{"id":439760,"date":"2024-10-20T08:10:58","date_gmt":"2024-10-20T08:10:58","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/asme-ptb-15-2023\/"},"modified":"2024-10-26T15:18:57","modified_gmt":"2024-10-26T15:18:57","slug":"asme-ptb-15-2023","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/asme\/asme-ptb-15-2023\/","title":{"rendered":"ASME PTB 15 2023"},"content":{"rendered":"
Full Matrix Capture Training Manual<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
4<\/td>\n | TABLE OF CONTENTS <\/td>\n<\/tr>\n | ||||||
23<\/td>\n | ACKNOWLEDGEMENTS <\/td>\n<\/tr>\n | ||||||
24<\/td>\n | FOREWORD <\/td>\n<\/tr>\n | ||||||
25<\/td>\n | 1 HISTORY 1.1 ASME History <\/td>\n<\/tr>\n | ||||||
27<\/td>\n | 1.2 ASME and FMC <\/td>\n<\/tr>\n | ||||||
29<\/td>\n | 1.3 History of FMC and TFM <\/td>\n<\/tr>\n | ||||||
30<\/td>\n | 1.4 Equivalence of Early Developments <\/td>\n<\/tr>\n | ||||||
31<\/td>\n | 2 FMC-TFM 2.1 Full Matrix Capture (FMC) 2.1.1 Principle for Firing and Data Collection 2.1.2 FMC Signal Characteristics <\/td>\n<\/tr>\n | ||||||
32<\/td>\n | 2.1.3 Typical FMC Signal Explained <\/td>\n<\/tr>\n | ||||||
34<\/td>\n | 2.1.4 Alternative Firing and Data Collection Methods <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | 2.1.5 FMC Processes Using Different TR Methods <\/td>\n<\/tr>\n | ||||||
38<\/td>\n | 2.1.6 FMC Data Size and Storage <\/td>\n<\/tr>\n | ||||||
39<\/td>\n | 2.1.7 FMC Data Storage 2.2 Total Focusing Method (TFM) 2.2.1 TFM General <\/td>\n<\/tr>\n | ||||||
40<\/td>\n | 2.2.2 Principle for Data Reconstruction <\/td>\n<\/tr>\n | ||||||
44<\/td>\n | 2.3 Wave Type, Reconstruction Mode 2.3.1 Naming Conventions 2.3.2 TFM Modes <\/td>\n<\/tr>\n | ||||||
46<\/td>\n | 2.3.3 Some Flaw Strategies 2.3.4 Beam Spread Considerations <\/td>\n<\/tr>\n | ||||||
49<\/td>\n | 2.3.5 Self-Tandem Modes <\/td>\n<\/tr>\n | ||||||
50<\/td>\n | 2.3.6 Effects of Thickness <\/td>\n<\/tr>\n | ||||||
52<\/td>\n | 2.4 Amplitude Fidelity 2.4.1 Amplitude Fidelity in Signal Processing <\/td>\n<\/tr>\n | ||||||
54<\/td>\n | 2.4.2 Grid Construction <\/td>\n<\/tr>\n | ||||||
55<\/td>\n | 2.4.3 TFM Grid Resolution <\/td>\n<\/tr>\n | ||||||
58<\/td>\n | 2.5 Scan Plan <\/td>\n<\/tr>\n | ||||||
60<\/td>\n | 2.5.1 Defining the Specimen and the Probe 2.5.2 Scan Plan for Specific Flaws <\/td>\n<\/tr>\n | ||||||
61<\/td>\n | 2.5.3 Locating the TFM Grid 2.5.4 Scan Plan Design <\/td>\n<\/tr>\n | ||||||
64<\/td>\n | 2.6 Fourier and Hilbert Transforms 2.6.1 Time vs. Frequency Representation of Signals (Fourier Transform) <\/td>\n<\/tr>\n | ||||||
69<\/td>\n | 2.6.2 Hilbert Transform <\/td>\n<\/tr>\n | ||||||
80<\/td>\n | 3 TFMS 3.1 Synthetic Aperture Focusing Technique 3.1.1 Data Collection <\/td>\n<\/tr>\n | ||||||
81<\/td>\n | 3.1.2 Post Processing <\/td>\n<\/tr>\n | ||||||
82<\/td>\n | 3.1.3 Resolution <\/td>\n<\/tr>\n | ||||||
83<\/td>\n | 3.2 Virtual Source Aperture <\/td>\n<\/tr>\n | ||||||
84<\/td>\n | 3.3 Migration and Inverse Wave Extrapolation (IWEX), crossover between NDT and Geophysics 3.3.1 History of Migration in Geophysics <\/td>\n<\/tr>\n | ||||||
85<\/td>\n | 3.3.2 Examples of crossover between geophysics and NDT <\/td>\n<\/tr>\n | ||||||
86<\/td>\n | 3.3.3 Difference Between Basic FMC-TFM and IWEX 3.3.4 Data Displays Used for IWEX <\/td>\n<\/tr>\n | ||||||
89<\/td>\n | 3.3.5 Electronics Hardware 3.4 Iterative TFM <\/td>\n<\/tr>\n | ||||||
92<\/td>\n | 3.5 Adaptive TFM\u2013A Framework 3.5.1 Basic Process <\/td>\n<\/tr>\n | ||||||
93<\/td>\n | 3.5.2 Metallurgical Study 3.5.3 Material Anisotropy Distribution Model <\/td>\n<\/tr>\n | ||||||
94<\/td>\n | 3.5.4 Material Properties and Wave Propagation in an Elastic Media <\/td>\n<\/tr>\n | ||||||
95<\/td>\n | 3.5.5 Cauchy Tensor, Christoffel Matrix, and Key Velocity Parameters 3.5.6 The Slowness Surface, Slowness Curves <\/td>\n<\/tr>\n | ||||||
96<\/td>\n | 3.5.7 Group velocity and Phase velocity <\/td>\n<\/tr>\n | ||||||
97<\/td>\n | 3.5.8 Detection of Anisotropic Characteristics <\/td>\n<\/tr>\n | ||||||
98<\/td>\n | 3.5.9 Path Dependent Adaptation Process <\/td>\n<\/tr>\n | ||||||
99<\/td>\n | 3.5.10 Model Evolution 3.5.11 Degrees of Freedom <\/td>\n<\/tr>\n | ||||||
100<\/td>\n | 3.5.12 TFM Process 3.6 PWI-ML 3.6.1 Plane Wave Imaging <\/td>\n<\/tr>\n | ||||||
102<\/td>\n | 3.7 Sectorial Total Focusing 3.7.1 STF, LTF, CTF Processes (Techniques but not Methods) <\/td>\n<\/tr>\n | ||||||
104<\/td>\n | 3.8 TFMi 3.8.1 Terminology <\/td>\n<\/tr>\n | ||||||
105<\/td>\n | 3.8.2 FMC Acquisition Characteristics <\/td>\n<\/tr>\n | ||||||
108<\/td>\n | 3.8.3 Propagation Modes 3.8.4 Region of Interest <\/td>\n<\/tr>\n | ||||||
110<\/td>\n | 3.8.5 Image Sensitivity 3.8.6 TFMi <\/td>\n<\/tr>\n | ||||||
112<\/td>\n | 3.8.7 Advantages of TFMi 3.9 Phase Coherence Imaging <\/td>\n<\/tr>\n | ||||||
113<\/td>\n | 3.9.1 What is PCI? <\/td>\n<\/tr>\n | ||||||
115<\/td>\n | 3.9.2 Interpreting PCI data <\/td>\n<\/tr>\n | ||||||
116<\/td>\n | 3.9.3 Conclusion <\/td>\n<\/tr>\n | ||||||
117<\/td>\n | 4 INSTRUMENTS 4.1 Hardware Challenges 4.1.1 The Challenge Posed by FMC 4.1.2 TFM Image Data Rate 4.1.3 The TFM Calculation Challenge <\/td>\n<\/tr>\n | ||||||
118<\/td>\n | 4.1.4 FPGA Performance 4.1.5 GPU Performance <\/td>\n<\/tr>\n | ||||||
119<\/td>\n | 4.1.6 FPGA\/GPU Comparison <\/td>\n<\/tr>\n | ||||||
120<\/td>\n | 4.1.7 Adaptive and Iterative TFM <\/td>\n<\/tr>\n | ||||||
121<\/td>\n | 4.2 Deployment Schemes\/Scanning Equipment 4.2.1 Introduction 4.2.2 Manual Scanning 4.2.3 Nonautomated Scanner <\/td>\n<\/tr>\n | ||||||
122<\/td>\n | 4.2.4 Semi-automated Scanner <\/td>\n<\/tr>\n | ||||||
123<\/td>\n | 4.2.5 Fully Automated Scanner <\/td>\n<\/tr>\n | ||||||
124<\/td>\n | 4.2.6 Application Specific <\/td>\n<\/tr>\n | ||||||
125<\/td>\n | 4.2.7 Conclusion <\/td>\n<\/tr>\n | ||||||
126<\/td>\n | 5 ARRAYS 5.1 Abstract 5.2 Basic Overview of Ultrasonic Transducers and Their Construction 5.2.1 What is a Transducer? 5.2.2 The Piezoelectric Effect <\/td>\n<\/tr>\n | ||||||
127<\/td>\n | 5.2.3 Types of Transducers <\/td>\n<\/tr>\n | ||||||
128<\/td>\n | 5.2.4 Basic Construction <\/td>\n<\/tr>\n | ||||||
130<\/td>\n | 5.2.5 Piezocomposite <\/td>\n<\/tr>\n | ||||||
131<\/td>\n | 5.3 Transducer Arrays 5.3.1 Linear Arrays <\/td>\n<\/tr>\n | ||||||
132<\/td>\n | 5.3.2 Construction of Transducer Arrays <\/td>\n<\/tr>\n | ||||||
133<\/td>\n | 5.3.3 Matrix Arrays <\/td>\n<\/tr>\n | ||||||
135<\/td>\n | 5.3.4 Common Configurations of Arrays Used in NDE <\/td>\n<\/tr>\n | ||||||
137<\/td>\n | 5.4 Transducer Sound Fields 5.4.1 Basic Beam Modeling <\/td>\n<\/tr>\n | ||||||
138<\/td>\n | 5.4.2 Near Field Distance <\/td>\n<\/tr>\n | ||||||
139<\/td>\n | 5.4.3 Focusing Flat and Curved Oscillators, Spot Size and Depth of Field <\/td>\n<\/tr>\n | ||||||
141<\/td>\n | 5.4.4 Beam Divergence\/Array Element Performance <\/td>\n<\/tr>\n | ||||||
143<\/td>\n | 5.5 Array Design for FMC 5.5.1 Goal of FMC\/TFM Imaging <\/td>\n<\/tr>\n | ||||||
144<\/td>\n | 5.5.2 Near Field Imaging <\/td>\n<\/tr>\n | ||||||
145<\/td>\n | 5.5.3 Angle Limitation\/Constant Focal Ratio (F\/D) <\/td>\n<\/tr>\n | ||||||
148<\/td>\n | 5.5.4 Selection of Array Parameters (Active Plane) <\/td>\n<\/tr>\n | ||||||
152<\/td>\n | 5.5.5 Strategy for Setting Passive Plane Parameters <\/td>\n<\/tr>\n | ||||||
154<\/td>\n | 5.5.6 Flat or Focused? <\/td>\n<\/tr>\n | ||||||
155<\/td>\n | 5.6 Transducer Standards 5.7 Conclusions and Recommendations <\/td>\n<\/tr>\n | ||||||
156<\/td>\n | 6 MODELING 6.1 General benefits of weld simulation 6.1.1 Effects of Material on Inspection Results <\/td>\n<\/tr>\n | ||||||
158<\/td>\n | 6.1.2 Better Understanding of Results via Simulation <\/td>\n<\/tr>\n | ||||||
160<\/td>\n | 6.2 Inspection Simulation <\/td>\n<\/tr>\n | ||||||
164<\/td>\n | 6.3 Using Modeling for TFM Inspection 6.3.1 Probe Selection <\/td>\n<\/tr>\n | ||||||
165<\/td>\n | 6.3.2 Mode of Propagation Selection <\/td>\n<\/tr>\n | ||||||
167<\/td>\n | 6.3.3 Modeling as TFM Scan Plan Assistance Tool 6.3.4 Example of Modeling as TFM Scan Plan Assistance Tool on ERW pipe <\/td>\n<\/tr>\n | ||||||
171<\/td>\n | 7 ADVANTAGES AND LIMITATIONS OF FMC\/TFM VERSUS PAUT 7.1 Advantages 7.1.1 Accurate Visualization <\/td>\n<\/tr>\n | ||||||
173<\/td>\n | 7.1.2 Improved Resolution <\/td>\n<\/tr>\n | ||||||
174<\/td>\n | 7.1.3 Sound Propagation (dead zone) <\/td>\n<\/tr>\n | ||||||
176<\/td>\n | 7.1.4 Near Surface Resolution 7.2 Limitations 7.2.1 Selection of the Correct Mode of Propagation for the Type of Flaws <\/td>\n<\/tr>\n | ||||||
177<\/td>\n | 7.2.2 Part Geometry and Material Definition 7.2.3 Attenuation and Penetration in Thick or Difficult to Penetrate Materials <\/td>\n<\/tr>\n | ||||||
178<\/td>\n | 7.2.4 Productivity <\/td>\n<\/tr>\n | ||||||
179<\/td>\n | 8 SIZING TECHNIQUES 8.1 Length and Height Sizing <\/td>\n<\/tr>\n | ||||||
180<\/td>\n | 8.1.1 Length Sizing <\/td>\n<\/tr>\n | ||||||
183<\/td>\n | 8.1.2 dB Drop Through-Wall Height Sizing of Embedded Flaws <\/td>\n<\/tr>\n | ||||||
185<\/td>\n | 8.1.3 Tip Diffraction for Embedded Indications 8.1.4 Sizing Cluster Indications Such as Porosity <\/td>\n<\/tr>\n | ||||||
186<\/td>\n | 8.1.5 Tip Diffraction for Through-Wall Sizing of ID\/OD-connected Cracks <\/td>\n<\/tr>\n | ||||||
188<\/td>\n | 8.1.6 Length and Height Sizing Comparisons with Various Methods\u2013TFM, TOFD, PAUT <\/td>\n<\/tr>\n | ||||||
195<\/td>\n | 9 FRACTURE MECHANICS FLAW CHARACTERIZATION 9.1 Introduction to Fracture Behavior <\/td>\n<\/tr>\n | ||||||
196<\/td>\n | 9.2 Overview of Fracture Mechanics <\/td>\n<\/tr>\n | ||||||
197<\/td>\n | 9.3 History of Fracture Mechanics <\/td>\n<\/tr>\n | ||||||
198<\/td>\n | 9.4 Two Main Categories of Fracture Mechanics <\/td>\n<\/tr>\n | ||||||
200<\/td>\n | 9.4.1 Summary 9.5 Application of Fracture Mechanics <\/td>\n<\/tr>\n | ||||||
201<\/td>\n | 9.5.1 Damage Tolerant Design <\/td>\n<\/tr>\n | ||||||
202<\/td>\n | 9.5.2 Planning for Inspection Using These Damage Tolerance Principles <\/td>\n<\/tr>\n | ||||||
204<\/td>\n | 9.6 ASME Code Margins and Safety 9.7 Flaw Evaluation Procedures Using Fracture Mechanics <\/td>\n<\/tr>\n | ||||||
205<\/td>\n | 9.7.1 Steps in the ASME BPVC Section XI Flaw Evaluation Procedure <\/td>\n<\/tr>\n | ||||||
207<\/td>\n | 9.8 Acceptance Criteria Examples <\/td>\n<\/tr>\n | ||||||
211<\/td>\n | 9.9 Applying the Acceptance Criteria Tables and Using Interpolation <\/td>\n<\/tr>\n | ||||||
213<\/td>\n | 9.9.1 Linear Interpolation <\/td>\n<\/tr>\n | ||||||
217<\/td>\n | 10 APPLICATIONS 10.1 In-service Inspections: FMC Techniques for High Temperature Hydrogen Attack Assessment 10.1.1 Problem Definition <\/td>\n<\/tr>\n | ||||||
218<\/td>\n | 10.1.2 Solution 10.1.3 Array Probes Design and Optimization <\/td>\n<\/tr>\n | ||||||
223<\/td>\n | 10.1.4 FMC Capabilities Validation <\/td>\n<\/tr>\n | ||||||
250<\/td>\n | 10.1.5 Conclusions 10.2 FMC\/TFM Based Inspection of Small-Diameter Components for FAC Damage 10.2.1 Summary 10.2.2 Background <\/td>\n<\/tr>\n | ||||||
251<\/td>\n | 10.2.3 Feeder Pipes 10.2.4 Degradation Mechanism <\/td>\n<\/tr>\n | ||||||
252<\/td>\n | 10.2.5 Component Description <\/td>\n<\/tr>\n | ||||||
253<\/td>\n | 10.2.6 Inspection Specification Requirements <\/td>\n<\/tr>\n | ||||||
254<\/td>\n | 10.2.7 Complicating Factors <\/td>\n<\/tr>\n | ||||||
256<\/td>\n | 10.2.8 Overview 10.2.9 Separation of Tasks 10.2.10 Training <\/td>\n<\/tr>\n | ||||||
257<\/td>\n | 10.2.11 Equipment <\/td>\n<\/tr>\n | ||||||
258<\/td>\n | 10.2.12 Software 10.2.13 Calibration <\/td>\n<\/tr>\n | ||||||
259<\/td>\n | 10.2.14 Data Acquisition Process <\/td>\n<\/tr>\n | ||||||
260<\/td>\n | 10.2.15 Recording 10.2.16 Data Acquisition Procedure <\/td>\n<\/tr>\n | ||||||
262<\/td>\n | 10.2.17 Data Analysis Process <\/td>\n<\/tr>\n | ||||||
265<\/td>\n | 10.2.18 Data Analysis Procedure 10.2.19 Results <\/td>\n<\/tr>\n | ||||||
267<\/td>\n | 10.2.20 Discussion <\/td>\n<\/tr>\n | ||||||
270<\/td>\n | 10.2.21 Further Developments 10.2.22 Conclusions <\/td>\n<\/tr>\n | ||||||
271<\/td>\n | 10.3 Crack Growth Monitoring with PAUT and TFM 10.3.1 Introduction 10.3.2 Approach <\/td>\n<\/tr>\n | ||||||
273<\/td>\n | 10.3.3 Description of the UT Setup <\/td>\n<\/tr>\n | ||||||
274<\/td>\n | 10.3.4 Results 10.3.5 Analysis <\/td>\n<\/tr>\n | ||||||
280<\/td>\n | 10.3.6 Conclusions and Next Steps <\/td>\n<\/tr>\n | ||||||
281<\/td>\n | 10.4 Weld Examination-Introduction 11.4.1 General Requirements <\/td>\n<\/tr>\n | ||||||
282<\/td>\n | 10.4.2 Equipment 10.4.3 Getting Started <\/td>\n<\/tr>\n | ||||||
283<\/td>\n | 10.4.4 Scan Plan <\/td>\n<\/tr>\n | ||||||
285<\/td>\n | 10.4.5 Equipment Set-Up <\/td>\n<\/tr>\n | ||||||
287<\/td>\n | 10.4.6 Scanning\/Data Collection <\/td>\n<\/tr>\n | ||||||
290<\/td>\n | 10.4.7 Evaluation <\/td>\n<\/tr>\n | ||||||
293<\/td>\n | 10.4.8 Examples <\/td>\n<\/tr>\n | ||||||
299<\/td>\n | REFERENCES <\/td>\n<\/tr>\n | ||||||
302<\/td>\n | APPENDIX A: FMC-TFM DATA OF INTERNAL SURFACE (ID), EXTERNAL SURFACE (OD) AND MID-WALL TYPES OF DEFECTS REPRESENTED BY NOTCHES <\/td>\n<\/tr>\n | ||||||
327<\/td>\n | APPENDIX B: TFM DATA PRESENTATION AND FLAWS SIZING <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" ASME PTB-15-2023 Full Matrix Capture Training Manual<\/b><\/p>\n |