{"id":80969,"date":"2024-10-17T18:49:53","date_gmt":"2024-10-17T18:49:53","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/ieee-141-1986\/"},"modified":"2024-10-24T19:45:17","modified_gmt":"2024-10-24T19:45:17","slug":"ieee-141-1986","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/ieee\/ieee-141-1986\/","title":{"rendered":"IEEE 141 1986"},"content":{"rendered":"
New IEEE Standard – Inactive – Superseded. A thorough analysis of basic electrical-systems considerations is presented. Guidance is provided in design, construction, and continuity of an overall system to achieve safety of life and preservation of property; reliability; simplicity of operation; voltage regulation in the utilization of equipment within the tolerance limits under all load conditions; care and maintenance; and flexibility to permit development and expansion. Recommendations are made regarding system planning; voltage considerations; surge voltage protection; system protective devices; fault calculations; grounding; power switching, transformation, and motor-control apparatus; instruments and meters; cable systems; busways; electrical energy conservation; and cost estimation.<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
14<\/td>\n | 13.8 kV Feeder E G and J and 480 V Bus 1,2 and <\/td>\n<\/tr>\n | ||||||
19<\/td>\n | Table <\/td>\n<\/tr>\n | ||||||
21<\/td>\n | 30t <\/td>\n<\/tr>\n | ||||||
27<\/td>\n | ANSI\/IEEE C67.12.01-1979 <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | 1 Introduction 1.1 Institute of Electrical and Electronics Engineers (IEEE) 1.2 IEEE Meetings and Publications 1.3 Standards Recommended Practices and Guides <\/td>\n<\/tr>\n | ||||||
37<\/td>\n | 1.4 IEEE Standards Documents <\/td>\n<\/tr>\n | ||||||
38<\/td>\n | Standards 1.6 National Fire Protection Association (NFPA) Standards 1.7 Underwriters Laboratories Inc (UL) Standards 1.8 American National Standards Institute (ANSI) <\/td>\n<\/tr>\n | ||||||
39<\/td>\n | 1.9 Occupational Safety and Health Administration (OSHA) 1.10 Environmental Considerations 1.11 Edison Electric Institute (EEI) 1.1 2 Handbooks <\/td>\n<\/tr>\n | ||||||
40<\/td>\n | 1.13 Periodicals <\/td>\n<\/tr>\n | ||||||
41<\/td>\n | 1.14 Manufacturers\u2122 Data Fig <\/td>\n<\/tr>\n | ||||||
42<\/td>\n | 2 System Planning 2.1 Introduction 2.2 Basic Design Considerations 2.2.1 Safety 2.2.2 Reliability Fig <\/td>\n<\/tr>\n | ||||||
43<\/td>\n | 2.2.3 System Reliability Analysis 2.2.4 Reliability Data for Electrical Equipment 2.2.5 Reliability Analysis and Total Owning Cost Fig <\/td>\n<\/tr>\n | ||||||
44<\/td>\n | 2.2.6 Simplicity of Operation 2.2.7 Voltage Regulation 2.2.8 Maintenance 2.2.9 Flexibility 2.2.10 fist cost 2.3 Planning Guide for Distribution Design 2.3.1 Load Survey 2.3.2 Demand Fig <\/td>\n<\/tr>\n | ||||||
45<\/td>\n | 2.3.3 Systems Fig <\/td>\n<\/tr>\n | ||||||
46<\/td>\n | Simple Radial System <\/td>\n<\/tr>\n | ||||||
47<\/td>\n | Expanded Radial System Fig <\/td>\n<\/tr>\n | ||||||
48<\/td>\n | Primary Selective System Primary Loop System Fig <\/td>\n<\/tr>\n | ||||||
49<\/td>\n | Fig <\/td>\n<\/tr>\n | ||||||
50<\/td>\n | Typical Configurations Load Center Substations Fig <\/td>\n<\/tr>\n | ||||||
51<\/td>\n | 2.3.4 Equipment Locations Secondary Spot Network <\/td>\n<\/tr>\n | ||||||
52<\/td>\n | 2.3.5 Voltage 2.3.6 Utility Service Ring Bus System Fig <\/td>\n<\/tr>\n | ||||||
53<\/td>\n | 2.3.7 Generation Fig <\/td>\n<\/tr>\n | ||||||
54<\/td>\n | 2.3.8 One-Line Diagram 2.3.9 Short-circuit Analysis 2.3.10 Protection <\/td>\n<\/tr>\n | ||||||
55<\/td>\n | 2.3.11 Expansion <\/td>\n<\/tr>\n | ||||||
56<\/td>\n | Power Supply Planning Considerations Fig <\/td>\n<\/tr>\n | ||||||
58<\/td>\n | Typical Main Primary Distribution Arrangements Fig <\/td>\n<\/tr>\n | ||||||
59<\/td>\n | 2.3.12 Other Requirements 2.3.13 Safety <\/td>\n<\/tr>\n | ||||||
60<\/td>\n | 2.3.14 Communications 2.3.15 Maintenance <\/td>\n<\/tr>\n | ||||||
61<\/td>\n | 2.4 References Fig 95t 95t 95t <\/td>\n<\/tr>\n | ||||||
62<\/td>\n | 2.5 Bibliography <\/td>\n<\/tr>\n | ||||||
64<\/td>\n | 3 Voltage Considerations 3.1 General 3.1.1 Definitions <\/td>\n<\/tr>\n | ||||||
65<\/td>\n | States Application of Voltage Classes Voltage Systems Outside of the United States <\/td>\n<\/tr>\n | ||||||
66<\/td>\n | Voltages of Table <\/td>\n<\/tr>\n | ||||||
67<\/td>\n | Standard Nominal System Voltages and Voltage Ranges <\/td>\n<\/tr>\n | ||||||
69<\/td>\n | Voltage Standard for Canada Voltage Control in Electric Power Systems Utility Systems System <\/td>\n<\/tr>\n | ||||||
70<\/td>\n | System Voltage <\/td>\n<\/tr>\n | ||||||
71<\/td>\n | ANSI C84.1-1982 <\/td>\n<\/tr>\n | ||||||
72<\/td>\n | Regulated Power Distribution System 120 V Base Table <\/td>\n<\/tr>\n | ||||||
74<\/td>\n | System Voltage Tolerance Limits System Voltage Profile of Limits of Range A ANSI C84.1-1982 <\/td>\n<\/tr>\n | ||||||
75<\/td>\n | 3.2.5 System Voltage Nomenclature <\/td>\n<\/tr>\n | ||||||
76<\/td>\n | Nonstandard Nominal System Voltages ANSI C84.1-1982 <\/td>\n<\/tr>\n | ||||||
77<\/td>\n | Table 3 Nominal System Voltages <\/td>\n<\/tr>\n | ||||||
78<\/td>\n | Standard Nominal System Voltages in the United States Voltage <\/td>\n<\/tr>\n | ||||||
79<\/td>\n | Table 1 Range A in Volts Tolerance Limits for Low-Voltage Three-phase Motors in Volts Table Fluorescent Lamp Ballasts in Volts <\/td>\n<\/tr>\n | ||||||
80<\/td>\n | 3.3 Voltage Selection Selection of Low-Voltage Utilization Voltages <\/td>\n<\/tr>\n | ||||||
81<\/td>\n | Distribution Line __ <\/td>\n<\/tr>\n | ||||||
82<\/td>\n | High-Voltage Transmission Lines <\/td>\n<\/tr>\n | ||||||
83<\/td>\n | Voltage Ratings for Low-Voltage Utilization Equipment <\/td>\n<\/tr>\n | ||||||
84<\/td>\n | Nameplate Voltage Ratings of Standard Induction Motors Table <\/td>\n<\/tr>\n | ||||||
85<\/td>\n | Utilization Equipment 3.5.1 General Effects 3.5.2 Induction Motors 3.5.3 Synchronous Motors 3.5.4 Incandescent Lamps <\/td>\n<\/tr>\n | ||||||
86<\/td>\n | Fig Induction-Motor Characteristics <\/td>\n<\/tr>\n | ||||||
87<\/td>\n | 3.5.5 Fluorescent Lamps Metal Halide) 3.5.7 Infrared Heating Processes Effect of Voltage Variations on Incandescent Lamps Table <\/td>\n<\/tr>\n | ||||||
88<\/td>\n | 3.5.8 Resistance Heating Devices 3.5.9 Electron Tubes 3.5.10 Capacitors 3.5.1 1 Solenoid-Operated Devices 3.5.12 Solid-state Equipment Secondary Distribution System Power Source <\/td>\n<\/tr>\n | ||||||
89<\/td>\n | Voltage Drop Limits Fig <\/td>\n<\/tr>\n | ||||||
90<\/td>\n | Improvement of Voltage Conditions System Power Source Locations <\/td>\n<\/tr>\n | ||||||
91<\/td>\n | Phase-Voltage Unbalance in Three-phase Systems 3.8.1 Causes of Phase-Voltage Unbalance 3.8.2 Measurement of Phase-Voltage Unbalance 3.8.3 Effect of Phase-Voltage Unbalance Fig <\/td>\n<\/tr>\n | ||||||
92<\/td>\n | Voltage Dips and Flicker Table 11 Effect of Phase-Voltage Unbalance on Motor Temperature Rise <\/td>\n<\/tr>\n | ||||||
94<\/td>\n | Versus Time <\/td>\n<\/tr>\n | ||||||
95<\/td>\n | Harmonics 3.10.1 Nature of Harmonics 3.10.2 Characteristics of Harmonics Polyphase Induction Motors <\/td>\n<\/tr>\n | ||||||
96<\/td>\n | 3.10.3 Harmonic-Producing Equipment <\/td>\n<\/tr>\n | ||||||
97<\/td>\n | 3.10.4 Reduction of Harmonic Effects Calculation of Voltage Drops 3.1 1.1 General Mathematical Formulas <\/td>\n<\/tr>\n | ||||||
98<\/td>\n | Calculations Fig <\/td>\n<\/tr>\n | ||||||
99<\/td>\n | 3.1 1.2 Cable Voltage Drop <\/td>\n<\/tr>\n | ||||||
100<\/td>\n | Cable per 10 000 A-ft (60 “C Conductor Temperature 60 Hz) <\/td>\n<\/tr>\n | ||||||
101<\/td>\n | Busway Voltage Drop Transformer Voltage Drop <\/td>\n<\/tr>\n | ||||||
102<\/td>\n | Transformers 225-10 000 kVA 5-25 kV Transformers 1500-10 000 kVA 34.5 kV Fig <\/td>\n<\/tr>\n | ||||||
103<\/td>\n | Motor-Starting Voltage Drop Effect of Motor Starting on Generators Effect of Motor Starting on Distribution System Fig <\/td>\n<\/tr>\n | ||||||
104<\/td>\n | Starting of a Motor Fig Table 14 Comparison of Motor-Starting Methods <\/td>\n<\/tr>\n | ||||||
105<\/td>\n | a Motor Fig <\/td>\n<\/tr>\n | ||||||
106<\/td>\n | Full-Voltage Starting of a Motor Fig <\/td>\n<\/tr>\n | ||||||
107<\/td>\n | References Fig <\/td>\n<\/tr>\n | ||||||
108<\/td>\n | Bibliography Fig <\/td>\n<\/tr>\n | ||||||
109<\/td>\n | Fig <\/td>\n<\/tr>\n | ||||||
110<\/td>\n | Surge Voltage Protection Nature of the Problem Charge Is Deposited on Conducting Line by Lightning <\/td>\n<\/tr>\n | ||||||
113<\/td>\n | Action of Fuse to Produce Transient Overvoltage <\/td>\n<\/tr>\n | ||||||
114<\/td>\n | Traveling Wave Behavior 4.2.1 Surge-Voltage Propagation Switching Restrike Phenomena <\/td>\n<\/tr>\n | ||||||
115<\/td>\n | Distributed-Constant Transmission Circuit <\/td>\n<\/tr>\n | ||||||
116<\/td>\n | 4.2.2 Surge-Voltage Reflection Impedance2 <\/td>\n<\/tr>\n | ||||||
117<\/td>\n | Junction Point J <\/td>\n<\/tr>\n | ||||||
118<\/td>\n | 4.2.3 Amplification Phenomena Different Ways <\/td>\n<\/tr>\n | ||||||
119<\/td>\n | Arrester Progressively Higher Surge Impedance <\/td>\n<\/tr>\n | ||||||
120<\/td>\n | Vulnerability of a Chain of Insulation Systems in Series <\/td>\n<\/tr>\n | ||||||
121<\/td>\n | Insulation Voltage Withstand Characteristics 4.3.1 Introduction <\/td>\n<\/tr>\n | ||||||
122<\/td>\n | Insulation Tests and Ratings Standard Impulse Test Waves Fig <\/td>\n<\/tr>\n | ||||||
123<\/td>\n | Fig Table 15 Impulse Test Levels for Liquid-Filled Transformers Switchgear Assemblies and Metal-Enclosed Buses <\/td>\n<\/tr>\n | ||||||
124<\/td>\n | Fig Table 17 Impulse Test Levels for Dry-Type Transformers Winding Impulse Voltages Phase-to-Ground <\/td>\n<\/tr>\n | ||||||
125<\/td>\n | Physical Properties Affecting Insulation Strength Fig <\/td>\n<\/tr>\n | ||||||
126<\/td>\n | Fig <\/td>\n<\/tr>\n | ||||||
127<\/td>\n | LC Network in a Multiturn Winding Fig <\/td>\n<\/tr>\n | ||||||
128<\/td>\n | Arrester Characteristics and Ratings 4.4.1 Introduction Fig <\/td>\n<\/tr>\n | ||||||
129<\/td>\n | Volt-Ampere Characteristics Silicon Carbide Valve-Element Discs <\/td>\n<\/tr>\n | ||||||
130<\/td>\n | Basis of Arrester Rating <\/td>\n<\/tr>\n | ||||||
131<\/td>\n | Typical Volt-Ampere Characteristics of 6 kV Valve Elements Fig <\/td>\n<\/tr>\n | ||||||
132<\/td>\n | Fig Indicated Impulse Currents <\/td>\n<\/tr>\n | ||||||
133<\/td>\n | 4.4.4 Protective Characteristics Fig <\/td>\n<\/tr>\n | ||||||
134<\/td>\n | Silicon Surge Arresters <\/td>\n<\/tr>\n | ||||||
135<\/td>\n | Typical Discharge Voltage Versus Current Wave Crest Time (ps) Fig <\/td>\n<\/tr>\n | ||||||
136<\/td>\n | 4.4.5 Arrester Classes Arrester Discharge-Current Capability Fig <\/td>\n<\/tr>\n | ||||||
137<\/td>\n | 4.5 Arrester Selection 4.5.1 Arrester Rating Fig <\/td>\n<\/tr>\n | ||||||
138<\/td>\n | Fig <\/td>\n<\/tr>\n | ||||||
139<\/td>\n | 4.5.2 Arrester Class Fig <\/td>\n<\/tr>\n | ||||||
140<\/td>\n | Fig Three-phase Systems in kV <\/td>\n<\/tr>\n | ||||||
142<\/td>\n | 4.5.3 Arrester Location Fig <\/td>\n<\/tr>\n | ||||||
143<\/td>\n | 4.6 Application Concepts 4.6.1 General Considerations Fig <\/td>\n<\/tr>\n | ||||||
144<\/td>\n | Resulting Wave Phenomena for Various Arrester Locations <\/td>\n<\/tr>\n | ||||||
145<\/td>\n | Voltage at the Equipment to the Arrester A Voltage Fig <\/td>\n<\/tr>\n | ||||||
146<\/td>\n | 4.6.2 Insulation Coordination Fig <\/td>\n<\/tr>\n | ||||||
147<\/td>\n | Test-Implied Transformer Withstand Curve Characteristic of a Surge Arrester 1.2 x 50 ps Wave) <\/td>\n<\/tr>\n | ||||||
148<\/td>\n | 4.6.3 Component Protection <\/td>\n<\/tr>\n | ||||||
150<\/td>\n | Fig <\/td>\n<\/tr>\n | ||||||
151<\/td>\n | Versus Line-Cable Junction Arrester Clamping Voltage Fig 23 <\/td>\n<\/tr>\n | ||||||
152<\/td>\n | Versus Line-Cable Junction Arrester Clamping Voltage <\/td>\n<\/tr>\n | ||||||
153<\/td>\n | former Without Requiring Arrester at Dry-Type Transformer <\/td>\n<\/tr>\n | ||||||
155<\/td>\n | Machine Impulse Voltage Withstand Envelope Fig <\/td>\n<\/tr>\n | ||||||
156<\/td>\n | for Wavefront Control Fig Line Terminal Connected Line to Ground <\/td>\n<\/tr>\n | ||||||
158<\/td>\n | 4.7 References <\/td>\n<\/tr>\n | ||||||
160<\/td>\n | 4.8 Bibliography <\/td>\n<\/tr>\n | ||||||
161<\/td>\n | Fig <\/td>\n<\/tr>\n | ||||||
162<\/td>\n | Fig <\/td>\n<\/tr>\n | ||||||
163<\/td>\n | Fig <\/td>\n<\/tr>\n | ||||||
165<\/td>\n | Fig <\/td>\n<\/tr>\n | ||||||
167<\/td>\n | Fig <\/td>\n<\/tr>\n | ||||||
168<\/td>\n | Fig <\/td>\n<\/tr>\n | ||||||
169<\/td>\n | Fig <\/td>\n<\/tr>\n | ||||||
170<\/td>\n | Application and Coordination of System Protective Devices 5.1 Introduction 5.1.1 Purpose Considering Plant Operation <\/td>\n<\/tr>\n | ||||||
171<\/td>\n | 5.1.3 Equipment Capabilities Importance of Responsible Planning <\/td>\n<\/tr>\n | ||||||
172<\/td>\n | Analysis of System Behavior and Protection Needs 5.2.1 Nature of the Problem Grounded and Ungrounded Systems <\/td>\n<\/tr>\n | ||||||
173<\/td>\n | System Before and After the Occurrence of a Ground Fault <\/td>\n<\/tr>\n | ||||||
174<\/td>\n | Faults Fault Condition <\/td>\n<\/tr>\n | ||||||
175<\/td>\n | 5.2.4 Analytical Restraints Practical Limits of Protection <\/td>\n<\/tr>\n | ||||||
176<\/td>\n | Unbalanced Fault Conditions (System X\/R = <\/td>\n<\/tr>\n | ||||||
177<\/td>\n | Protective Devices and Their Applications 5.3.1 General Discussion 5.3.2 Overcurrent Relays <\/td>\n<\/tr>\n | ||||||
178<\/td>\n | Typical Electromagnetic Overcurrent Relay Fig Attachment (Relay Removed from Drawout Case) <\/td>\n<\/tr>\n | ||||||
179<\/td>\n | Special Overcurrent Relays 5.3.4 Directional Relays <\/td>\n<\/tr>\n | ||||||
180<\/td>\n | Overcurrent Relay <\/td>\n<\/tr>\n | ||||||
181<\/td>\n | Typical Relay Time-Current Characteristics Fig <\/td>\n<\/tr>\n | ||||||
182<\/td>\n | 5.3.5 Differential Relays <\/td>\n<\/tr>\n | ||||||
183<\/td>\n | Arrangements for Motor and Generator Differential Protection Fig <\/td>\n<\/tr>\n | ||||||
186<\/td>\n | Using Standard Induction-Disk Overcurrent Relays <\/td>\n<\/tr>\n | ||||||
187<\/td>\n | Current Balance Relay 5.3.7 Ground-Fault Relaying <\/td>\n<\/tr>\n | ||||||
188<\/td>\n | Standard Arrangement for Residually Connected Ground Relay Fig Ground Relay <\/td>\n<\/tr>\n | ||||||
189<\/td>\n | Synchronism-Check and Synchronizing Relays 5.3.9 Pilot-Wire Relays <\/td>\n<\/tr>\n | ||||||
190<\/td>\n | 5.3.10 Voltage Relays 5.3.11 Distance Relays <\/td>\n<\/tr>\n | ||||||
191<\/td>\n | Phase-Sequence or Reverse-Phase Relays 5.3.13 Frequency Relays 5.3.14 Temperature-Sensitive Relays <\/td>\n<\/tr>\n | ||||||
192<\/td>\n | 5.3.15 Pressure-Sensitive Relays Replica-Type Temperature Relays 5.3.17 Auxiliary Relays Breakers <\/td>\n<\/tr>\n | ||||||
193<\/td>\n | 5.3.19 Fuses <\/td>\n<\/tr>\n | ||||||
194<\/td>\n | Typical Time-Current Plot for Electromechanical Trip Devices Fig <\/td>\n<\/tr>\n | ||||||
195<\/td>\n | Typical Time-Current Plot for Solid-state Trip Devices Fig <\/td>\n<\/tr>\n | ||||||
196<\/td>\n | Current-Limiting Fuses <\/td>\n<\/tr>\n | ||||||
199<\/td>\n | Available rms Symmetrical Current) <\/td>\n<\/tr>\n | ||||||
203<\/td>\n | Performance Limitations Load Current and Voltage Wave Shape 5.4.2 Instrument Transformers <\/td>\n<\/tr>\n | ||||||
204<\/td>\n | Principles of Protective Relay Application One-Line Diagram Illustrating Zones of Protection <\/td>\n<\/tr>\n | ||||||
205<\/td>\n | Typical Small-Plant Relay Systems Typical Small Industrial System <\/td>\n<\/tr>\n | ||||||
206<\/td>\n | and Associated Secondary Circuits <\/td>\n<\/tr>\n | ||||||
207<\/td>\n | System <\/td>\n<\/tr>\n | ||||||
209<\/td>\n | Industrial Plant System <\/td>\n<\/tr>\n | ||||||
216<\/td>\n | Relaying for an Industrial Plant with Local Generation <\/td>\n<\/tr>\n | ||||||
217<\/td>\n | Industrial Plant System with Local Generation <\/td>\n<\/tr>\n | ||||||
218<\/td>\n | Protection Requirements 5.6.1 Transformers <\/td>\n<\/tr>\n | ||||||
219<\/td>\n | Table 23 Maximum Overcurrent Protection (in Percent) <\/td>\n<\/tr>\n | ||||||
221<\/td>\n | Category I1 Transformers <\/td>\n<\/tr>\n | ||||||
222<\/td>\n | Category I11 Transformers <\/td>\n<\/tr>\n | ||||||
223<\/td>\n | 5.6.2 Feeder Conductors <\/td>\n<\/tr>\n | ||||||
224<\/td>\n | 5.6.3 Motors <\/td>\n<\/tr>\n | ||||||
225<\/td>\n | Motor and Protective Relay Characteristics <\/td>\n<\/tr>\n | ||||||
228<\/td>\n | Motor Protection Acceptable to the NEC <\/td>\n<\/tr>\n | ||||||
229<\/td>\n | Use and Interpretation of Coordination Curves Need and Value 5.7.2 Device Performance <\/td>\n<\/tr>\n | ||||||
231<\/td>\n | Industrial Plant Distribution System <\/td>\n<\/tr>\n | ||||||
234<\/td>\n | Trip Devices <\/td>\n<\/tr>\n | ||||||
235<\/td>\n | Preparing for the Coordination Study <\/td>\n<\/tr>\n | ||||||
236<\/td>\n | Substations) <\/td>\n<\/tr>\n | ||||||
237<\/td>\n | Typical Time-Current Characteristic Curves of Fuses <\/td>\n<\/tr>\n | ||||||
238<\/td>\n | Specific Examples -Applying the Fundamentals Misrepresenting Proper Fault Clearing <\/td>\n<\/tr>\n | ||||||
239<\/td>\n | Relaying <\/td>\n<\/tr>\n | ||||||
240<\/td>\n | Feeders L and M and Incoming Line Circuits <\/td>\n<\/tr>\n | ||||||
241<\/td>\n | Source and Feeder Circuits <\/td>\n<\/tr>\n | ||||||
242<\/td>\n | Feeder Relay at 13.8 kV Bus <\/td>\n<\/tr>\n | ||||||
243<\/td>\n | Generator Relay at 13.8 kV Bus <\/td>\n<\/tr>\n | ||||||
246<\/td>\n | 2.4 kV Bus 1 Coordination <\/td>\n<\/tr>\n | ||||||
247<\/td>\n | 2.4 kV Bus 2 Coordination <\/td>\n<\/tr>\n | ||||||
248<\/td>\n | 2.4 kV Buses 2 and <\/td>\n<\/tr>\n | ||||||
250<\/td>\n | Relaying <\/td>\n<\/tr>\n | ||||||
251<\/td>\n | 46 <\/td>\n<\/tr>\n | ||||||
252<\/td>\n | Equipment <\/td>\n<\/tr>\n | ||||||
255<\/td>\n | Network Coordination <\/td>\n<\/tr>\n | ||||||
257<\/td>\n | 480 V Bus 1 2 and 3 Network <\/td>\n<\/tr>\n | ||||||
258<\/td>\n | 13.8 kV Feeder J and 480 V Bus 4 Coordination <\/td>\n<\/tr>\n | ||||||
259<\/td>\n | Testing 5.9.1 Installation Checking <\/td>\n<\/tr>\n | ||||||
261<\/td>\n | Typical Current-Transformer Circuit Fig <\/td>\n<\/tr>\n | ||||||
266<\/td>\n | Maintenance and Periodic Testing <\/td>\n<\/tr>\n | ||||||
267<\/td>\n | Scope of Testing <\/td>\n<\/tr>\n | ||||||
271<\/td>\n | Typical Relay Inspection and Test Form Fig <\/td>\n<\/tr>\n | ||||||
274<\/td>\n | andTest Form <\/td>\n<\/tr>\n | ||||||
275<\/td>\n | Typical Unit Substation Inspection Checklist Fig <\/td>\n<\/tr>\n | ||||||
277<\/td>\n | Equipment Testing References <\/td>\n<\/tr>\n | ||||||
281<\/td>\n | Bibliography <\/td>\n<\/tr>\n | ||||||
284<\/td>\n | 6 Fault Calculations 6.1 Introduction <\/td>\n<\/tr>\n | ||||||
285<\/td>\n | Sources of Fault Current 6.2.1 Synchronous Generators E = (Driving Voltage X Varies with Time) <\/td>\n<\/tr>\n | ||||||
286<\/td>\n | Synchronous Motors and Condensers 6.2.3 Induction Machines Electric Utility Systems <\/td>\n<\/tr>\n | ||||||
287<\/td>\n | Fundamentals of Fault-Current Calculations Purpose of Calculations Type of Fault <\/td>\n<\/tr>\n | ||||||
288<\/td>\n | Basic Equivalent Circuit <\/td>\n<\/tr>\n | ||||||
289<\/td>\n | Restraints of Simplified Calculations 6.4.1 Impedance Elements 6.4.2 Switching Transients Series RLC Circuit Fig <\/td>\n<\/tr>\n | ||||||
290<\/td>\n | Switching Transient R Fig <\/td>\n<\/tr>\n | ||||||
291<\/td>\n | 6.4.3 Decrement Factor Multiple Switching Transients Switching TransientL Fig <\/td>\n<\/tr>\n | ||||||
292<\/td>\n | Practical Impedance Network Synthesis Decrement Factor Fig <\/td>\n<\/tr>\n | ||||||
293<\/td>\n | Three.Phase Four-Wire Circuit Unbalanced Loading Fig <\/td>\n<\/tr>\n | ||||||
294<\/td>\n | Three.Phase Four-Wire Circuit Balanced Symmetrical Loading Fig a Three-phase System <\/td>\n<\/tr>\n | ||||||
295<\/td>\n | Other Analytical Tools <\/td>\n<\/tr>\n | ||||||
296<\/td>\n | Respecting the Imposed Restraints 6.4.8 Conclusions <\/td>\n<\/tr>\n | ||||||
297<\/td>\n | Typical System Fault Current Fig <\/td>\n<\/tr>\n | ||||||
298<\/td>\n | Detailed Procedure <\/td>\n<\/tr>\n | ||||||
299<\/td>\n | Step 1 -Prepare System Diagrams Step 2 -Collect and Convert Impedance Data <\/td>\n<\/tr>\n | ||||||
300<\/td>\n | One-Line Diagram of Industrial System Example Fig <\/td>\n<\/tr>\n | ||||||
301<\/td>\n | Step 3 -Combine Impedances Step 4 -Calculate Short-circuit Current <\/td>\n<\/tr>\n | ||||||
302<\/td>\n | Wye and Delta Configurations Fig <\/td>\n<\/tr>\n | ||||||
303<\/td>\n | Table 24 Rotating-Machine Reactance (or Impedance) Multipliers <\/td>\n<\/tr>\n | ||||||
304<\/td>\n | System Calculations) <\/td>\n<\/tr>\n | ||||||
305<\/td>\n | ANSI\/IEEE C37.5-1979 <\/td>\n<\/tr>\n | ||||||
306<\/td>\n | Three-phase Faults Three-phase and Line-to-Ground Faults <\/td>\n<\/tr>\n | ||||||
307<\/td>\n | Fed Predominantly from Generators <\/td>\n<\/tr>\n | ||||||
308<\/td>\n | Fed Predominantly from Generators <\/td>\n<\/tr>\n | ||||||
309<\/td>\n | with Several Voltage Levels General Discussion <\/td>\n<\/tr>\n | ||||||
310<\/td>\n | Utility System Data Per-Unit Calculations and Base Quantities Impedances Represented by Reactances <\/td>\n<\/tr>\n | ||||||
311<\/td>\n | Standards <\/td>\n<\/tr>\n | ||||||
312<\/td>\n | Impedance Data and Conversions to Per Unit (Momentary) Short-circuit Current Duties Table 27 Passive-Element Reactances in Per Unit 10 MVA Base <\/td>\n<\/tr>\n | ||||||
313<\/td>\n | Short-circuit (Interrupting) Current Duties 30-Cycle Minimum Short-circuit Currents Short-circuit Current Duties Per Unit 10 MVA Base <\/td>\n<\/tr>\n | ||||||
314<\/td>\n | Short-circuit Duties <\/td>\n<\/tr>\n | ||||||
315<\/td>\n | Fuses and Low-Voltage Circuit Breakers Table 30 Reactances for Approximately 3GCycZ.e Short-circuit Currents <\/td>\n<\/tr>\n | ||||||
316<\/td>\n | Table 3 1 Reactances for Fig 105 (a) Table 32 Reactance Combinations for Fig 105(a) Each Fault Bus of Fig 105(b) <\/td>\n<\/tr>\n | ||||||
317<\/td>\n | High-Voltage Circuit Breakers <\/td>\n<\/tr>\n | ||||||
318<\/td>\n | Short-circuit Current Duties for High-Voltage Circuit Breakers <\/td>\n<\/tr>\n | ||||||
319<\/td>\n | Short-Circuit Current Duties for High-Voltage Circuit Breakers <\/td>\n<\/tr>\n | ||||||
320<\/td>\n | Table 34 Reactances for Fig 106(a) and Resistances for Fig 107(a) Table 35 Reactance Combinations for Fig 106(a) <\/td>\n<\/tr>\n | ||||||
321<\/td>\n | Table 36 Resistance Combinations for Fig 107(a) Each Fault Bus of Fig 106(b) Each Fault Bus of Fig 107(b) <\/td>\n<\/tr>\n | ||||||
322<\/td>\n | E\/X for Example Conditions <\/td>\n<\/tr>\n | ||||||
323<\/td>\n | Circuit Current Duties Capabilities in Kiloamperes <\/td>\n<\/tr>\n | ||||||
324<\/td>\n | Capabilities of AC High-Voltage Circuit Breakers Capabilities of AC High-Voltage Circuit Breakers <\/td>\n<\/tr>\n | ||||||
325<\/td>\n | capabilities of AC High-Voltage Circuit Breakers with Sources Classified Remote or Local <\/td>\n<\/tr>\n | ||||||
326<\/td>\n | Minimum Short-Circuit Currents Under 1OOOV <\/td>\n<\/tr>\n | ||||||
327<\/td>\n | Apprdimately $@Cycle Minimum Short-circuit Currents Each Fault Bus of Fig 108(b) <\/td>\n<\/tr>\n | ||||||
328<\/td>\n | Values on a Common Base <\/td>\n<\/tr>\n | ||||||
329<\/td>\n | Low-Voltage System Fig <\/td>\n<\/tr>\n | ||||||
331<\/td>\n | Diagrams Applicable for Fault Locations F and F Current <\/td>\n<\/tr>\n | ||||||
332<\/td>\n | Resistance Network for Faults at F and F Fig Reactance Network for Faults at F and F Fig <\/td>\n<\/tr>\n | ||||||
333<\/td>\n | Reduction of R Network for Fault at F Fig Reduction of X Network for Fault at F Fig <\/td>\n<\/tr>\n | ||||||
334<\/td>\n | Reduction of R Network for Fault at F Fig Reduction of X Network for Fault at <\/td>\n<\/tr>\n | ||||||
335<\/td>\n | and Calculate Fault Currents <\/td>\n<\/tr>\n | ||||||
336<\/td>\n | Calculation of Fault Currents for DC Systems Resistance Network for Fault at F Reactance Network for Fault at F <\/td>\n<\/tr>\n | ||||||
337<\/td>\n | 6.9 References Resistance Network Fault at F Reactance Network for Fault at F <\/td>\n<\/tr>\n | ||||||
338<\/td>\n | 6.10 Bibliography <\/td>\n<\/tr>\n | ||||||
346<\/td>\n | 7 Grounding 7.1 Introduction 7.2 System Grounding <\/td>\n<\/tr>\n | ||||||
347<\/td>\n | 7.2.1 Ungrounded Systems <\/td>\n<\/tr>\n | ||||||
348<\/td>\n | 7.2.2 Resistance-Grounded Systems <\/td>\n<\/tr>\n | ||||||
349<\/td>\n | 7.2.3 Reactance-Grounded System Solidly Grounded System System-Grounding Design Deviations <\/td>\n<\/tr>\n | ||||||
350<\/td>\n | 7.3 Equipment Grounding <\/td>\n<\/tr>\n | ||||||
351<\/td>\n | Solidly Grounded System Three.Phase Three-Wire Circuits 67 69 <\/td>\n<\/tr>\n | ||||||
352<\/td>\n | Solidly Grounded System Three.Phase Three-Wire Circuits Resistance-Grounded System Three.Phase Three-Wire Circuits <\/td>\n<\/tr>\n | ||||||
353<\/td>\n | Ungrounded System Three.Phase Three-Wire Circuits <\/td>\n<\/tr>\n | ||||||
354<\/td>\n | and to AC Ground <\/td>\n<\/tr>\n | ||||||
355<\/td>\n | Static and Lightning Protection Grounding 7.4.1 Static Grounding <\/td>\n<\/tr>\n | ||||||
356<\/td>\n | Lightning Protection Grounding <\/td>\n<\/tr>\n | ||||||
357<\/td>\n | Connection to Earth 7.5.1 General Discussion <\/td>\n<\/tr>\n | ||||||
358<\/td>\n | Recommended Acceptable Values Resistivity of Soils 7.5.4 SoilTreatment <\/td>\n<\/tr>\n | ||||||
359<\/td>\n | 7.5.5 Existing Electrodes Concrete-Encased Grounding Electrodes <\/td>\n<\/tr>\n | ||||||
360<\/td>\n | 7.5.7 Made Electrodes 7.5.8 Galvanic Corrosion <\/td>\n<\/tr>\n | ||||||
361<\/td>\n | Ground Resistance Measurement <\/td>\n<\/tr>\n | ||||||
362<\/td>\n | Methods of Measuring Ground Resistance <\/td>\n<\/tr>\n | ||||||
363<\/td>\n | Resistance of the Large Grounding Network <\/td>\n<\/tr>\n | ||||||
364<\/td>\n | Small Grid -Fall of Potential Method <\/td>\n<\/tr>\n | ||||||
365<\/td>\n | Ground Rod – Two-Terminal Method <\/td>\n<\/tr>\n | ||||||
366<\/td>\n | 7.7 References <\/td>\n<\/tr>\n | ||||||
367<\/td>\n | 7.8 Bibliography <\/td>\n<\/tr>\n | ||||||
370<\/td>\n | Power Factor and Related Considerations 8.1 General Emphasis on Capacitors <\/td>\n<\/tr>\n | ||||||
371<\/td>\n | Benefits of Power-Factor Improvement Typical Plant Power Factor General Industry Applications 8.2.2 Plant Applications Utilization Equipment Applications <\/td>\n<\/tr>\n | ||||||
372<\/td>\n | Instruments and Measurements for Power-Factor Studies Table 46 Typical Unimproved Power-Factor Values by Industries Table 47 Typical Operating Power-Factor Values by Plant Operations <\/td>\n<\/tr>\n | ||||||
373<\/td>\n | 8.4 Power-Factor Economics <\/td>\n<\/tr>\n | ||||||
374<\/td>\n | 8.5 Power-Factor Fundamentals Angular Relationship of Current and Voltage in AC Circuits Fig Relationship of Active Reactive and Total Power Fig <\/td>\n<\/tr>\n | ||||||
375<\/td>\n | Definition of Power Factor Leading and Lagging Power Factor How to Improve the Power Factor <\/td>\n<\/tr>\n | ||||||
376<\/td>\n | Static Power-Factor Controller <\/td>\n<\/tr>\n | ||||||
377<\/td>\n | Calculation Methods for Power-Factor Improvement <\/td>\n<\/tr>\n | ||||||
378<\/td>\n | Line Current by Supplying Reactive Power Requirements Locally Various Power-Factor Ratings <\/td>\n<\/tr>\n | ||||||
379<\/td>\n | Location of Reactive Power Supply <\/td>\n<\/tr>\n | ||||||
380<\/td>\n | for Power-Factor Improvement <\/td>\n<\/tr>\n | ||||||
381<\/td>\n | Possible Shunt Capacitor Locations Fig <\/td>\n<\/tr>\n | ||||||
382<\/td>\n | Release of System Capacity Power Factor with Reactive Compensation <\/td>\n<\/tr>\n | ||||||
383<\/td>\n | 8.7 Voltage Improvement <\/td>\n<\/tr>\n | ||||||
384<\/td>\n | Power System Losses Selection of Capacitors with Induction Motors Effectiveness of Capacitors <\/td>\n<\/tr>\n | ||||||
385<\/td>\n | Limitations of Capacitor -Motor Switching Medium-Speed Induction Motor <\/td>\n<\/tr>\n | ||||||
386<\/td>\n | Selection of Capacitor Ratings for Power-Factor Improvement <\/td>\n<\/tr>\n | ||||||
387<\/td>\n | and T-Frame Designs <\/td>\n<\/tr>\n | ||||||
388<\/td>\n | Design B 230 V 460 V 575 V Squirrel-Cage Motors <\/td>\n<\/tr>\n | ||||||
389<\/td>\n | Design B 230 V 460 V 575 V Squirrel-Cage Motors <\/td>\n<\/tr>\n | ||||||
390<\/td>\n | Design B 230 V 460 V 575 V Squirrel-Cage Motors <\/td>\n<\/tr>\n | ||||||
391<\/td>\n | 8.9.4 Self-Excitation Considerations and Wound-Rotor Motors <\/td>\n<\/tr>\n | ||||||
392<\/td>\n | High-Efficiency Motors <\/td>\n<\/tr>\n | ||||||
393<\/td>\n | Location of Capacitors Selection of Capacitors for Motors <\/td>\n<\/tr>\n | ||||||
394<\/td>\n | Motor-Capacitor Applications to Avoid Induction Versus Synchronous Motors <\/td>\n<\/tr>\n | ||||||
395<\/td>\n | Automatic Control Equipment <\/td>\n<\/tr>\n | ||||||
396<\/td>\n | Capacitor Standards and Operating Characteristics Capacitor Ratings Maximum Voltage 8.1 1.3 Temperature Time to Discharge Effect of Harmonics on Capacitors Operating Characteristics Overcurrent Protection <\/td>\n<\/tr>\n | ||||||
397<\/td>\n | Low-Voltage Switching Devices Medium-Voltage Switching Devices 1000 kVA Transformer Capacitor Overheated <\/td>\n<\/tr>\n | ||||||
398<\/td>\n | 8.1 1.10 Selection of Cable Sizes 8.1 1.1 1 Inspection of Capacitors 8.12 Transients 8.12.1 Medium-Voltage Switching Table 53 Capacitor Rating Multipliers to Obtain Switching-Device Rating <\/td>\n<\/tr>\n | ||||||
399<\/td>\n | Circuit for Switching with Shunt Capacitor Bank Fig <\/td>\n<\/tr>\n | ||||||
400<\/td>\n | Static Power Converters Addition of Capacitors <\/td>\n<\/tr>\n | ||||||
401<\/td>\n | Resonances and Harmonics Generation of Harmonic Voltages and Currents Static Power Converter Theory 26 <\/td>\n<\/tr>\n | ||||||
402<\/td>\n | with Thyristor Drives Having a Wide Range of Control Settings <\/td>\n<\/tr>\n | ||||||
403<\/td>\n | 8.13.3 Harmonic Resonance Three-phase Full-Wave Bridge Circuit Six-Pulse Converter Fig <\/td>\n<\/tr>\n | ||||||
404<\/td>\n | 8.13.4 Application Guidelines <\/td>\n<\/tr>\n | ||||||
405<\/td>\n | Based on Eq <\/td>\n<\/tr>\n | ||||||
406<\/td>\n | Selected Short-circuit Impedance <\/td>\n<\/tr>\n | ||||||
407<\/td>\n | 8.14 Capacitor Switching 8.15 References <\/td>\n<\/tr>\n | ||||||
408<\/td>\n | 8.16 Bibliography <\/td>\n<\/tr>\n | ||||||
410<\/td>\n | Power Switching Transformation and Motor-Control Apparatus 9.1 Introduction 9.1.1 Equipment Installation <\/td>\n<\/tr>\n | ||||||
411<\/td>\n | Maintenance Testing and Safety Table 54 Minimum Clear Working Space in Front of Electric Equipment <\/td>\n<\/tr>\n | ||||||
412<\/td>\n | 9.1.3 Heat Losses Table 55 Range of Losses in Power System Equipment <\/td>\n<\/tr>\n | ||||||
413<\/td>\n | Switching Apparatus for Power Circuits 9.2.1 Switches <\/td>\n<\/tr>\n | ||||||
415<\/td>\n | 9.2.2 Fuses <\/td>\n<\/tr>\n | ||||||
416<\/td>\n | 9.2.3 Circuit Breakers <\/td>\n<\/tr>\n | ||||||
417<\/td>\n | Table 56 Preferred Ratings for Indoor Oilless Circuit Breakers <\/td>\n<\/tr>\n | ||||||
422<\/td>\n | with Instantaneous Direct-Acting Phase Trip Elements <\/td>\n<\/tr>\n | ||||||
423<\/td>\n | without Instantaneous Direct-Acting Phase Trip Elements <\/td>\n<\/tr>\n | ||||||
424<\/td>\n | 9.3 Switchgear 9.3.1 General Discussion 9.3.2 Classifications <\/td>\n<\/tr>\n | ||||||
425<\/td>\n | 9.3.3 Types 9.3.4 Definitions <\/td>\n<\/tr>\n | ||||||
426<\/td>\n | 9.3.5 Ratings <\/td>\n<\/tr>\n | ||||||
427<\/td>\n | Switchgear Assemblies <\/td>\n<\/tr>\n | ||||||
428<\/td>\n | Table 60 Voltage Ratings for Metal-Enclosed Bus <\/td>\n<\/tr>\n | ||||||
429<\/td>\n | Metal-Enclosed Power Switchgear Table 62 Current Ratings for Metal-Enclosed Bus in Amperes <\/td>\n<\/tr>\n | ||||||
430<\/td>\n | 9.3.6 Application Guides Switchgear Assemblies <\/td>\n<\/tr>\n | ||||||
432<\/td>\n | 9.3.7 Control Power Metal-Enclosed Low-Voltage Power Circuit Breaker Switchgear <\/td>\n<\/tr>\n | ||||||
433<\/td>\n | Metal-Clad Switchgear <\/td>\n<\/tr>\n | ||||||
434<\/td>\n | Table 66 Standard Voltage Transformer Ratios 600 V and Below Power Circuit Breakers <\/td>\n<\/tr>\n | ||||||
435<\/td>\n | 9.4 Transformers 9.4.1 Classifications 9.4.2 Specifications <\/td>\n<\/tr>\n | ||||||
436<\/td>\n | Power and Voltage Ratings <\/td>\n<\/tr>\n | ||||||
437<\/td>\n | Table 68 Transformer Standard Base kVA Ratings Table 69 Classes of Transformer Cooling Systems <\/td>\n<\/tr>\n | ||||||
438<\/td>\n | 9.4.4 VoltageTaps 9.4.5 Connections <\/td>\n<\/tr>\n | ||||||
439<\/td>\n | (Schematic Representation) <\/td>\n<\/tr>\n | ||||||
440<\/td>\n | Associated with Nominal System Voltages <\/td>\n<\/tr>\n | ||||||
441<\/td>\n | 9.4.6 Impedance 9.4.7 Insulation Medium <\/td>\n<\/tr>\n | ||||||
442<\/td>\n | Standard Impedance Values for Three-phase Transformers <\/td>\n<\/tr>\n | ||||||
443<\/td>\n | 9.4.8 Accessories 9.4.9 Termination Facilities <\/td>\n<\/tr>\n | ||||||
444<\/td>\n | 9.4.10 Sound Levels 9.5 Unit Substations 9.5.1 General Discussion 9.5.2 Types <\/td>\n<\/tr>\n | ||||||
445<\/td>\n | 9.5.3 Selection and Location Advantages of Unit Substations Distributed Network Fig Duplex (Circuit Breaker and a Half Scheme) Fig <\/td>\n<\/tr>\n | ||||||
446<\/td>\n | 9.5.5 Application Guides 9.6 Motor-Control Equipment 9.6.1 General Discussion <\/td>\n<\/tr>\n | ||||||
447<\/td>\n | Starters Over Starters 600 V and Below <\/td>\n<\/tr>\n | ||||||
450<\/td>\n | Table 73 Comparison of Different Reduced-Voltage Starters <\/td>\n<\/tr>\n | ||||||
451<\/td>\n | Typical Schematic Diagram of a Solid-state Motor Starter Fig <\/td>\n<\/tr>\n | ||||||
452<\/td>\n | 9.6.4 Motor-Control Center 9.6.5 Control Circuits <\/td>\n<\/tr>\n | ||||||
453<\/td>\n | 9.6.6 Overload Protection 9.6.7 Solid-state Control <\/td>\n<\/tr>\n | ||||||
454<\/td>\n | 9.7 References <\/td>\n<\/tr>\n | ||||||
458<\/td>\n | Instruments and Meters 10.1 Introduction 10.2 Basic Objectives <\/td>\n<\/tr>\n | ||||||
459<\/td>\n | Switchboard and Panel Instruments 3.Phase. 4.Wire High Current and Voltage) <\/td>\n<\/tr>\n | ||||||
460<\/td>\n | 10.3.1 Ammeters 10.3.2 Voltmeters 3.Phase. 4.Wire High Current and Voltage) <\/td>\n<\/tr>\n | ||||||
461<\/td>\n | Primary Voltage Substation Sample Metering Layout Fig <\/td>\n<\/tr>\n | ||||||
462<\/td>\n | 10.3.3 Wattmeters 10.3.4 Varmeters 10.3.5 Power-Factor Meters 10.3.6 Frequency Meters 10.3.7 Synchroscopes 10.3.8 Elapsed-Time Meters 10.4 Portable Instruments <\/td>\n<\/tr>\n | ||||||
463<\/td>\n | Volt-Ohm Meter VOM), Multitester or Multimeter 10.4.2 Clamp-on Ammeters 10.5 Recording Instruments 10.6 Miscellaneous Instruments 10.6.1 Temperature Indicators 10.6.2 Megohmmeters 10.6.3 Ground Ohmmeters 10.6.4 Oscillographs 10.6.5 Oscilloscopes <\/td>\n<\/tr>\n | ||||||
464<\/td>\n | 10.7 Meters 10.7.1 Kilowatthour Meters <\/td>\n<\/tr>\n | ||||||
465<\/td>\n | 10.7.2 Kilovarhour Meters 10.7.3 &-Meters <\/td>\n<\/tr>\n | ||||||
466<\/td>\n | 10.7.4 Demand Meters 10.7.5 Voltage-Squared Meters 10.7.6 Ampere-Squared Meters 10.8 Auxiliary Devices 10.8.1 Current Transformers <\/td>\n<\/tr>\n | ||||||
467<\/td>\n | Voltage (Potential) Transformers 10.8.3 Shunts 10.8.4 Transducers 10.8.5 Computers <\/td>\n<\/tr>\n | ||||||
468<\/td>\n | 10.9 Typical Installations High-Voltage Equipment (Above Low-Voltage Equipment (Below <\/td>\n<\/tr>\n | ||||||
469<\/td>\n | 10.10 References <\/td>\n<\/tr>\n | ||||||
470<\/td>\n | 11 Cable Systems 11.1 Introduction <\/td>\n<\/tr>\n | ||||||
471<\/td>\n | 11.2 Cable Construction 11.2.1 Conductors Comparison Between Copper and Aluminum <\/td>\n<\/tr>\n | ||||||
472<\/td>\n | 11.2.3 Insulation Conductor Stranding Fig <\/td>\n<\/tr>\n | ||||||
473<\/td>\n | Table 74 Properties of Copper and Aluminum <\/td>\n<\/tr>\n | ||||||
474<\/td>\n | Typical Values for Hardness Versus Temperature Fig Table 75 Commonly Used Insulating Materials <\/td>\n<\/tr>\n | ||||||
475<\/td>\n | Table 76 Rated Conductor Temperatures <\/td>\n<\/tr>\n | ||||||
476<\/td>\n | 11.2.4 Cable Design <\/td>\n<\/tr>\n | ||||||
479<\/td>\n | Electric Field of Shielded Cable Fig <\/td>\n<\/tr>\n | ||||||
480<\/td>\n | Cable Outer Finishes Uniform Dielectric Nonshielded Cable on Ground Plane Fig <\/td>\n<\/tr>\n | ||||||
481<\/td>\n | Commonly Used Shielded and Nonshielded Constructions Fig <\/td>\n<\/tr>\n | ||||||
482<\/td>\n | 11.3.1 Nonmetallic Finishes Table 77 Properties of Jackets and Braids <\/td>\n<\/tr>\n | ||||||
483<\/td>\n | 11.3.2 Metallic Finishes <\/td>\n<\/tr>\n | ||||||
484<\/td>\n | Single- and Multiconductor Constructions Physical Properties of Materials for Outer Coverings <\/td>\n<\/tr>\n | ||||||
485<\/td>\n | 11.4 Cable Ratings 11.4.1 Voltage Rating 11.4.2 Conductor Selection 11.4.3 Load-Current Criteria <\/td>\n<\/tr>\n | ||||||
487<\/td>\n | Emergency Overload Criteria <\/td>\n<\/tr>\n | ||||||
488<\/td>\n | Table 78 Uprating for Short-Time Overloads <\/td>\n<\/tr>\n | ||||||
489<\/td>\n | 11.4.5 Voltage-Drop Criteria 11.4.6 Fault-Current Criteria <\/td>\n<\/tr>\n | ||||||
490<\/td>\n | Fault Current and Clearing Times <\/td>\n<\/tr>\n | ||||||
491<\/td>\n | 11.5 Installation 11.5.1 Layout 11.5.2 Open Wire 11.5.3 Aerial Cable <\/td>\n<\/tr>\n | ||||||
492<\/td>\n | 11.5.4 Direct Attachment 11.5.5 CableTrays <\/td>\n<\/tr>\n | ||||||
493<\/td>\n | 11.5.6 Cable Bus 11.5.7 Conduit <\/td>\n<\/tr>\n | ||||||
494<\/td>\n | 11.5.8 Direct Burial 11.5.9 Hazardous Locations <\/td>\n<\/tr>\n | ||||||
495<\/td>\n | 11.5.10 Installation Procedures Table 80 Wiring Methods for Hazardous Locations <\/td>\n<\/tr>\n | ||||||
496<\/td>\n | 11.6 Connectors 11.6.1 Types Available <\/td>\n<\/tr>\n | ||||||
497<\/td>\n | Connectors for Aluminum <\/td>\n<\/tr>\n | ||||||
500<\/td>\n | Procedures for Connecting Aluminum Conductors Fig <\/td>\n<\/tr>\n | ||||||
501<\/td>\n | Connectors for Various Voltage Cables 11.6.4 Performance Requirements 34 <\/td>\n<\/tr>\n | ||||||
502<\/td>\n | 11.7 Terminations 11.7.1 Purpose 11.7.2 Definitions <\/td>\n<\/tr>\n | ||||||
503<\/td>\n | 11.7.3 Cable Terminations <\/td>\n<\/tr>\n | ||||||
505<\/td>\n | Stress-Relief Cone Fig <\/td>\n<\/tr>\n | ||||||
506<\/td>\n | (For Solid Dielectric Cables) <\/td>\n<\/tr>\n | ||||||
507<\/td>\n | (For Solid Dielectric Cables) <\/td>\n<\/tr>\n | ||||||
508<\/td>\n | (For Solid Dielectric Cable) <\/td>\n<\/tr>\n | ||||||
510<\/td>\n | 11.7.4 Cable Connectors Separable Insulated Connectors Performance Requirements <\/td>\n<\/tr>\n | ||||||
511<\/td>\n | Splicing Devices and Techniques <\/td>\n<\/tr>\n | ||||||
512<\/td>\n | Taped Splices (Fig <\/td>\n<\/tr>\n | ||||||
513<\/td>\n | Typical Taped Splice in Shielded Cable or Perforated Strip Fig <\/td>\n<\/tr>\n | ||||||
514<\/td>\n | 11.8.2 Preassembled Splices Grounding of Cable Systems <\/td>\n<\/tr>\n | ||||||
515<\/td>\n | 11.9.1 Sheath Losses 11.10 Protection from Transient Overvoltage <\/td>\n<\/tr>\n | ||||||
516<\/td>\n | 11.1 1 Testing 11.11.1 Application and Utility <\/td>\n<\/tr>\n | ||||||
517<\/td>\n | 11.1 1.2 Alternating Current Versus Direct Current 11.1 1.3 Factory Tests 11.11.4 Field Tests <\/td>\n<\/tr>\n | ||||||
518<\/td>\n | Table 81 ICEA Specified DC Cable Test Voltages kv). Pre-1968 Cable <\/td>\n<\/tr>\n | ||||||
519<\/td>\n | 1968 and Later Cable <\/td>\n<\/tr>\n | ||||||
520<\/td>\n | 11.11.5 Procedure Installation and Maintenance <\/td>\n<\/tr>\n | ||||||
521<\/td>\n | 11.1 1.6 Direct-Current Corona and Its Suppression 11.1 1.7 Line-Voltage Fluctuations 11.1 1.8 Resistance Evaluation <\/td>\n<\/tr>\n | ||||||
522<\/td>\n | 11.1 1.9 Megohmmeter Test 1 1.1 2 Locating Cable Faults Influence of Ground-Fault Resistance <\/td>\n<\/tr>\n | ||||||
523<\/td>\n | 11.12.2 Equipment and Methods <\/td>\n<\/tr>\n | ||||||
524<\/td>\n | 11.12.3 Selection <\/td>\n<\/tr>\n | ||||||
525<\/td>\n | 11.13 Cable Specification <\/td>\n<\/tr>\n | ||||||
526<\/td>\n | 11.14 References <\/td>\n<\/tr>\n | ||||||
530<\/td>\n | 12 Busways 12.1 Origin 12.2 Busway Construction <\/td>\n<\/tr>\n | ||||||
531<\/td>\n | 12.3 Feeder Busway <\/td>\n<\/tr>\n | ||||||
532<\/td>\n | 12.4 Plug-In Busway Plug.1n Lighting and Trolley Types <\/td>\n<\/tr>\n | ||||||
533<\/td>\n | Feeder Busway Fig <\/td>\n<\/tr>\n | ||||||
534<\/td>\n | 12.5 Lighting Busway 12.6 Trolley Busway Circuit Breaker Power Tapoff and Flexible Bus-Drop Cable <\/td>\n<\/tr>\n | ||||||
535<\/td>\n | 12.7 Standards High-Intensity Discharge Fixture <\/td>\n<\/tr>\n | ||||||
536<\/td>\n | Selection and Application of Busways 12.8.1 Current-Carrying Capacity Short-Circuit Current Rating <\/td>\n<\/tr>\n | ||||||
537<\/td>\n | 12.8.3 Voltage Drop Table 84 Busway Ratings as a Function of Power Factor <\/td>\n<\/tr>\n | ||||||
538<\/td>\n | When Approximate Voltage-Drop Formulas Are Used <\/td>\n<\/tr>\n | ||||||
539<\/td>\n | 12.8.4 Thermal Expansion Building Expansion Joints 12.8.6 Welding Loads <\/td>\n<\/tr>\n | ||||||
540<\/td>\n | 12.9 Layout Current with Entire Load at End <\/td>\n<\/tr>\n | ||||||
541<\/td>\n | Current with Entire Load at End <\/td>\n<\/tr>\n | ||||||
542<\/td>\n | 12.10 Installation 12.10.1 Procedure Prior to Installation Milliohms per 100 ft 25 “C <\/td>\n<\/tr>\n | ||||||
543<\/td>\n | 12.10.2 Procedure During Installation 12.10.3 Procedure After Installation 12.1 1 Field Testing <\/td>\n<\/tr>\n | ||||||
544<\/td>\n | 12.12 Busways Over 600 V (Metal-Enclosed Bus) 12.12.1 Standards 12.12.2 Ratings 12.12.3 Construction 12.12.4 Field Testing <\/td>\n<\/tr>\n | ||||||
545<\/td>\n | 12.13 References Ratings of Nonsegregated-Phase Metal-Enclosed Bus <\/td>\n<\/tr>\n | ||||||
546<\/td>\n | 13 Electrical Energy Conservation 13.1 Introduction Organizing for a Conservation Effort Obtain Management Approval and Commitment <\/td>\n<\/tr>\n | ||||||
547<\/td>\n | Embarking on an Energy Conservation Program <\/td>\n<\/tr>\n | ||||||
548<\/td>\n | Energy Audit 13.2.4 Tracking Progress <\/td>\n<\/tr>\n | ||||||
549<\/td>\n | 13.2.5 Overall Considerations Table 89 Examples of Conservation Categories <\/td>\n<\/tr>\n | ||||||
550<\/td>\n | Dollar Involvement in ECOs-Rates 13.3.1 Introduction 13.3.2 Rate Textbook 13.3.3 Billing Calculations Declining Block Rate and Example <\/td>\n<\/tr>\n | ||||||
551<\/td>\n | Demand Usage Rate 115 <\/td>\n<\/tr>\n | ||||||
552<\/td>\n | 13.4 Load Management 13.4.1 Introduction 13.4.2 Controllers <\/td>\n<\/tr>\n | ||||||
553<\/td>\n | Equipment Audit and Load Profile <\/td>\n<\/tr>\n | ||||||
554<\/td>\n | Energy Savings to Dollar Savings Time Value of Money Evaluating Motor Loss <\/td>\n<\/tr>\n | ||||||
556<\/td>\n | Evaluating Transformer Losses Evaluating Losses in Other Equipment <\/td>\n<\/tr>\n | ||||||
557<\/td>\n | Electrical Equipment and Its Efficient Operation 13.6.1 Losses 13.6.2 Efficiency <\/td>\n<\/tr>\n | ||||||
558<\/td>\n | 13.6.3 Conductor Oversizing 13.6.4 Motors <\/td>\n<\/tr>\n | ||||||
559<\/td>\n | 13.6.5 Transformers Thyratrons Ignitions and Other Diode Devices 13.6.7 Capacitors <\/td>\n<\/tr>\n | ||||||
560<\/td>\n | Reactors and Regulators 13.6.9 Equipment Overview 13.7 Metering <\/td>\n<\/tr>\n | ||||||
561<\/td>\n | 13.8 Lighting 13.8.1 Introduction <\/td>\n<\/tr>\n | ||||||
562<\/td>\n | Types of Lighting <\/td>\n<\/tr>\n | ||||||
563<\/td>\n | 13.8.3 Control 13.8.4 System Considerations <\/td>\n<\/tr>\n | ||||||
564<\/td>\n | 13.9 Cogeneration 13.10 Peak Shaving <\/td>\n<\/tr>\n | ||||||
565<\/td>\n | 13.1 1 Bibliography <\/td>\n<\/tr>\n | ||||||
568<\/td>\n | 14 Cost Estimating of Industrial Power Systems 14.1 Introduction 14.2 Power Supply <\/td>\n<\/tr>\n | ||||||
569<\/td>\n | 14.3 Voltage Level Reliability of the Distribution System Preparing the Cost Estimate 14.6 Classes of Estimates <\/td>\n<\/tr>\n | ||||||
570<\/td>\n | 14.6.1 Preliminary Estimate 14.6.2 Engineering Estimate 14.6.3 Detailed Estimate Equipment and Material Costs 14.8 Installation Costs <\/td>\n<\/tr>\n | ||||||
571<\/td>\n | 14.9 Other Costs 14.10 Example 14.11 Design Data <\/td>\n<\/tr>\n | ||||||
572<\/td>\n | One-Line Diagram <\/td>\n<\/tr>\n | ||||||
573<\/td>\n | Substation A-5 MVA 4.16 kV <\/td>\n<\/tr>\n | ||||||
574<\/td>\n | Substation C- 1.5 MVA 480Y\/277 <\/td>\n<\/tr>\n | ||||||
575<\/td>\n | Site Plan <\/td>\n<\/tr>\n | ||||||
576<\/td>\n | Cost Estimate Calculation Sheet <\/td>\n<\/tr>\n | ||||||
577<\/td>\n | 14.12 Supporting Data <\/td>\n<\/tr>\n | ||||||
578<\/td>\n | Sample Cost Estimate Calculation Sheet – Summary <\/td>\n<\/tr>\n | ||||||
580<\/td>\n | Sample Cost Estimate Calculation Sheet – Primary Power <\/td>\n<\/tr>\n | ||||||
584<\/td>\n | Sample Cost Estimate Calculation Sheet – Substation A <\/td>\n<\/tr>\n | ||||||
586<\/td>\n | Sample Cost Estimate Calculation Sheet – Substation C <\/td>\n<\/tr>\n | ||||||
590<\/td>\n | Power System Device Function Numbers <\/td>\n<\/tr>\n | ||||||
598<\/td>\n | INDEX <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" IEEE Recommended Practice for Electric Power Distribution for Industrial Plants (IEEE Red Book)<\/b><\/p>\n |