>\n | Figure 8 \u2014 Equilibrium of horizontal earth wedge behind skew abutment 9.10 Backfill <\/td>\n<\/tr>\n | ||||||
44<\/td>\n | 10 Buried concrete structures 10.1 General <\/td>\n<\/tr>\n | ||||||
45<\/td>\n | Figure 9 \u2014 Symbols for typical buried box structure 10.2 Actions applied to buried concrete structures <\/td>\n<\/tr>\n | ||||||
47<\/td>\n | Figure 10 \u2014 Transverse load dispersion Figure 11 \u2014 Transverse load\/metre where two dispersion zones overlap <\/td>\n<\/tr>\n | ||||||
49<\/td>\n | 10.3 Design of foundations <\/td>\n<\/tr>\n | ||||||
50<\/td>\n | 10.4 Skew 10.5 Longitudinal joints <\/td>\n<\/tr>\n | ||||||
51<\/td>\n | 10.6 Stages to be analysed <\/td>\n<\/tr>\n | ||||||
52<\/td>\n | Annex A (informative)\u2002 Method for determining the earth pressures on integral abutments using a soil\u2011structure interaction analysis <\/td>\n<\/tr>\n | ||||||
55<\/td>\n | Figure A.1 \u2014 Variation in soil shear modulus factor (RF,G) with d\u2019d\/H\u2019 assuming densification to 90% <\/td>\n<\/tr>\n | ||||||
56<\/td>\n | Figure A.2 \u2014 Values of H\u2019 and d\u2019d and illustration of earth pressures <\/td>\n<\/tr>\n | ||||||
58<\/td>\n | Annex B (informative)\u2002 Cases to be considered for buried concrete structures design <\/td>\n<\/tr>\n | ||||||
60<\/td>\n | Figure B.1 \u2014 Maximum vertical load with maximum horizontal load Table B.1 \u2014 Directly determined design values of the earth pressure coefficient K that may be applied at various limit states (Figure B.1) <\/td>\n<\/tr>\n | ||||||
61<\/td>\n | Figure B.2 \u2014 Minimum vertical load with maximum horizontal load Table B.2 \u2014 Directly determined design values of the earth pressure coefficient K that may be applied at various limit states (Figure B.2) <\/td>\n<\/tr>\n | ||||||
62<\/td>\n | Figure B.3 \u2014 Maximum vertical load with minimum horizontal load Table B.3 \u2014 Directly determined design values of the earth pressure coefficient K that may be applied at various limit states (Figure B.3) <\/td>\n<\/tr>\n | ||||||
63<\/td>\n | Figure B.4 \u2014 Braking and acceleration with maximum vertical load and active pressure <\/td>\n<\/tr>\n | ||||||
64<\/td>\n | Table B.4 \u2014 Directly determined design values of the earth pressure coefficient K that may be applied at various limit states (Figure B.4) <\/td>\n<\/tr>\n | ||||||
65<\/td>\n | Figure B.5 \u2014 Braking and acceleration with minimum vertical load and active pressures <\/td>\n<\/tr>\n | ||||||
66<\/td>\n | Table B.5 \u2014 Directly determined design values of the earth pressure coefficient K that may be applied at various states (Figure B.5) <\/td>\n<\/tr>\n | ||||||
67<\/td>\n | Figure B.6 \u2014 Sliding <\/td>\n<\/tr>\n | ||||||
68<\/td>\n | Table B.6 \u2014 Directly determined design values of the earth pressure coefficient K that may be applied at various limit states (Figure B.6) <\/td>\n<\/tr>\n | ||||||
69<\/td>\n | Bibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" Recommendations for the design of structures subject to traffic loading to BS EN 1997-1:2004+A1:2013<\/b><\/p>\n |