{"id":80969,"date":"2024-10-17T18:49:53","date_gmt":"2024-10-17T18:49:53","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/ieee-141-1986\/"},"modified":"2024-10-24T19:45:17","modified_gmt":"2024-10-24T19:45:17","slug":"ieee-141-1986","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/ieee\/ieee-141-1986\/","title":{"rendered":"IEEE 141 1986"},"content":{"rendered":"

New IEEE Standard – Inactive – Superseded. A thorough analysis of basic electrical-systems considerations is presented. Guidance is provided in design, construction, and continuity of an overall system to achieve safety of life and preservation of property; reliability; simplicity of operation; voltage regulation in the utilization of equipment within the tolerance limits under all load conditions; care and maintenance; and flexibility to permit development and expansion. Recommendations are made regarding system planning; voltage considerations; surge voltage protection; system protective devices; fault calculations; grounding; power switching, transformation, and motor-control apparatus; instruments and meters; cable systems; busways; electrical energy conservation; and cost estimation.<\/p>\n

PDF Catalog<\/h4>\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
PDF Pages<\/th>\nPDF Title<\/th>\n<\/tr>\n
14<\/td>\n13.8 kV Feeder E G and J and 480 V Bus 1,2 and <\/td>\n<\/tr>\n
19<\/td>\nTable <\/td>\n<\/tr>\n
21<\/td>\n30t <\/td>\n<\/tr>\n
27<\/td>\nANSI\/IEEE C67.12.01-1979 <\/td>\n<\/tr>\n
36<\/td>\n1 Introduction
1.1 Institute of Electrical and Electronics Engineers (IEEE)
1.2 IEEE Meetings and Publications
1.3 Standards Recommended Practices and Guides <\/td>\n<\/tr>\n
37<\/td>\n1.4 IEEE Standards Documents <\/td>\n<\/tr>\n
38<\/td>\nStandards
1.6 National Fire Protection Association (NFPA) Standards
1.7 Underwriters Laboratories Inc (UL) Standards
1.8 American National Standards Institute (ANSI) <\/td>\n<\/tr>\n
39<\/td>\n1.9 Occupational Safety and Health Administration (OSHA)
1.10 Environmental Considerations
1.11 Edison Electric Institute (EEI)
1.1 2 Handbooks <\/td>\n<\/tr>\n
40<\/td>\n1.13 Periodicals <\/td>\n<\/tr>\n
41<\/td>\n1.14 Manufacturers\u2122 Data
Fig <\/td>\n<\/tr>\n
42<\/td>\n2 System Planning
2.1 Introduction
2.2 Basic Design Considerations
2.2.1 Safety
2.2.2 Reliability
Fig <\/td>\n<\/tr>\n
43<\/td>\n2.2.3 System Reliability Analysis
2.2.4 Reliability Data for Electrical Equipment
2.2.5 Reliability Analysis and Total Owning Cost
Fig <\/td>\n<\/tr>\n
44<\/td>\n2.2.6 Simplicity of Operation
2.2.7 Voltage Regulation
2.2.8 Maintenance
2.2.9 Flexibility
2.2.10 fist cost
2.3 Planning Guide for Distribution Design
2.3.1 Load Survey
2.3.2 Demand
Fig <\/td>\n<\/tr>\n
45<\/td>\n2.3.3 Systems
Fig <\/td>\n<\/tr>\n
46<\/td>\nSimple Radial System <\/td>\n<\/tr>\n
47<\/td>\nExpanded Radial System
Fig <\/td>\n<\/tr>\n
48<\/td>\nPrimary Selective System
Primary Loop System
Fig <\/td>\n<\/tr>\n
49<\/td>\nFig <\/td>\n<\/tr>\n
50<\/td>\nTypical Configurations Load Center Substations
Fig <\/td>\n<\/tr>\n
51<\/td>\n2.3.4 Equipment Locations
Secondary Spot Network <\/td>\n<\/tr>\n
52<\/td>\n2.3.5 Voltage
2.3.6 Utility Service
Ring Bus System
Fig <\/td>\n<\/tr>\n
53<\/td>\n2.3.7 Generation
Fig <\/td>\n<\/tr>\n
54<\/td>\n2.3.8 One-Line Diagram
2.3.9 Short-circuit Analysis
2.3.10 Protection <\/td>\n<\/tr>\n
55<\/td>\n2.3.11 Expansion <\/td>\n<\/tr>\n
56<\/td>\nPower Supply Planning Considerations
Fig <\/td>\n<\/tr>\n
58<\/td>\nTypical Main Primary Distribution Arrangements
Fig <\/td>\n<\/tr>\n
59<\/td>\n2.3.12 Other Requirements
2.3.13 Safety <\/td>\n<\/tr>\n
60<\/td>\n2.3.14 Communications
2.3.15 Maintenance <\/td>\n<\/tr>\n
61<\/td>\n2.4 References
Fig
95t
95t
95t <\/td>\n<\/tr>\n
62<\/td>\n2.5 Bibliography <\/td>\n<\/tr>\n
64<\/td>\n3 Voltage Considerations
3.1 General
3.1.1 Definitions <\/td>\n<\/tr>\n
65<\/td>\nStates
Application of Voltage Classes
Voltage Systems Outside of the United States <\/td>\n<\/tr>\n
66<\/td>\nVoltages of Table <\/td>\n<\/tr>\n
67<\/td>\nStandard Nominal System Voltages and Voltage Ranges <\/td>\n<\/tr>\n
69<\/td>\nVoltage Standard for Canada
Voltage Control in Electric Power Systems
Utility Systems
System <\/td>\n<\/tr>\n
70<\/td>\nSystem Voltage <\/td>\n<\/tr>\n
71<\/td>\nANSI C84.1-1982 <\/td>\n<\/tr>\n
72<\/td>\nRegulated Power Distribution System 120 V Base
Table <\/td>\n<\/tr>\n
74<\/td>\nSystem Voltage Tolerance Limits
System
Voltage Profile of Limits of Range A ANSI C84.1-1982 <\/td>\n<\/tr>\n
75<\/td>\n3.2.5 System Voltage Nomenclature <\/td>\n<\/tr>\n
76<\/td>\nNonstandard Nominal System Voltages
ANSI C84.1-1982 <\/td>\n<\/tr>\n
77<\/td>\nTable 3 Nominal System Voltages <\/td>\n<\/tr>\n
78<\/td>\nStandard Nominal System Voltages in the United States
Voltage <\/td>\n<\/tr>\n
79<\/td>\nTable 1 Range A in Volts
Tolerance Limits for Low-Voltage Three-phase Motors in Volts
Table
Fluorescent Lamp Ballasts in Volts <\/td>\n<\/tr>\n
80<\/td>\n3.3 Voltage Selection
Selection of Low-Voltage Utilization Voltages <\/td>\n<\/tr>\n
81<\/td>\nDistribution Line
__ <\/td>\n<\/tr>\n
82<\/td>\nHigh-Voltage Transmission Lines <\/td>\n<\/tr>\n
83<\/td>\nVoltage Ratings for Low-Voltage Utilization Equipment <\/td>\n<\/tr>\n
84<\/td>\nNameplate Voltage Ratings of Standard Induction Motors
Table <\/td>\n<\/tr>\n
85<\/td>\nUtilization Equipment
3.5.1 General Effects
3.5.2 Induction Motors
3.5.3 Synchronous Motors
3.5.4 Incandescent Lamps <\/td>\n<\/tr>\n
86<\/td>\nFig
Induction-Motor Characteristics <\/td>\n<\/tr>\n
87<\/td>\n3.5.5 Fluorescent Lamps
Metal Halide)
3.5.7 Infrared Heating Processes
Effect of Voltage Variations on Incandescent Lamps
Table <\/td>\n<\/tr>\n
88<\/td>\n3.5.8 Resistance Heating Devices
3.5.9 Electron Tubes
3.5.10 Capacitors
3.5.1 1 Solenoid-Operated Devices
3.5.12 Solid-state Equipment
Secondary Distribution System Power Source <\/td>\n<\/tr>\n
89<\/td>\nVoltage Drop Limits
Fig <\/td>\n<\/tr>\n
90<\/td>\nImprovement of Voltage Conditions
System Power Source Locations <\/td>\n<\/tr>\n
91<\/td>\nPhase-Voltage Unbalance in Three-phase Systems
3.8.1 Causes of Phase-Voltage Unbalance
3.8.2 Measurement of Phase-Voltage Unbalance
3.8.3 Effect of Phase-Voltage Unbalance
Fig <\/td>\n<\/tr>\n
92<\/td>\nVoltage Dips and Flicker
Table 11 Effect of Phase-Voltage Unbalance on Motor Temperature Rise <\/td>\n<\/tr>\n
94<\/td>\nVersus Time <\/td>\n<\/tr>\n
95<\/td>\nHarmonics
3.10.1 Nature of Harmonics
3.10.2 Characteristics of Harmonics
Polyphase Induction Motors <\/td>\n<\/tr>\n
96<\/td>\n3.10.3 Harmonic-Producing Equipment <\/td>\n<\/tr>\n
97<\/td>\n3.10.4 Reduction of Harmonic Effects
Calculation of Voltage Drops
3.1 1.1 General Mathematical Formulas <\/td>\n<\/tr>\n
98<\/td>\nCalculations
Fig <\/td>\n<\/tr>\n
99<\/td>\n3.1 1.2 Cable Voltage Drop <\/td>\n<\/tr>\n
100<\/td>\nCable per 10 000 A-ft (60 “C Conductor Temperature 60 Hz) <\/td>\n<\/tr>\n
101<\/td>\nBusway Voltage Drop
Transformer Voltage Drop <\/td>\n<\/tr>\n
102<\/td>\nTransformers 225-10 000 kVA 5-25 kV
Transformers 1500-10 000 kVA 34.5 kV
Fig <\/td>\n<\/tr>\n
103<\/td>\nMotor-Starting Voltage Drop
Effect of Motor Starting on Generators
Effect of Motor Starting on Distribution System
Fig <\/td>\n<\/tr>\n
104<\/td>\nStarting of a Motor
Fig
Table 14 Comparison of Motor-Starting Methods <\/td>\n<\/tr>\n
105<\/td>\na Motor
Fig <\/td>\n<\/tr>\n
106<\/td>\nFull-Voltage Starting of a Motor
Fig <\/td>\n<\/tr>\n
107<\/td>\nReferences
Fig <\/td>\n<\/tr>\n
108<\/td>\nBibliography
Fig <\/td>\n<\/tr>\n
109<\/td>\nFig <\/td>\n<\/tr>\n
110<\/td>\nSurge Voltage Protection
Nature of the Problem
Charge Is Deposited on Conducting Line by Lightning <\/td>\n<\/tr>\n
113<\/td>\nAction of Fuse to Produce Transient Overvoltage <\/td>\n<\/tr>\n
114<\/td>\nTraveling Wave Behavior
4.2.1 Surge-Voltage Propagation
Switching Restrike Phenomena <\/td>\n<\/tr>\n
115<\/td>\nDistributed-Constant Transmission Circuit <\/td>\n<\/tr>\n
116<\/td>\n4.2.2 Surge-Voltage Reflection
Impedance2 <\/td>\n<\/tr>\n
117<\/td>\nJunction Point J <\/td>\n<\/tr>\n
118<\/td>\n4.2.3 Amplification Phenomena
Different Ways <\/td>\n<\/tr>\n
119<\/td>\nArrester
Progressively Higher Surge Impedance <\/td>\n<\/tr>\n
120<\/td>\nVulnerability of a Chain of Insulation Systems in Series <\/td>\n<\/tr>\n
121<\/td>\nInsulation Voltage Withstand Characteristics
4.3.1 Introduction <\/td>\n<\/tr>\n
122<\/td>\nInsulation Tests and Ratings
Standard Impulse Test Waves
Fig <\/td>\n<\/tr>\n
123<\/td>\nFig
Table 15 Impulse Test Levels for Liquid-Filled Transformers
Switchgear Assemblies and Metal-Enclosed Buses <\/td>\n<\/tr>\n
124<\/td>\nFig
Table 17 Impulse Test Levels for Dry-Type Transformers
Winding Impulse Voltages Phase-to-Ground <\/td>\n<\/tr>\n
125<\/td>\nPhysical Properties Affecting Insulation Strength
Fig <\/td>\n<\/tr>\n
126<\/td>\nFig <\/td>\n<\/tr>\n
127<\/td>\nLC Network in a Multiturn Winding
Fig <\/td>\n<\/tr>\n
128<\/td>\nArrester Characteristics and Ratings
4.4.1 Introduction
Fig <\/td>\n<\/tr>\n
129<\/td>\nVolt-Ampere Characteristics
Silicon Carbide Valve-Element Discs <\/td>\n<\/tr>\n
130<\/td>\nBasis of Arrester Rating <\/td>\n<\/tr>\n
131<\/td>\nTypical Volt-Ampere Characteristics of 6 kV Valve Elements
Fig <\/td>\n<\/tr>\n
132<\/td>\nFig
Indicated Impulse Currents <\/td>\n<\/tr>\n
133<\/td>\n4.4.4 Protective Characteristics
Fig <\/td>\n<\/tr>\n
134<\/td>\nSilicon Surge Arresters <\/td>\n<\/tr>\n
135<\/td>\nTypical Discharge Voltage Versus Current Wave Crest Time (ps)
Fig <\/td>\n<\/tr>\n
136<\/td>\n4.4.5 Arrester Classes
Arrester Discharge-Current Capability
Fig <\/td>\n<\/tr>\n
137<\/td>\n4.5 Arrester Selection
4.5.1 Arrester Rating
Fig <\/td>\n<\/tr>\n
138<\/td>\nFig <\/td>\n<\/tr>\n
139<\/td>\n4.5.2 Arrester Class
Fig <\/td>\n<\/tr>\n
140<\/td>\nFig
Three-phase Systems in kV <\/td>\n<\/tr>\n
142<\/td>\n4.5.3 Arrester Location
Fig <\/td>\n<\/tr>\n
143<\/td>\n4.6 Application Concepts
4.6.1 General Considerations
Fig <\/td>\n<\/tr>\n
144<\/td>\nResulting Wave Phenomena for Various Arrester Locations <\/td>\n<\/tr>\n
145<\/td>\nVoltage at the Equipment to the Arrester A Voltage
Fig <\/td>\n<\/tr>\n
146<\/td>\n4.6.2 Insulation Coordination
Fig <\/td>\n<\/tr>\n
147<\/td>\nTest-Implied Transformer Withstand Curve
Characteristic of a Surge Arrester 1.2 x 50 ps Wave) <\/td>\n<\/tr>\n
148<\/td>\n4.6.3 Component Protection <\/td>\n<\/tr>\n
150<\/td>\nFig <\/td>\n<\/tr>\n
151<\/td>\nVersus Line-Cable Junction Arrester Clamping Voltage
Fig
23 <\/td>\n<\/tr>\n
152<\/td>\nVersus Line-Cable Junction Arrester Clamping Voltage <\/td>\n<\/tr>\n
153<\/td>\nformer Without Requiring Arrester at Dry-Type Transformer <\/td>\n<\/tr>\n
155<\/td>\nMachine Impulse Voltage Withstand Envelope
Fig <\/td>\n<\/tr>\n
156<\/td>\nfor Wavefront Control
Fig
Line Terminal Connected Line to Ground <\/td>\n<\/tr>\n
158<\/td>\n4.7 References <\/td>\n<\/tr>\n
160<\/td>\n4.8 Bibliography <\/td>\n<\/tr>\n
161<\/td>\nFig <\/td>\n<\/tr>\n
162<\/td>\nFig <\/td>\n<\/tr>\n
163<\/td>\nFig <\/td>\n<\/tr>\n
165<\/td>\nFig <\/td>\n<\/tr>\n
167<\/td>\nFig <\/td>\n<\/tr>\n
168<\/td>\nFig <\/td>\n<\/tr>\n
169<\/td>\nFig <\/td>\n<\/tr>\n
170<\/td>\nApplication and Coordination of System Protective Devices
5.1 Introduction
5.1.1 Purpose
Considering Plant Operation <\/td>\n<\/tr>\n
171<\/td>\n5.1.3 Equipment Capabilities
Importance of Responsible Planning <\/td>\n<\/tr>\n
172<\/td>\nAnalysis of System Behavior and Protection Needs
5.2.1 Nature of the Problem
Grounded and Ungrounded Systems <\/td>\n<\/tr>\n
173<\/td>\nSystem Before and After the Occurrence of a Ground Fault <\/td>\n<\/tr>\n
174<\/td>\nFaults
Fault Condition <\/td>\n<\/tr>\n
175<\/td>\n5.2.4 Analytical Restraints
Practical Limits of Protection <\/td>\n<\/tr>\n
176<\/td>\nUnbalanced Fault Conditions (System X\/R = <\/td>\n<\/tr>\n
177<\/td>\nProtective Devices and Their Applications
5.3.1 General Discussion
5.3.2 Overcurrent Relays <\/td>\n<\/tr>\n
178<\/td>\nTypical Electromagnetic Overcurrent Relay
Fig
Attachment (Relay Removed from Drawout Case) <\/td>\n<\/tr>\n
179<\/td>\nSpecial Overcurrent Relays
5.3.4 Directional Relays <\/td>\n<\/tr>\n
180<\/td>\nOvercurrent Relay <\/td>\n<\/tr>\n
181<\/td>\nTypical Relay Time-Current Characteristics
Fig <\/td>\n<\/tr>\n
182<\/td>\n5.3.5 Differential Relays <\/td>\n<\/tr>\n
183<\/td>\nArrangements for Motor and Generator Differential Protection
Fig <\/td>\n<\/tr>\n
186<\/td>\nUsing Standard Induction-Disk Overcurrent Relays <\/td>\n<\/tr>\n
187<\/td>\nCurrent Balance Relay
5.3.7 Ground-Fault Relaying <\/td>\n<\/tr>\n
188<\/td>\nStandard Arrangement for Residually Connected Ground Relay
Fig
Ground Relay <\/td>\n<\/tr>\n
189<\/td>\nSynchronism-Check and Synchronizing Relays
5.3.9 Pilot-Wire Relays <\/td>\n<\/tr>\n
190<\/td>\n5.3.10 Voltage Relays
5.3.11 Distance Relays <\/td>\n<\/tr>\n
191<\/td>\nPhase-Sequence or Reverse-Phase Relays
5.3.13 Frequency Relays
5.3.14 Temperature-Sensitive Relays <\/td>\n<\/tr>\n
192<\/td>\n5.3.15 Pressure-Sensitive Relays
Replica-Type Temperature Relays
5.3.17 Auxiliary Relays
Breakers <\/td>\n<\/tr>\n
193<\/td>\n5.3.19 Fuses <\/td>\n<\/tr>\n
194<\/td>\nTypical Time-Current Plot for Electromechanical Trip Devices
Fig <\/td>\n<\/tr>\n
195<\/td>\nTypical Time-Current Plot for Solid-state Trip Devices
Fig <\/td>\n<\/tr>\n
196<\/td>\nCurrent-Limiting Fuses <\/td>\n<\/tr>\n
199<\/td>\nAvailable rms Symmetrical Current) <\/td>\n<\/tr>\n
203<\/td>\nPerformance Limitations
Load Current and Voltage Wave Shape
5.4.2 Instrument Transformers <\/td>\n<\/tr>\n
204<\/td>\nPrinciples of Protective Relay Application
One-Line Diagram Illustrating Zones of Protection <\/td>\n<\/tr>\n
205<\/td>\nTypical Small-Plant Relay Systems
Typical Small Industrial System <\/td>\n<\/tr>\n
206<\/td>\nand Associated Secondary Circuits <\/td>\n<\/tr>\n
207<\/td>\nSystem <\/td>\n<\/tr>\n
209<\/td>\nIndustrial Plant System <\/td>\n<\/tr>\n
216<\/td>\nRelaying for an Industrial Plant with Local Generation <\/td>\n<\/tr>\n
217<\/td>\nIndustrial Plant System with Local Generation <\/td>\n<\/tr>\n
218<\/td>\nProtection Requirements
5.6.1 Transformers <\/td>\n<\/tr>\n
219<\/td>\nTable 23 Maximum Overcurrent Protection (in Percent) <\/td>\n<\/tr>\n
221<\/td>\nCategory I1 Transformers <\/td>\n<\/tr>\n
222<\/td>\nCategory I11 Transformers <\/td>\n<\/tr>\n
223<\/td>\n5.6.2 Feeder Conductors <\/td>\n<\/tr>\n
224<\/td>\n5.6.3 Motors <\/td>\n<\/tr>\n
225<\/td>\nMotor and Protective Relay Characteristics <\/td>\n<\/tr>\n
228<\/td>\nMotor Protection Acceptable to the NEC <\/td>\n<\/tr>\n
229<\/td>\nUse and Interpretation of Coordination Curves
Need and Value
5.7.2 Device Performance <\/td>\n<\/tr>\n
231<\/td>\nIndustrial Plant Distribution System <\/td>\n<\/tr>\n
234<\/td>\nTrip Devices <\/td>\n<\/tr>\n
235<\/td>\nPreparing for the Coordination Study <\/td>\n<\/tr>\n
236<\/td>\nSubstations) <\/td>\n<\/tr>\n
237<\/td>\nTypical Time-Current Characteristic Curves of Fuses <\/td>\n<\/tr>\n
238<\/td>\nSpecific Examples -Applying the Fundamentals
Misrepresenting Proper Fault Clearing <\/td>\n<\/tr>\n
239<\/td>\nRelaying <\/td>\n<\/tr>\n
240<\/td>\nFeeders L and M and Incoming Line Circuits <\/td>\n<\/tr>\n
241<\/td>\nSource and Feeder Circuits <\/td>\n<\/tr>\n
242<\/td>\nFeeder Relay at 13.8 kV Bus <\/td>\n<\/tr>\n
243<\/td>\nGenerator Relay at 13.8 kV Bus <\/td>\n<\/tr>\n
246<\/td>\n2.4 kV Bus 1 Coordination <\/td>\n<\/tr>\n
247<\/td>\n2.4 kV Bus 2 Coordination <\/td>\n<\/tr>\n
248<\/td>\n2.4 kV Buses 2 and <\/td>\n<\/tr>\n
250<\/td>\nRelaying <\/td>\n<\/tr>\n
251<\/td>\n46 <\/td>\n<\/tr>\n
252<\/td>\nEquipment <\/td>\n<\/tr>\n
255<\/td>\nNetwork Coordination <\/td>\n<\/tr>\n
257<\/td>\n480 V Bus 1 2 and 3 Network <\/td>\n<\/tr>\n
258<\/td>\n13.8 kV Feeder J and 480 V Bus 4 Coordination <\/td>\n<\/tr>\n
259<\/td>\nTesting
5.9.1 Installation Checking <\/td>\n<\/tr>\n
261<\/td>\nTypical Current-Transformer Circuit
Fig <\/td>\n<\/tr>\n
266<\/td>\nMaintenance and Periodic Testing <\/td>\n<\/tr>\n
267<\/td>\nScope of Testing <\/td>\n<\/tr>\n
271<\/td>\nTypical Relay Inspection and Test Form
Fig <\/td>\n<\/tr>\n
274<\/td>\nandTest Form <\/td>\n<\/tr>\n
275<\/td>\nTypical Unit Substation Inspection Checklist
Fig <\/td>\n<\/tr>\n
277<\/td>\nEquipment Testing
References <\/td>\n<\/tr>\n
281<\/td>\nBibliography <\/td>\n<\/tr>\n
284<\/td>\n6 Fault Calculations
6.1 Introduction <\/td>\n<\/tr>\n
285<\/td>\nSources of Fault Current
6.2.1 Synchronous Generators
E = (Driving Voltage X Varies with Time) <\/td>\n<\/tr>\n
286<\/td>\nSynchronous Motors and Condensers
6.2.3 Induction Machines
Electric Utility Systems <\/td>\n<\/tr>\n
287<\/td>\nFundamentals of Fault-Current Calculations
Purpose of Calculations
Type of Fault <\/td>\n<\/tr>\n
288<\/td>\nBasic Equivalent Circuit <\/td>\n<\/tr>\n
289<\/td>\nRestraints of Simplified Calculations
6.4.1 Impedance Elements
6.4.2 Switching Transients
Series RLC Circuit
Fig <\/td>\n<\/tr>\n
290<\/td>\nSwitching Transient R
Fig <\/td>\n<\/tr>\n
291<\/td>\n6.4.3 Decrement Factor
Multiple Switching Transients
Switching TransientL
Fig <\/td>\n<\/tr>\n
292<\/td>\nPractical Impedance Network Synthesis
Decrement Factor
Fig <\/td>\n<\/tr>\n
293<\/td>\nThree.Phase Four-Wire Circuit Unbalanced Loading
Fig <\/td>\n<\/tr>\n
294<\/td>\nThree.Phase Four-Wire Circuit Balanced Symmetrical Loading
Fig
a Three-phase System <\/td>\n<\/tr>\n
295<\/td>\nOther Analytical Tools <\/td>\n<\/tr>\n
296<\/td>\nRespecting the Imposed Restraints
6.4.8 Conclusions <\/td>\n<\/tr>\n
297<\/td>\nTypical System Fault Current
Fig <\/td>\n<\/tr>\n
298<\/td>\nDetailed Procedure <\/td>\n<\/tr>\n
299<\/td>\nStep 1 -Prepare System Diagrams
Step 2 -Collect and Convert Impedance Data <\/td>\n<\/tr>\n
300<\/td>\nOne-Line Diagram of Industrial System Example
Fig <\/td>\n<\/tr>\n
301<\/td>\nStep 3 -Combine Impedances
Step 4 -Calculate Short-circuit Current <\/td>\n<\/tr>\n
302<\/td>\nWye and Delta Configurations
Fig <\/td>\n<\/tr>\n
303<\/td>\nTable 24 Rotating-Machine Reactance (or Impedance) Multipliers <\/td>\n<\/tr>\n
304<\/td>\nSystem Calculations) <\/td>\n<\/tr>\n
305<\/td>\nANSI\/IEEE C37.5-1979 <\/td>\n<\/tr>\n
306<\/td>\nThree-phase Faults
Three-phase and Line-to-Ground Faults <\/td>\n<\/tr>\n
307<\/td>\nFed Predominantly from Generators <\/td>\n<\/tr>\n
308<\/td>\nFed Predominantly from Generators <\/td>\n<\/tr>\n
309<\/td>\nwith Several Voltage Levels
General Discussion <\/td>\n<\/tr>\n
310<\/td>\nUtility System Data
Per-Unit Calculations and Base Quantities
Impedances Represented by Reactances <\/td>\n<\/tr>\n
311<\/td>\nStandards <\/td>\n<\/tr>\n
312<\/td>\nImpedance Data and Conversions to Per Unit
(Momentary) Short-circuit Current Duties
Table 27 Passive-Element Reactances in Per Unit 10 MVA Base <\/td>\n<\/tr>\n
313<\/td>\nShort-circuit (Interrupting) Current Duties
30-Cycle Minimum Short-circuit Currents
Short-circuit Current Duties
Per Unit 10 MVA Base <\/td>\n<\/tr>\n
314<\/td>\nShort-circuit Duties <\/td>\n<\/tr>\n
315<\/td>\nFuses and Low-Voltage Circuit Breakers
Table 30 Reactances for Approximately 3GCycZ.e Short-circuit Currents <\/td>\n<\/tr>\n
316<\/td>\nTable 3 1 Reactances for Fig 105 (a)
Table 32 Reactance Combinations for Fig 105(a)
Each Fault Bus of Fig 105(b) <\/td>\n<\/tr>\n
317<\/td>\nHigh-Voltage Circuit Breakers <\/td>\n<\/tr>\n
318<\/td>\nShort-circuit Current Duties for High-Voltage Circuit Breakers <\/td>\n<\/tr>\n
319<\/td>\nShort-Circuit Current Duties for High-Voltage Circuit Breakers <\/td>\n<\/tr>\n
320<\/td>\nTable 34 Reactances for Fig 106(a) and Resistances for Fig 107(a)
Table 35 Reactance Combinations for Fig 106(a) <\/td>\n<\/tr>\n
321<\/td>\nTable 36 Resistance Combinations for Fig 107(a)
Each Fault Bus of Fig 106(b)
Each Fault Bus of Fig 107(b) <\/td>\n<\/tr>\n
322<\/td>\nE\/X for Example Conditions <\/td>\n<\/tr>\n
323<\/td>\nCircuit Current Duties
Capabilities in Kiloamperes <\/td>\n<\/tr>\n
324<\/td>\nCapabilities of AC High-Voltage Circuit Breakers
Capabilities of AC High-Voltage Circuit Breakers <\/td>\n<\/tr>\n
325<\/td>\ncapabilities of AC High-Voltage Circuit Breakers
with Sources Classified Remote or Local <\/td>\n<\/tr>\n
326<\/td>\nMinimum Short-Circuit Currents
Under 1OOOV <\/td>\n<\/tr>\n
327<\/td>\nApprdimately $@Cycle Minimum Short-circuit Currents
Each Fault Bus of Fig 108(b) <\/td>\n<\/tr>\n
328<\/td>\nValues on a Common Base <\/td>\n<\/tr>\n
329<\/td>\nLow-Voltage System
Fig <\/td>\n<\/tr>\n
331<\/td>\nDiagrams Applicable for Fault Locations F and F
Current <\/td>\n<\/tr>\n
332<\/td>\nResistance Network for Faults at F and F
Fig
Reactance Network for Faults at F and F
Fig <\/td>\n<\/tr>\n
333<\/td>\nReduction of R Network for Fault at F
Fig
Reduction of X Network for Fault at F
Fig <\/td>\n<\/tr>\n
334<\/td>\nReduction of R Network for Fault at F
Fig
Reduction of X Network for Fault at <\/td>\n<\/tr>\n
335<\/td>\nand Calculate Fault Currents <\/td>\n<\/tr>\n
336<\/td>\nCalculation of Fault Currents for DC Systems
Resistance Network for Fault at F
Reactance Network for Fault at F <\/td>\n<\/tr>\n
337<\/td>\n6.9 References
Resistance Network Fault at F
Reactance Network for Fault at F <\/td>\n<\/tr>\n
338<\/td>\n6.10 Bibliography <\/td>\n<\/tr>\n
346<\/td>\n7 Grounding
7.1 Introduction
7.2 System Grounding <\/td>\n<\/tr>\n
347<\/td>\n7.2.1 Ungrounded Systems <\/td>\n<\/tr>\n
348<\/td>\n7.2.2 Resistance-Grounded Systems <\/td>\n<\/tr>\n
349<\/td>\n7.2.3 Reactance-Grounded System
Solidly Grounded System
System-Grounding Design Deviations <\/td>\n<\/tr>\n
350<\/td>\n7.3 Equipment Grounding <\/td>\n<\/tr>\n
351<\/td>\nSolidly Grounded System Three.Phase Three-Wire Circuits
67
69 <\/td>\n<\/tr>\n
352<\/td>\nSolidly Grounded System Three.Phase Three-Wire Circuits
Resistance-Grounded System Three.Phase Three-Wire Circuits <\/td>\n<\/tr>\n
353<\/td>\nUngrounded System Three.Phase Three-Wire Circuits <\/td>\n<\/tr>\n
354<\/td>\nand to AC Ground <\/td>\n<\/tr>\n
355<\/td>\nStatic and Lightning Protection Grounding
7.4.1 Static Grounding <\/td>\n<\/tr>\n
356<\/td>\nLightning Protection Grounding <\/td>\n<\/tr>\n
357<\/td>\nConnection to Earth
7.5.1 General Discussion <\/td>\n<\/tr>\n
358<\/td>\nRecommended Acceptable Values
Resistivity of Soils
7.5.4 SoilTreatment <\/td>\n<\/tr>\n
359<\/td>\n7.5.5 Existing Electrodes
Concrete-Encased Grounding Electrodes <\/td>\n<\/tr>\n
360<\/td>\n7.5.7 Made Electrodes
7.5.8 Galvanic Corrosion <\/td>\n<\/tr>\n
361<\/td>\nGround Resistance Measurement <\/td>\n<\/tr>\n
362<\/td>\nMethods of Measuring Ground Resistance <\/td>\n<\/tr>\n
363<\/td>\nResistance of the Large Grounding Network <\/td>\n<\/tr>\n
364<\/td>\nSmall Grid -Fall of Potential Method <\/td>\n<\/tr>\n
365<\/td>\nGround Rod – Two-Terminal Method <\/td>\n<\/tr>\n
366<\/td>\n7.7 References <\/td>\n<\/tr>\n
367<\/td>\n7.8 Bibliography <\/td>\n<\/tr>\n
370<\/td>\nPower Factor and Related Considerations
8.1 General
Emphasis on Capacitors <\/td>\n<\/tr>\n
371<\/td>\nBenefits of Power-Factor Improvement
Typical Plant Power Factor
General Industry Applications
8.2.2 Plant Applications
Utilization Equipment Applications <\/td>\n<\/tr>\n
372<\/td>\nInstruments and Measurements for Power-Factor Studies
Table 46 Typical Unimproved Power-Factor Values by Industries
Table 47 Typical Operating Power-Factor Values by Plant Operations <\/td>\n<\/tr>\n
373<\/td>\n8.4 Power-Factor Economics <\/td>\n<\/tr>\n
374<\/td>\n8.5 Power-Factor Fundamentals
Angular Relationship of Current and Voltage in AC Circuits
Fig
Relationship of Active Reactive and Total Power
Fig <\/td>\n<\/tr>\n
375<\/td>\nDefinition of Power Factor
Leading and Lagging Power Factor
How to Improve the Power Factor <\/td>\n<\/tr>\n
376<\/td>\nStatic Power-Factor Controller <\/td>\n<\/tr>\n
377<\/td>\nCalculation Methods for Power-Factor Improvement <\/td>\n<\/tr>\n
378<\/td>\nLine Current by Supplying Reactive Power Requirements Locally
Various Power-Factor Ratings <\/td>\n<\/tr>\n
379<\/td>\nLocation of Reactive Power Supply <\/td>\n<\/tr>\n
380<\/td>\nfor Power-Factor Improvement <\/td>\n<\/tr>\n
381<\/td>\nPossible Shunt Capacitor Locations
Fig <\/td>\n<\/tr>\n
382<\/td>\nRelease of System Capacity
Power Factor with Reactive Compensation <\/td>\n<\/tr>\n
383<\/td>\n8.7 Voltage Improvement <\/td>\n<\/tr>\n
384<\/td>\nPower System Losses
Selection of Capacitors with Induction Motors
Effectiveness of Capacitors <\/td>\n<\/tr>\n
385<\/td>\nLimitations of Capacitor -Motor Switching
Medium-Speed Induction Motor <\/td>\n<\/tr>\n
386<\/td>\nSelection of Capacitor Ratings
for Power-Factor Improvement <\/td>\n<\/tr>\n
387<\/td>\nand T-Frame Designs <\/td>\n<\/tr>\n
388<\/td>\nDesign B 230 V 460 V 575 V Squirrel-Cage Motors <\/td>\n<\/tr>\n
389<\/td>\nDesign B 230 V 460 V 575 V Squirrel-Cage Motors <\/td>\n<\/tr>\n
390<\/td>\nDesign B 230 V 460 V 575 V Squirrel-Cage Motors <\/td>\n<\/tr>\n
391<\/td>\n8.9.4 Self-Excitation Considerations
and Wound-Rotor Motors <\/td>\n<\/tr>\n
392<\/td>\nHigh-Efficiency Motors <\/td>\n<\/tr>\n
393<\/td>\nLocation of Capacitors
Selection of Capacitors for Motors <\/td>\n<\/tr>\n
394<\/td>\nMotor-Capacitor Applications to Avoid
Induction Versus Synchronous Motors <\/td>\n<\/tr>\n
395<\/td>\nAutomatic Control Equipment <\/td>\n<\/tr>\n
396<\/td>\nCapacitor Standards and Operating Characteristics
Capacitor Ratings
Maximum Voltage
8.1 1.3 Temperature
Time to Discharge
Effect of Harmonics on Capacitors
Operating Characteristics
Overcurrent Protection <\/td>\n<\/tr>\n
397<\/td>\nLow-Voltage Switching Devices
Medium-Voltage Switching Devices
1000 kVA Transformer Capacitor Overheated <\/td>\n<\/tr>\n
398<\/td>\n8.1 1.10 Selection of Cable Sizes
8.1 1.1 1 Inspection of Capacitors
8.12 Transients
8.12.1 Medium-Voltage Switching
Table 53 Capacitor Rating Multipliers to Obtain Switching-Device Rating <\/td>\n<\/tr>\n
399<\/td>\nCircuit for Switching with Shunt Capacitor Bank
Fig <\/td>\n<\/tr>\n
400<\/td>\nStatic Power Converters
Addition of Capacitors <\/td>\n<\/tr>\n
401<\/td>\nResonances and Harmonics
Generation of Harmonic Voltages and Currents
Static Power Converter Theory
26 <\/td>\n<\/tr>\n
402<\/td>\nwith Thyristor Drives Having a Wide Range of Control Settings <\/td>\n<\/tr>\n
403<\/td>\n8.13.3 Harmonic Resonance
Three-phase Full-Wave Bridge Circuit Six-Pulse Converter
Fig <\/td>\n<\/tr>\n
404<\/td>\n8.13.4 Application Guidelines <\/td>\n<\/tr>\n
405<\/td>\nBased on Eq <\/td>\n<\/tr>\n
406<\/td>\nSelected Short-circuit Impedance <\/td>\n<\/tr>\n
407<\/td>\n8.14 Capacitor Switching
8.15 References <\/td>\n<\/tr>\n
408<\/td>\n8.16 Bibliography <\/td>\n<\/tr>\n
410<\/td>\nPower Switching Transformation and Motor-Control Apparatus
9.1 Introduction
9.1.1 Equipment Installation <\/td>\n<\/tr>\n
411<\/td>\nMaintenance Testing and Safety
Table 54 Minimum Clear Working Space in Front of Electric Equipment <\/td>\n<\/tr>\n
412<\/td>\n9.1.3 Heat Losses
Table 55 Range of Losses in Power System Equipment <\/td>\n<\/tr>\n
413<\/td>\nSwitching Apparatus for Power Circuits
9.2.1 Switches <\/td>\n<\/tr>\n
415<\/td>\n9.2.2 Fuses <\/td>\n<\/tr>\n
416<\/td>\n9.2.3 Circuit Breakers <\/td>\n<\/tr>\n
417<\/td>\nTable 56 Preferred Ratings for Indoor Oilless Circuit Breakers <\/td>\n<\/tr>\n
422<\/td>\nwith Instantaneous Direct-Acting Phase Trip Elements <\/td>\n<\/tr>\n
423<\/td>\nwithout Instantaneous Direct-Acting Phase Trip Elements <\/td>\n<\/tr>\n
424<\/td>\n9.3 Switchgear
9.3.1 General Discussion
9.3.2 Classifications <\/td>\n<\/tr>\n
425<\/td>\n9.3.3 Types
9.3.4 Definitions <\/td>\n<\/tr>\n
426<\/td>\n9.3.5 Ratings <\/td>\n<\/tr>\n
427<\/td>\nSwitchgear Assemblies <\/td>\n<\/tr>\n
428<\/td>\nTable 60 Voltage Ratings for Metal-Enclosed Bus <\/td>\n<\/tr>\n
429<\/td>\nMetal-Enclosed Power Switchgear
Table 62 Current Ratings for Metal-Enclosed Bus in Amperes <\/td>\n<\/tr>\n
430<\/td>\n9.3.6 Application Guides
Switchgear Assemblies <\/td>\n<\/tr>\n
432<\/td>\n9.3.7 Control Power
Metal-Enclosed Low-Voltage Power Circuit Breaker Switchgear <\/td>\n<\/tr>\n
433<\/td>\nMetal-Clad Switchgear <\/td>\n<\/tr>\n
434<\/td>\nTable 66 Standard Voltage Transformer Ratios
600 V and Below Power Circuit Breakers <\/td>\n<\/tr>\n
435<\/td>\n9.4 Transformers
9.4.1 Classifications
9.4.2 Specifications <\/td>\n<\/tr>\n
436<\/td>\nPower and Voltage Ratings <\/td>\n<\/tr>\n
437<\/td>\nTable 68 Transformer Standard Base kVA Ratings
Table 69 Classes of Transformer Cooling Systems <\/td>\n<\/tr>\n
438<\/td>\n9.4.4 VoltageTaps
9.4.5 Connections <\/td>\n<\/tr>\n
439<\/td>\n(Schematic Representation) <\/td>\n<\/tr>\n
440<\/td>\nAssociated with Nominal System Voltages <\/td>\n<\/tr>\n
441<\/td>\n9.4.6 Impedance
9.4.7 Insulation Medium <\/td>\n<\/tr>\n
442<\/td>\nStandard Impedance Values for Three-phase Transformers <\/td>\n<\/tr>\n
443<\/td>\n9.4.8 Accessories
9.4.9 Termination Facilities <\/td>\n<\/tr>\n
444<\/td>\n9.4.10 Sound Levels
9.5 Unit Substations
9.5.1 General Discussion
9.5.2 Types <\/td>\n<\/tr>\n
445<\/td>\n9.5.3 Selection and Location
Advantages of Unit Substations
Distributed Network
Fig
Duplex (Circuit Breaker and a Half Scheme)
Fig <\/td>\n<\/tr>\n
446<\/td>\n9.5.5 Application Guides
9.6 Motor-Control Equipment
9.6.1 General Discussion <\/td>\n<\/tr>\n
447<\/td>\nStarters Over
Starters 600 V and Below <\/td>\n<\/tr>\n
450<\/td>\nTable 73 Comparison of Different Reduced-Voltage Starters <\/td>\n<\/tr>\n
451<\/td>\nTypical Schematic Diagram of a Solid-state Motor Starter
Fig <\/td>\n<\/tr>\n
452<\/td>\n9.6.4 Motor-Control Center
9.6.5 Control Circuits <\/td>\n<\/tr>\n
453<\/td>\n9.6.6 Overload Protection
9.6.7 Solid-state Control <\/td>\n<\/tr>\n
454<\/td>\n9.7 References <\/td>\n<\/tr>\n
458<\/td>\nInstruments and Meters
10.1 Introduction
10.2 Basic Objectives <\/td>\n<\/tr>\n
459<\/td>\nSwitchboard and Panel Instruments
3.Phase. 4.Wire High Current and Voltage) <\/td>\n<\/tr>\n
460<\/td>\n10.3.1 Ammeters
10.3.2 Voltmeters
3.Phase. 4.Wire High Current and Voltage) <\/td>\n<\/tr>\n
461<\/td>\nPrimary Voltage Substation Sample Metering Layout
Fig <\/td>\n<\/tr>\n
462<\/td>\n10.3.3 Wattmeters
10.3.4 Varmeters
10.3.5 Power-Factor Meters
10.3.6 Frequency Meters
10.3.7 Synchroscopes
10.3.8 Elapsed-Time Meters
10.4 Portable Instruments <\/td>\n<\/tr>\n
463<\/td>\nVolt-Ohm Meter VOM), Multitester or Multimeter
10.4.2 Clamp-on Ammeters
10.5 Recording Instruments
10.6 Miscellaneous Instruments
10.6.1 Temperature Indicators
10.6.2 Megohmmeters
10.6.3 Ground Ohmmeters
10.6.4 Oscillographs
10.6.5 Oscilloscopes <\/td>\n<\/tr>\n
464<\/td>\n10.7 Meters
10.7.1 Kilowatthour Meters <\/td>\n<\/tr>\n
465<\/td>\n10.7.2 Kilovarhour Meters
10.7.3 &-Meters <\/td>\n<\/tr>\n
466<\/td>\n10.7.4 Demand Meters
10.7.5 Voltage-Squared Meters
10.7.6 Ampere-Squared Meters
10.8 Auxiliary Devices
10.8.1 Current Transformers <\/td>\n<\/tr>\n
467<\/td>\nVoltage (Potential) Transformers
10.8.3 Shunts
10.8.4 Transducers
10.8.5 Computers <\/td>\n<\/tr>\n
468<\/td>\n10.9 Typical Installations
High-Voltage Equipment (Above
Low-Voltage Equipment (Below <\/td>\n<\/tr>\n
469<\/td>\n10.10 References <\/td>\n<\/tr>\n
470<\/td>\n11 Cable Systems
11.1 Introduction <\/td>\n<\/tr>\n
471<\/td>\n11.2 Cable Construction
11.2.1 Conductors
Comparison Between Copper and Aluminum <\/td>\n<\/tr>\n
472<\/td>\n11.2.3 Insulation
Conductor Stranding
Fig <\/td>\n<\/tr>\n
473<\/td>\nTable 74 Properties of Copper and Aluminum <\/td>\n<\/tr>\n
474<\/td>\nTypical Values for Hardness Versus Temperature
Fig
Table 75 Commonly Used Insulating Materials <\/td>\n<\/tr>\n
475<\/td>\nTable 76 Rated Conductor Temperatures <\/td>\n<\/tr>\n
476<\/td>\n11.2.4 Cable Design <\/td>\n<\/tr>\n
479<\/td>\nElectric Field of Shielded Cable
Fig <\/td>\n<\/tr>\n
480<\/td>\nCable Outer Finishes
Uniform Dielectric
Nonshielded Cable on Ground Plane
Fig <\/td>\n<\/tr>\n
481<\/td>\nCommonly Used Shielded and Nonshielded Constructions
Fig <\/td>\n<\/tr>\n
482<\/td>\n11.3.1 Nonmetallic Finishes
Table 77 Properties of Jackets and Braids <\/td>\n<\/tr>\n
483<\/td>\n11.3.2 Metallic Finishes <\/td>\n<\/tr>\n
484<\/td>\nSingle- and Multiconductor Constructions
Physical Properties of Materials for Outer Coverings <\/td>\n<\/tr>\n
485<\/td>\n11.4 Cable Ratings
11.4.1 Voltage Rating
11.4.2 Conductor Selection
11.4.3 Load-Current Criteria <\/td>\n<\/tr>\n
487<\/td>\nEmergency Overload Criteria <\/td>\n<\/tr>\n
488<\/td>\nTable 78 Uprating for Short-Time Overloads <\/td>\n<\/tr>\n
489<\/td>\n11.4.5 Voltage-Drop Criteria
11.4.6 Fault-Current Criteria <\/td>\n<\/tr>\n
490<\/td>\nFault Current and Clearing Times <\/td>\n<\/tr>\n
491<\/td>\n11.5 Installation
11.5.1 Layout
11.5.2 Open Wire
11.5.3 Aerial Cable <\/td>\n<\/tr>\n
492<\/td>\n11.5.4 Direct Attachment
11.5.5 CableTrays <\/td>\n<\/tr>\n
493<\/td>\n11.5.6 Cable Bus
11.5.7 Conduit <\/td>\n<\/tr>\n
494<\/td>\n11.5.8 Direct Burial
11.5.9 Hazardous Locations <\/td>\n<\/tr>\n
495<\/td>\n11.5.10 Installation Procedures
Table 80 Wiring Methods for Hazardous Locations <\/td>\n<\/tr>\n
496<\/td>\n11.6 Connectors
11.6.1 Types Available <\/td>\n<\/tr>\n
497<\/td>\nConnectors for Aluminum <\/td>\n<\/tr>\n
500<\/td>\nProcedures for Connecting Aluminum Conductors
Fig <\/td>\n<\/tr>\n
501<\/td>\nConnectors for Various Voltage Cables
11.6.4 Performance Requirements
34 <\/td>\n<\/tr>\n
502<\/td>\n11.7 Terminations
11.7.1 Purpose
11.7.2 Definitions <\/td>\n<\/tr>\n
503<\/td>\n11.7.3 Cable Terminations <\/td>\n<\/tr>\n
505<\/td>\nStress-Relief Cone
Fig <\/td>\n<\/tr>\n
506<\/td>\n(For Solid Dielectric Cables) <\/td>\n<\/tr>\n
507<\/td>\n(For Solid Dielectric Cables) <\/td>\n<\/tr>\n
508<\/td>\n(For Solid Dielectric Cable) <\/td>\n<\/tr>\n
510<\/td>\n11.7.4 Cable Connectors
Separable Insulated Connectors
Performance Requirements <\/td>\n<\/tr>\n
511<\/td>\nSplicing Devices and Techniques <\/td>\n<\/tr>\n
512<\/td>\nTaped Splices (Fig <\/td>\n<\/tr>\n
513<\/td>\nTypical Taped Splice in Shielded Cable or Perforated Strip
Fig <\/td>\n<\/tr>\n
514<\/td>\n11.8.2 Preassembled Splices
Grounding of Cable Systems <\/td>\n<\/tr>\n
515<\/td>\n11.9.1 Sheath Losses
11.10 Protection from Transient Overvoltage <\/td>\n<\/tr>\n
516<\/td>\n11.1 1 Testing
11.11.1 Application and Utility <\/td>\n<\/tr>\n
517<\/td>\n11.1 1.2 Alternating Current Versus Direct Current
11.1 1.3 Factory Tests
11.11.4 Field Tests <\/td>\n<\/tr>\n
518<\/td>\nTable 81 ICEA Specified DC Cable Test Voltages kv). Pre-1968 Cable <\/td>\n<\/tr>\n
519<\/td>\n1968 and Later Cable <\/td>\n<\/tr>\n
520<\/td>\n11.11.5 Procedure
Installation and Maintenance <\/td>\n<\/tr>\n
521<\/td>\n11.1 1.6 Direct-Current Corona and Its Suppression
11.1 1.7 Line-Voltage Fluctuations
11.1 1.8 Resistance Evaluation <\/td>\n<\/tr>\n
522<\/td>\n11.1 1.9 Megohmmeter Test
1 1.1 2 Locating Cable Faults
Influence of Ground-Fault Resistance <\/td>\n<\/tr>\n
523<\/td>\n11.12.2 Equipment and Methods <\/td>\n<\/tr>\n
524<\/td>\n11.12.3 Selection <\/td>\n<\/tr>\n
525<\/td>\n11.13 Cable Specification <\/td>\n<\/tr>\n
526<\/td>\n11.14 References <\/td>\n<\/tr>\n
530<\/td>\n12 Busways
12.1 Origin
12.2 Busway Construction <\/td>\n<\/tr>\n
531<\/td>\n12.3 Feeder Busway <\/td>\n<\/tr>\n
532<\/td>\n12.4 Plug-In Busway
Plug.1n Lighting and Trolley Types <\/td>\n<\/tr>\n
533<\/td>\nFeeder Busway
Fig <\/td>\n<\/tr>\n
534<\/td>\n12.5 Lighting Busway
12.6 Trolley Busway
Circuit Breaker Power Tapoff and Flexible Bus-Drop Cable <\/td>\n<\/tr>\n
535<\/td>\n12.7 Standards
High-Intensity Discharge Fixture <\/td>\n<\/tr>\n
536<\/td>\nSelection and Application of Busways
12.8.1 Current-Carrying Capacity
Short-Circuit Current Rating <\/td>\n<\/tr>\n
537<\/td>\n12.8.3 Voltage Drop
Table 84 Busway Ratings as a Function of Power Factor <\/td>\n<\/tr>\n
538<\/td>\nWhen Approximate Voltage-Drop Formulas Are Used <\/td>\n<\/tr>\n
539<\/td>\n12.8.4 Thermal Expansion
Building Expansion Joints
12.8.6 Welding Loads <\/td>\n<\/tr>\n
540<\/td>\n12.9 Layout
Current with Entire Load at End <\/td>\n<\/tr>\n
541<\/td>\nCurrent with Entire Load at End <\/td>\n<\/tr>\n
542<\/td>\n12.10 Installation
12.10.1 Procedure Prior to Installation
Milliohms per 100 ft 25 “C <\/td>\n<\/tr>\n
543<\/td>\n12.10.2 Procedure During Installation
12.10.3 Procedure After Installation
12.1 1 Field Testing <\/td>\n<\/tr>\n
544<\/td>\n12.12 Busways Over 600 V (Metal-Enclosed Bus)
12.12.1 Standards
12.12.2 Ratings
12.12.3 Construction
12.12.4 Field Testing <\/td>\n<\/tr>\n
545<\/td>\n12.13 References
Ratings of Nonsegregated-Phase Metal-Enclosed Bus <\/td>\n<\/tr>\n
546<\/td>\n13 Electrical Energy Conservation
13.1 Introduction
Organizing for a Conservation Effort
Obtain Management Approval and Commitment <\/td>\n<\/tr>\n
547<\/td>\nEmbarking on an Energy Conservation Program <\/td>\n<\/tr>\n
548<\/td>\nEnergy Audit
13.2.4 Tracking Progress <\/td>\n<\/tr>\n
549<\/td>\n13.2.5 Overall Considerations
Table 89 Examples of Conservation Categories <\/td>\n<\/tr>\n
550<\/td>\nDollar Involvement in ECOs-Rates
13.3.1 Introduction
13.3.2 Rate Textbook
13.3.3 Billing Calculations
Declining Block Rate and Example <\/td>\n<\/tr>\n
551<\/td>\nDemand Usage Rate
115 <\/td>\n<\/tr>\n
552<\/td>\n13.4 Load Management
13.4.1 Introduction
13.4.2 Controllers <\/td>\n<\/tr>\n
553<\/td>\nEquipment Audit and Load Profile <\/td>\n<\/tr>\n
554<\/td>\nEnergy Savings to Dollar Savings
Time Value of Money
Evaluating Motor Loss <\/td>\n<\/tr>\n
556<\/td>\nEvaluating Transformer Losses
Evaluating Losses in Other Equipment <\/td>\n<\/tr>\n
557<\/td>\nElectrical Equipment and Its Efficient Operation
13.6.1 Losses
13.6.2 Efficiency <\/td>\n<\/tr>\n
558<\/td>\n13.6.3 Conductor Oversizing
13.6.4 Motors <\/td>\n<\/tr>\n
559<\/td>\n13.6.5 Transformers
Thyratrons Ignitions and Other Diode Devices
13.6.7 Capacitors <\/td>\n<\/tr>\n
560<\/td>\nReactors and Regulators
13.6.9 Equipment Overview
13.7 Metering <\/td>\n<\/tr>\n
561<\/td>\n13.8 Lighting
13.8.1 Introduction <\/td>\n<\/tr>\n
562<\/td>\nTypes of Lighting <\/td>\n<\/tr>\n
563<\/td>\n13.8.3 Control
13.8.4 System Considerations <\/td>\n<\/tr>\n
564<\/td>\n13.9 Cogeneration
13.10 Peak Shaving <\/td>\n<\/tr>\n
565<\/td>\n13.1 1 Bibliography <\/td>\n<\/tr>\n
568<\/td>\n14 Cost Estimating of Industrial Power Systems
14.1 Introduction
14.2 Power Supply <\/td>\n<\/tr>\n
569<\/td>\n14.3 Voltage Level
Reliability of the Distribution System
Preparing the Cost Estimate
14.6 Classes of Estimates <\/td>\n<\/tr>\n
570<\/td>\n14.6.1 Preliminary Estimate
14.6.2 Engineering Estimate
14.6.3 Detailed Estimate
Equipment and Material Costs
14.8 Installation Costs <\/td>\n<\/tr>\n
571<\/td>\n14.9 Other Costs
14.10 Example
14.11 Design Data <\/td>\n<\/tr>\n
572<\/td>\nOne-Line Diagram <\/td>\n<\/tr>\n
573<\/td>\nSubstation A-5 MVA 4.16 kV <\/td>\n<\/tr>\n
574<\/td>\nSubstation C- 1.5 MVA 480Y\/277 <\/td>\n<\/tr>\n
575<\/td>\nSite Plan <\/td>\n<\/tr>\n
576<\/td>\nCost Estimate Calculation Sheet <\/td>\n<\/tr>\n
577<\/td>\n14.12 Supporting Data <\/td>\n<\/tr>\n
578<\/td>\nSample Cost Estimate Calculation Sheet – Summary <\/td>\n<\/tr>\n
580<\/td>\nSample Cost Estimate Calculation Sheet – Primary Power <\/td>\n<\/tr>\n
584<\/td>\nSample Cost Estimate Calculation Sheet – Substation A <\/td>\n<\/tr>\n
586<\/td>\nSample Cost Estimate Calculation Sheet – Substation C <\/td>\n<\/tr>\n
590<\/td>\nPower System Device Function Numbers <\/td>\n<\/tr>\n
598<\/td>\nINDEX <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":"

IEEE Recommended Practice for Electric Power Distribution for Industrial Plants (IEEE Red Book)<\/b><\/p>\n\n\n\n\n
Published By<\/td>\nPublication Date<\/td>\nNumber of Pages<\/td>\n<\/tr>\n
IEEE<\/b><\/a><\/td>\n1986<\/td>\n609<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n","protected":false},"featured_media":80970,"template":"","meta":{"rank_math_lock_modified_date":false,"ep_exclude_from_search":false},"product_cat":[2644],"product_tag":[],"class_list":{"0":"post-80969","1":"product","2":"type-product","3":"status-publish","4":"has-post-thumbnail","6":"product_cat-ieee","8":"first","9":"instock","10":"sold-individually","11":"shipping-taxable","12":"purchasable","13":"product-type-simple"},"_links":{"self":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product\/80969","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product"}],"about":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/types\/product"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media\/80970"}],"wp:attachment":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media?parent=80969"}],"wp:term":[{"taxonomy":"product_cat","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_cat?post=80969"},{"taxonomy":"product_tag","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_tag?post=80969"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}