{"id":82361,"date":"2024-10-18T03:04:26","date_gmt":"2024-10-18T03:04:26","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/ieee-399-1990\/"},"modified":"2024-10-24T19:49:55","modified_gmt":"2024-10-24T19:49:55","slug":"ieee-399-1990","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/ieee\/ieee-399-1990\/","title":{"rendered":"IEEE 399 1990"},"content":{"rendered":"
Revision Standard – Inactive – Superseded. Superseded by 399-1997. This recommended practice is a reference source for engineers involved in industrial and commercial power systems analysis. It contains a thorough analysis of the power system data required, and the techniques most commonly used in computer-aided analysis, in order to perform specific power system studies of the following: short-circuit, load flow, motorstarting, cable ampacity, stability, harmonic analysis, switching transient, reliability, ground mat, protective coordination, DC auxiliary power system, and power system modeling.<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
2<\/td>\n | F1 Energizing Voltages -Case Post-Switching Voltages – Case system Voltages -Case <\/td>\n<\/tr>\n | ||||||
3<\/td>\n | F1 PI F1 Fl F1 1 \/o 2\/0 3\/0 4\/0 250 350 500 750 1000 <\/td>\n<\/tr>\n | ||||||
4<\/td>\n | O.Ol89 F1 <\/td>\n<\/tr>\n | ||||||
5<\/td>\n | Fl Fl <\/td>\n<\/tr>\n | ||||||
7<\/td>\n | 0 woo <\/td>\n<\/tr>\n | ||||||
10<\/td>\n | LOAD <\/td>\n<\/tr>\n | ||||||
11<\/td>\n | SYINOTOR LOAD 10 <\/td>\n<\/tr>\n | ||||||
12<\/td>\n | LOAD <\/td>\n<\/tr>\n | ||||||
13<\/td>\n | LOAD 12 <\/td>\n<\/tr>\n | ||||||
14<\/td>\n | LOAD <\/td>\n<\/tr>\n | ||||||
15<\/td>\n | 14 <\/td>\n<\/tr>\n | ||||||
16<\/td>\n | LOAD 1 os Size Rows <\/td>\n<\/tr>\n | ||||||
17<\/td>\n | LOAD LOAD LOAD <\/td>\n<\/tr>\n | ||||||
24<\/td>\n | 1 Introduction 1.1 General Discussion History of Power system Studies <\/td>\n<\/tr>\n | ||||||
25<\/td>\n | and Commercial Power Systems Purposes of This Recommended Practice Why a Study? How to Prepare for a Power System Study <\/td>\n<\/tr>\n | ||||||
26<\/td>\n | The Most Common System Studies <\/td>\n<\/tr>\n | ||||||
27<\/td>\n | 1.5 References <\/td>\n<\/tr>\n | ||||||
28<\/td>\n | Power System <\/td>\n<\/tr>\n | ||||||
30<\/td>\n | 2 Applications of Power System Analysis 2.1 Introduction 2.1.1 Digital Computer Transient Network Analyzer (TNA) Load Flow Analysis <\/td>\n<\/tr>\n | ||||||
31<\/td>\n | 2.3 Short-Circuit Analysis 2.4 Stability Analysis Motor Starting Analysis UTILITY UTILITY <\/td>\n<\/tr>\n | ||||||
32<\/td>\n | 2.6 Harmonic Analysis FDR <\/td>\n<\/tr>\n | ||||||
33<\/td>\n | Switching Transients Analysis 2.8 ReliabilityAnalysis 2.9 Cable AmpacityAnalysis 2.10 Ground Mat Analysis FDR <\/td>\n<\/tr>\n | ||||||
34<\/td>\n | 2.1 1 Protective Device Coordination Analysis FDR <\/td>\n<\/tr>\n | ||||||
35<\/td>\n | 3 Analytical Procedures 3.1 Introduction <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | 3.2 The Fundamentals 3.2.1 Linearity <\/td>\n<\/tr>\n | ||||||
37<\/td>\n | 3.2.2 Superposition Linearity <\/td>\n<\/tr>\n | ||||||
38<\/td>\n | The Thevenin Equivalent Circuit Superposition <\/td>\n<\/tr>\n | ||||||
39<\/td>\n | The Thevenin Equivalent <\/td>\n<\/tr>\n | ||||||
40<\/td>\n | Current Flow of a Thevenin Equivalent Representation <\/td>\n<\/tr>\n | ||||||
41<\/td>\n | The Sinusoidal Forcing Function Fault Flow PDR <\/td>\n<\/tr>\n | ||||||
42<\/td>\n | 3.2.5 Phasor Representation The Sinusoidal Forcing Function FDR <\/td>\n<\/tr>\n | ||||||
43<\/td>\n | The Fourier Representation The Phasor Representation <\/td>\n<\/tr>\n | ||||||
44<\/td>\n | The Laplace Transform The Fourier Representation <\/td>\n<\/tr>\n | ||||||
46<\/td>\n | Laplace Transform Pairs <\/td>\n<\/tr>\n | ||||||
47<\/td>\n | s-Domain Equivalent Circuits <\/td>\n<\/tr>\n | ||||||
48<\/td>\n | RL Network <\/td>\n<\/tr>\n | ||||||
49<\/td>\n | Current Response (Eq RC Network <\/td>\n<\/tr>\n | ||||||
50<\/td>\n | The Single-phase Equivalent Circuit CurrentResponse(Eq <\/td>\n<\/tr>\n | ||||||
51<\/td>\n | Voltage Response <\/td>\n<\/tr>\n | ||||||
52<\/td>\n | The Symmetrical Component Analysis (c) Single-Line Impedance Diagram <\/td>\n<\/tr>\n | ||||||
53<\/td>\n | (c) Single-Line Impedance Diagram <\/td>\n<\/tr>\n | ||||||
54<\/td>\n | Fig 17 The Symmetrical Component Analysis <\/td>\n<\/tr>\n | ||||||
56<\/td>\n | 3.2.10 The Per Unit Method <\/td>\n<\/tr>\n | ||||||
57<\/td>\n | and (c) Simplified Per Unit Representation <\/td>\n<\/tr>\n | ||||||
59<\/td>\n | References and Bibliography <\/td>\n<\/tr>\n | ||||||
60<\/td>\n | 4 System Modeling 4.1 Introduction 4.2 Modeling <\/td>\n<\/tr>\n | ||||||
61<\/td>\n | 4.3 Review of Basics 4.3.1 Passive Elements <\/td>\n<\/tr>\n | ||||||
62<\/td>\n | 4.3.2 Active Elements Impedance and Admittance <\/td>\n<\/tr>\n | ||||||
63<\/td>\n | Fig 19 Equivalent Circuit Diagrams Showing Si Convention <\/td>\n<\/tr>\n | ||||||
64<\/td>\n | Fig 20 Vector Diagram Four Defining Expressions for Power Quantities <\/td>\n<\/tr>\n | ||||||
65<\/td>\n | 4.4 Power Network Solution Fundamental Equations for Translation and Rotation <\/td>\n<\/tr>\n | ||||||
66<\/td>\n | Fig 21 Section of Qpical Single-Line Diagram (Simplified) <\/td>\n<\/tr>\n | ||||||
68<\/td>\n | Fig 22 ImpedanceDiagram <\/td>\n<\/tr>\n | ||||||
69<\/td>\n | 4.5 Impedance Diagram <\/td>\n<\/tr>\n | ||||||
70<\/td>\n | 4.6 Extent of the Model 4.6.1 General Fig23 FlowDiagram FDR FDR <\/td>\n<\/tr>\n | ||||||
71<\/td>\n | Data Presentation for Impedance and Other Diagrams PDR <\/td>\n<\/tr>\n | ||||||
72<\/td>\n | 4.6.2 Utility Supplied Systems 4.6.3 Isolated Systems 4.7 Models of Branch Elements 4.7.1 Lines Fig 25 Equivalent Circuit of Short Conductor <\/td>\n<\/tr>\n | ||||||
73<\/td>\n | Equivalent Circuit <\/td>\n<\/tr>\n | ||||||
75<\/td>\n | 4.7.2 Cables <\/td>\n<\/tr>\n | ||||||
76<\/td>\n | 4.7.3 Determination of Constants Medium Line Equivalent Circuits (a) Nominal T (b) Nominal T Fig 28 Short Line Equivalent Circuit <\/td>\n<\/tr>\n | ||||||
77<\/td>\n | Comparison of Overhead Lines and Cable Constants <\/td>\n<\/tr>\n | ||||||
78<\/td>\n | Conductor Data <\/td>\n<\/tr>\n | ||||||
80<\/td>\n | 4.7.4 Reactors 4.7.5 Capacitors 4.7.6 Transformers <\/td>\n<\/tr>\n | ||||||
81<\/td>\n | Fig 29 Two-Winding Transformer Equivalent Circuits <\/td>\n<\/tr>\n | ||||||
82<\/td>\n | Fig 30 Two-Winding Transformer Approximate Equivalent Circuits <\/td>\n<\/tr>\n | ||||||
83<\/td>\n | (a) Simplified-Delta (b) Simplified-Wye <\/td>\n<\/tr>\n | ||||||
84<\/td>\n | (b) Flow Diagram <\/td>\n<\/tr>\n | ||||||
85<\/td>\n | 4.8 Power System Data Development 4.8.1 Per Unit Representations <\/td>\n<\/tr>\n | ||||||
87<\/td>\n | 4.8.2 Applications Example Fig 33 Impedance Diagram Raw Data <\/td>\n<\/tr>\n | ||||||
89<\/td>\n | System Base Values (Base Power 10 OOO kVA) <\/td>\n<\/tr>\n | ||||||
90<\/td>\n | Cable Data FDR <\/td>\n<\/tr>\n | ||||||
91<\/td>\n | PDR <\/td>\n<\/tr>\n | ||||||
93<\/td>\n | Impedance Diagram Per Unit Data (Base MVA = <\/td>\n<\/tr>\n | ||||||
94<\/td>\n | 4.9 Models of Bus Elements 4.9.1 Loads in General <\/td>\n<\/tr>\n | ||||||
95<\/td>\n | 4.9.2 Induction Motors Effect of Voltage Variations for Three Types of Loads <\/td>\n<\/tr>\n | ||||||
96<\/td>\n | Fg 36 Induction Motor Equivalent Circuit <\/td>\n<\/tr>\n | ||||||
97<\/td>\n | Fig 37 Induction Motor Torque versus Speed Fig 38 Induction Motor Current versus Speed <\/td>\n<\/tr>\n | ||||||
98<\/td>\n | Fig 39 Induction Motor Power Factor versus Speed <\/td>\n<\/tr>\n | ||||||
99<\/td>\n | Characteristics <\/td>\n<\/tr>\n | ||||||
100<\/td>\n | 4.9.3 Synchronous Machines Model of Induction Motor for Short-circuit Study FDR <\/td>\n<\/tr>\n | ||||||
102<\/td>\n | 0.8 Lead Power Factor <\/td>\n<\/tr>\n | ||||||
105<\/td>\n | Models of Synchronous Machines for Short-circuit Studies <\/td>\n<\/tr>\n | ||||||
106<\/td>\n | General Model for AC Machines in Short-circuit Studies <\/td>\n<\/tr>\n | ||||||
108<\/td>\n | Saturation Curves <\/td>\n<\/tr>\n | ||||||
109<\/td>\n | IEEE Type 1 Excitation System Lag Circuit <\/td>\n<\/tr>\n | ||||||
110<\/td>\n | Fig48 Lead Circuit <\/td>\n<\/tr>\n | ||||||
111<\/td>\n | 4.10 Miscellaneous Bus Element Models 4.10.1 Lighting and Electric Heating 4.10.2 Electric Furnaces 4.10.3 Shunt Capacitors 4.10.4 Shunt Reactors <\/td>\n<\/tr>\n | ||||||
112<\/td>\n | 4.11 References <\/td>\n<\/tr>\n | ||||||
114<\/td>\n | 5 Computer Solutions and Systems 5.1 Introduction <\/td>\n<\/tr>\n | ||||||
115<\/td>\n | Numerical Solution Techniques Matrix Algebra Fundamentals <\/td>\n<\/tr>\n | ||||||
118<\/td>\n | Power System Network Matrixes Single-Line Diagram <\/td>\n<\/tr>\n | ||||||
119<\/td>\n | Impedance Diagram and Mesh (Loop) Current Analysis <\/td>\n<\/tr>\n | ||||||
120<\/td>\n | Admittance Diagram and Node (Bus) Voltage Analysis <\/td>\n<\/tr>\n | ||||||
121<\/td>\n | Solution of Simultaneous Algebraic Equations <\/td>\n<\/tr>\n | ||||||
126<\/td>\n | Computer Program Using Gauss-Seidel Method <\/td>\n<\/tr>\n | ||||||
128<\/td>\n | Form f(x) = <\/td>\n<\/tr>\n | ||||||
129<\/td>\n | Solution of Differential Equations <\/td>\n<\/tr>\n | ||||||
130<\/td>\n | Block Diagram of an Exciter Control System <\/td>\n<\/tr>\n | ||||||
131<\/td>\n | 5.3 Computer Systems 5.3.1 Computer Terminology <\/td>\n<\/tr>\n | ||||||
132<\/td>\n | Fig <\/td>\n<\/tr>\n | ||||||
133<\/td>\n | 5.3.2 Computer Hardware <\/td>\n<\/tr>\n | ||||||
134<\/td>\n | Power System Analysis Software <\/td>\n<\/tr>\n | ||||||
136<\/td>\n | 5.4 Bibliography Full-Screen Data Input <\/td>\n<\/tr>\n | ||||||
137<\/td>\n | Forms for 80-Column File Input <\/td>\n<\/tr>\n | ||||||
140<\/td>\n | 6 Load Flow Studies 6.1 Introduction <\/td>\n<\/tr>\n | ||||||
141<\/td>\n | System Representation <\/td>\n<\/tr>\n | ||||||
142<\/td>\n | Load Flow Study Example <\/td>\n<\/tr>\n | ||||||
143<\/td>\n | Bus and Generator Representation Representation of Loads Lines and Transformers <\/td>\n<\/tr>\n | ||||||
144<\/td>\n | Input Data 6.3.1 System Data 6.3.2 BusData <\/td>\n<\/tr>\n | ||||||
145<\/td>\n | 6.3.3 Generator Data <\/td>\n<\/tr>\n | ||||||
146<\/td>\n | 6.3.4 LineData 6.3.5 Transformer Data <\/td>\n<\/tr>\n | ||||||
147<\/td>\n | Load Flow Solution Methods 6.4.1 Problem Formulation <\/td>\n<\/tr>\n | ||||||
148<\/td>\n | Iterative Solution Algorithms <\/td>\n<\/tr>\n | ||||||
149<\/td>\n | Gauss-Seidel Iterative Technique Load Flow Bus Specifications <\/td>\n<\/tr>\n | ||||||
150<\/td>\n | Three-Bus DC Network <\/td>\n<\/tr>\n | ||||||
152<\/td>\n | Factors <\/td>\n<\/tr>\n | ||||||
153<\/td>\n | Newton-Raphson Iterative Technique <\/td>\n<\/tr>\n | ||||||
155<\/td>\n | Comparison of Load Flow Solution Techniques <\/td>\n<\/tr>\n | ||||||
156<\/td>\n | Load Flow Analysis <\/td>\n<\/tr>\n | ||||||
158<\/td>\n | Load Flow Study Example <\/td>\n<\/tr>\n | ||||||
159<\/td>\n | Load Flow Study Example <\/td>\n<\/tr>\n | ||||||
160<\/td>\n | Input Data File for Sample System <\/td>\n<\/tr>\n | ||||||
161<\/td>\n | Data Listing for Sample System <\/td>\n<\/tr>\n | ||||||
162<\/td>\n | Analysis of Sample System <\/td>\n<\/tr>\n | ||||||
163<\/td>\n | Sample Load Flow Output <\/td>\n<\/tr>\n | ||||||
164<\/td>\n | Example System Base Case Load Flow Output <\/td>\n<\/tr>\n | ||||||
167<\/td>\n | Load Flow Programs <\/td>\n<\/tr>\n | ||||||
168<\/td>\n | Example System Load Flow Output After Corrective Changes <\/td>\n<\/tr>\n | ||||||
169<\/td>\n | Conclusions References <\/td>\n<\/tr>\n | ||||||
170<\/td>\n | 7 Short-circuit Studies 7.1 Introduction <\/td>\n<\/tr>\n | ||||||
171<\/td>\n | Short-circuit Study Procedure Preparation of a Study Single-Line Diagram Determination of Study Requirements <\/td>\n<\/tr>\n | ||||||
172<\/td>\n | Determination and Use of System Impedances <\/td>\n<\/tr>\n | ||||||
174<\/td>\n | Preparation of an Impedance Diagram 7.2.5 Calculations Short-circuit Studies <\/td>\n<\/tr>\n | ||||||
175<\/td>\n | Duty Calculations <\/td>\n<\/tr>\n | ||||||
176<\/td>\n | Interpretation and Application of Study Results Use When Exact Values Are Not Known <\/td>\n<\/tr>\n | ||||||
177<\/td>\n | Use of the Computer <\/td>\n<\/tr>\n | ||||||
178<\/td>\n | Short-circuit Study Example The Computer Program Capability <\/td>\n<\/tr>\n | ||||||
179<\/td>\n | Short-circuit Computer Program <\/td>\n<\/tr>\n | ||||||
180<\/td>\n | Input Data Requirements <\/td>\n<\/tr>\n | ||||||
181<\/td>\n | Short-circuit Study Example <\/td>\n<\/tr>\n | ||||||
182<\/td>\n | Study Example <\/td>\n<\/tr>\n | ||||||
185<\/td>\n | Computer Program Input and Output Records <\/td>\n<\/tr>\n | ||||||
186<\/td>\n | Computer Input File For Medium-Voltage Faults <\/td>\n<\/tr>\n | ||||||
187<\/td>\n | Momentary Duties <\/td>\n<\/tr>\n | ||||||
188<\/td>\n | Interrupting Duties <\/td>\n<\/tr>\n | ||||||
189<\/td>\n | Computer Input File for Low-Voltage Faults <\/td>\n<\/tr>\n | ||||||
190<\/td>\n | Momentary Duty <\/td>\n<\/tr>\n | ||||||
191<\/td>\n | Short-circuit Diagram Three-phase Momentary Fault Duties <\/td>\n<\/tr>\n | ||||||
192<\/td>\n | Short-circuit Diagram Three-phase Interrupting Fault Duties <\/td>\n<\/tr>\n | ||||||
193<\/td>\n | 7.5 References Short-circuit Study <\/td>\n<\/tr>\n | ||||||
194<\/td>\n | 8 Stability Studies 8.1 Introduction 8.2 Stability Fundamentals Definition of Stability 8.2.2 Steady-State Stability <\/td>\n<\/tr>\n | ||||||
195<\/td>\n | Transient and Dynamic Stability Simplified Two-Machine Power System <\/td>\n<\/tr>\n | ||||||
196<\/td>\n | Steady State <\/td>\n<\/tr>\n | ||||||
198<\/td>\n | 8.2.4 Two-Machine Systems 8.2.5 Multimachine Systems Problems Caused by Instability <\/td>\n<\/tr>\n | ||||||
199<\/td>\n | System Disturbances That Can Cause Instability Solutions to Stability Problems 8.5.1 System Design <\/td>\n<\/tr>\n | ||||||
200<\/td>\n | Design and Selection of Rotating Equipment 8.5.3 System Protection Voltage Regulator and Exciter Characteristics Transient Stability Studies <\/td>\n<\/tr>\n | ||||||
201<\/td>\n | 8.6.1 History How Stability Programs Work Simulation of the System <\/td>\n<\/tr>\n | ||||||
202<\/td>\n | Simulation of Disturbances Data Requirements for Stability Studies <\/td>\n<\/tr>\n | ||||||
204<\/td>\n | Stability Program Output Interpreting Results – Swing Curves <\/td>\n<\/tr>\n | ||||||
205<\/td>\n | Stability Studies on a mical System inFig80 <\/td>\n<\/tr>\n | ||||||
206<\/td>\n | Figs 79 and81 Shown in Fig <\/td>\n<\/tr>\n | ||||||
208<\/td>\n | with On-Site Generation <\/td>\n<\/tr>\n | ||||||
209<\/td>\n | 8.8 References <\/td>\n<\/tr>\n | ||||||
210<\/td>\n | 9 Motor Starting Studies 9.1 Introduction Need for Motor Starting Studies 9.2.1 Problems Revealed 9.2.2 Voltage Dips <\/td>\n<\/tr>\n | ||||||
212<\/td>\n | Weak Source Generation When Starting Motors <\/td>\n<\/tr>\n | ||||||
213<\/td>\n | Special Torque Requirements Exciter\/Regulator Systems <\/td>\n<\/tr>\n | ||||||
214<\/td>\n | 9.3 Recommendations 9.3.1 Voltage Dips <\/td>\n<\/tr>\n | ||||||
215<\/td>\n | Typical Wound Rotor Motor Speed-Torque Characteristics <\/td>\n<\/tr>\n | ||||||
216<\/td>\n | Analyzing Starting Requirements Types of Studies The Voltage Drop Snapshot The Detailed Voltage Profile The Speed-Torque and Acceleration Time Analysis <\/td>\n<\/tr>\n | ||||||
217<\/td>\n | 9.4.4 Adaptations 9.5 Data Requirements 9.5.1 Basic Information <\/td>\n<\/tr>\n | ||||||
218<\/td>\n | 9.5.2 Simplifying Assumptions Typical Motor and Load Speed-Torque Characteristics <\/td>\n<\/tr>\n | ||||||
219<\/td>\n | Solution Procedures and Examples Simplified Equivalent Circuit for a Motor on Starting <\/td>\n<\/tr>\n | ||||||
220<\/td>\n | The Mathematical Relationships Simplified Impedance Diagram <\/td>\n<\/tr>\n | ||||||
221<\/td>\n | Typical Single-Line Diagram <\/td>\n<\/tr>\n | ||||||
222<\/td>\n | Impedance Diagram for System in Fig <\/td>\n<\/tr>\n | ||||||
223<\/td>\n | 9.6.2 Other Factors <\/td>\n<\/tr>\n | ||||||
224<\/td>\n | ofGenerator <\/td>\n<\/tr>\n | ||||||
225<\/td>\n | System Auto-Transformer Line Starting Current <\/td>\n<\/tr>\n | ||||||
227<\/td>\n | The Simple Voltage Drop Determination Time-Dependent Bus Voltages <\/td>\n<\/tr>\n | ||||||
228<\/td>\n | Load Flow Computer Output (Steady State) <\/td>\n<\/tr>\n | ||||||
229<\/td>\n | Load Flow Computer Output (Voltage Dip on Motor Starting) <\/td>\n<\/tr>\n | ||||||
230<\/td>\n | The Speed-Torque and Motor Accelerating Time Analysis Motor Starting <\/td>\n<\/tr>\n | ||||||
231<\/td>\n | Typical Output -Generator Motor Starting Program Typical Output Generator Motor Starting Program <\/td>\n<\/tr>\n | ||||||
232<\/td>\n | Typical Output -Plot of Generator Voltage Dip Typical Output Plot of Motor Voltage Dip <\/td>\n<\/tr>\n | ||||||
233<\/td>\n | for Use in Computer Programs Speed-Torque Calculations <\/td>\n<\/tr>\n | ||||||
234<\/td>\n | Defined by a Speed Change <\/td>\n<\/tr>\n | ||||||
235<\/td>\n | 9.7 Summary 9.8 References Fig 101 Typical Motor Speed-Current Characteristic <\/td>\n<\/tr>\n | ||||||
236<\/td>\n | Time Program <\/td>\n<\/tr>\n | ||||||
238<\/td>\n | 10 Harmonic Analysis Studies 10.1 Introduction 10.2 History <\/td>\n<\/tr>\n | ||||||
239<\/td>\n | 10.3 General Theory 10.3.1 What Are Harmonics? <\/td>\n<\/tr>\n | ||||||
240<\/td>\n | Fig 103 6.Phase 6-Pulse Rectifier Schematic <\/td>\n<\/tr>\n | ||||||
241<\/td>\n | Current Waveforms FDR <\/td>\n<\/tr>\n | ||||||
242<\/td>\n | 10.3.2 Resonance Fig 105 Series Circuit Fig 106 Impedanceversus Frequency FDR <\/td>\n<\/tr>\n | ||||||
243<\/td>\n | Fig 107 Series Cicuit (Utility Source Contains No Harmonics) Fig 108 Series Circuit (Utility Source Contains Harmonics) Fig 109 Parallel Circuit Fig 110 Impedance versus Frequency <\/td>\n<\/tr>\n | ||||||
244<\/td>\n | 10.4 Modeling <\/td>\n<\/tr>\n | ||||||
245<\/td>\n | 10.4.1 Analysis Techniques Fig 11 1 Typical Thyristor Driver Characteristics <\/td>\n<\/tr>\n | ||||||
247<\/td>\n | Diagram (c) Related Impedance Diagram <\/td>\n<\/tr>\n | ||||||
249<\/td>\n | 10.5 Solutions to Harmonic Problems <\/td>\n<\/tr>\n | ||||||
250<\/td>\n | versusFrequency Plot Fig 114 (a) Broad Band Filter (b) Impedance versus Frequency Plot Broad Band Filter (b) Impedance versus Frequency Plot <\/td>\n<\/tr>\n | ||||||
252<\/td>\n | 10.5.1 Examples Fig 116 12-Pulse System Fig 117 24-Pulse System <\/td>\n<\/tr>\n | ||||||
253<\/td>\n | Fig 118 Partial Single-Line Diagram <\/td>\n<\/tr>\n | ||||||
254<\/td>\n | First Computer Solution – Without Filters <\/td>\n<\/tr>\n | ||||||
255<\/td>\n | Second Computer Solution – With Filters <\/td>\n<\/tr>\n | ||||||
256<\/td>\n | Fig 119 Partial Single-Line Diagram <\/td>\n<\/tr>\n | ||||||
257<\/td>\n | 10.6 When Is a Harmonic Study Required? <\/td>\n<\/tr>\n | ||||||
259<\/td>\n | 10.7 Distortion Limits 10.7.1 Pending IEEE Std 519-1981 Revision 10.8 References Systems <\/td>\n<\/tr>\n | ||||||
260<\/td>\n | Revision (Pending)) &-Generators) (IEEE Std 519-1981 Revision (Pending)) <\/td>\n<\/tr>\n | ||||||
262<\/td>\n | 11 Switching Transient Studies 11.1 Power System Switching Transients 11.1.1 Introduction 1 1.1.2 Circuit Elements <\/td>\n<\/tr>\n | ||||||
264<\/td>\n | 11.1.3 Analytical Techniques 11.1.4 Transient Analysis Based on Laplace Transform <\/td>\n<\/tr>\n | ||||||
265<\/td>\n | Fg 120 Double-Energy Network <\/td>\n<\/tr>\n | ||||||
266<\/td>\n | Fig 121 Capacitor Voltage <\/td>\n<\/tr>\n | ||||||
267<\/td>\n | Fg 122 Parallel RLCCircuit <\/td>\n<\/tr>\n | ||||||
268<\/td>\n | 10.6.1 Data Required <\/td>\n<\/tr>\n | ||||||
269<\/td>\n | Fig 123 Series RLC Circuit <\/td>\n<\/tr>\n | ||||||
271<\/td>\n | 11.1.5 Normalized Damping Curves <\/td>\n<\/tr>\n | ||||||
272<\/td>\n | 11.1.6 Switching Transient Examples Fig 124 Normalized Damping Curves 1 I QP <\/td>\n<\/tr>\n | ||||||
273<\/td>\n | Fig 125 Normalized Damping Curves 0.1 I: Qp <\/td>\n<\/tr>\n | ||||||
274<\/td>\n | Fig 126 Test Setup of Unloaded Transformer Fig 127 Equivalent RLC Circuit for Unloaded Transformer <\/td>\n<\/tr>\n | ||||||
275<\/td>\n | Fig 128 Capacitor Bank Switching <\/td>\n<\/tr>\n | ||||||
276<\/td>\n | Fig 129 Equivalent Circuit for Capacitor Switching <\/td>\n<\/tr>\n | ||||||
277<\/td>\n | 11.1.7 Transient Recovery Voltage Fg 130 Simplified Diagram to Illustrate TRV <\/td>\n<\/tr>\n | ||||||
279<\/td>\n | 11.1.8 Summary 11.2 Switching Transient Studies 11.2.1 Introduction Fig 131 Transient Recovery Voltage <\/td>\n<\/tr>\n | ||||||
280<\/td>\n | 11.2.2 Switching Transient Study Objectives 11.2.3 Control of Switching Transients <\/td>\n<\/tr>\n | ||||||
281<\/td>\n | 11.2.4 Transient Network Analyzer (TNA) <\/td>\n<\/tr>\n | ||||||
282<\/td>\n | 11.2.5 Capacitor Bank Switching-TNA Case Study <\/td>\n<\/tr>\n | ||||||
283<\/td>\n | 11.2.6 Electromagnetic Transients Program (EMTP) <\/td>\n<\/tr>\n | ||||||
284<\/td>\n | Fig 132 System Single-Line Diagram <\/td>\n<\/tr>\n | ||||||
285<\/td>\n | Fig 133 System Voltages-Case <\/td>\n<\/tr>\n | ||||||
286<\/td>\n | 1 1.2.7 Capacitor Bank Switching – EMTP Case Study Fig 134 Probability Distribution – Case <\/td>\n<\/tr>\n | ||||||
287<\/td>\n | Fig 135 Voltage Oscillograms Locations 1 and 4-Case <\/td>\n<\/tr>\n | ||||||
288<\/td>\n | Fig 136 Current Oscillograms Location 4-Case <\/td>\n<\/tr>\n | ||||||
289<\/td>\n | Fig 137 System Voltages-Case <\/td>\n<\/tr>\n | ||||||
290<\/td>\n | Fig 138 Probability Distribution – Case <\/td>\n<\/tr>\n | ||||||
291<\/td>\n | 11.2.8 Summary 11.2.9 Switching Transient Problem Areas Fig 139 Voltage Oscillograms Locations 3 and 5-Case <\/td>\n<\/tr>\n | ||||||
292<\/td>\n | Fig 140 Current Oscillograms Locations 4 and 5 -Case <\/td>\n<\/tr>\n | ||||||
293<\/td>\n | Expanded Time Scale <\/td>\n<\/tr>\n | ||||||
294<\/td>\n | Fig 142 System Single-Line Diagram <\/td>\n<\/tr>\n | ||||||
295<\/td>\n | Filter Energization -Cases Studied <\/td>\n<\/tr>\n | ||||||
296<\/td>\n | Fig 143 Voltage Oscillograms at STPT and DFBT Buses-Case <\/td>\n<\/tr>\n | ||||||
297<\/td>\n | 1 1.3 Switching Transients – Field Measurements 11.3.1 Introduction Fig 144 Voltage Oscillograms at DFLT and YFLT Buses – Case <\/td>\n<\/tr>\n | ||||||
298<\/td>\n | Fig 145 Voltage Oscillograms at STPT and DFBT Buses-Case <\/td>\n<\/tr>\n | ||||||
299<\/td>\n | 1 1.3.2 Sial Derivation Fig 146 Voltage Oscillograms at DFLT and YFLT Buses-Case <\/td>\n<\/tr>\n | ||||||
300<\/td>\n | Fig 147 Voltage Oscillograms at STI” and DFLT Buses-Case <\/td>\n<\/tr>\n | ||||||
301<\/td>\n | 11.3.3 Sial Circuits Terminations and Grounding Fig 148 Voltage Oscillograms at DFLT and YFLT Buses – Case <\/td>\n<\/tr>\n | ||||||
302<\/td>\n | Summary of Maximum Calculated Voltages in kV Summary of Maximum Calculated Voltages in pu <\/td>\n<\/tr>\n | ||||||
303<\/td>\n | 11.3.4 Equipment for Measuring Transients <\/td>\n<\/tr>\n | ||||||
304<\/td>\n | 11.4 Typical Circuit Parameters for Transient Studies 11.4.1 Introduction 11.4.2 System and Equipment Data Requirements <\/td>\n<\/tr>\n | ||||||
305<\/td>\n | 25- to 6O.Cycle Self.Cooled Two-Winding Power Transformers <\/td>\n<\/tr>\n | ||||||
306<\/td>\n | 11.5 References Outdoor Bushing Capacitance to Ground <\/td>\n<\/tr>\n | ||||||
307<\/td>\n | Synchronous Machine Constants <\/td>\n<\/tr>\n | ||||||
308<\/td>\n | 11.6 Bibliography and Grounded) <\/td>\n<\/tr>\n | ||||||
309<\/td>\n | Generator Armature Capacitance to Ground <\/td>\n<\/tr>\n | ||||||
310<\/td>\n | Phase Bus Capacitance Mical Values of Inductance Between Capacitor Banks <\/td>\n<\/tr>\n | ||||||
311<\/td>\n | mical Transmission Line Characteristics of 69 to 230 kV <\/td>\n<\/tr>\n | ||||||
312<\/td>\n | Ground <\/td>\n<\/tr>\n | ||||||
313<\/td>\n | Fig 150 Typical X\/R Ratio and Resistance of Reactors <\/td>\n<\/tr>\n | ||||||
314<\/td>\n | Fig 151 Typical X\/R Ratio of Generators Fig 152 Typical Charging Current for Cable <\/td>\n<\/tr>\n | ||||||
315<\/td>\n | Fig 153 Typical X\/R Ratio of Transformers Fig 154 Typical X\/R Ratio of Induction Motors <\/td>\n<\/tr>\n | ||||||
316<\/td>\n | 12 Reliability Studies 12.1 Introduction 12.2 Definitions <\/td>\n<\/tr>\n | ||||||
318<\/td>\n | System Reliability Indexes Data Needed for System Reliability Evaluations <\/td>\n<\/tr>\n | ||||||
319<\/td>\n | Method for System Reliability Evaluation 12.5.1 Service Interruption Definition 12.5.2 Failure Modes and Effects Analysis <\/td>\n<\/tr>\n | ||||||
320<\/td>\n | 12.5.3 Computation of Quantitative Reliability Indexes <\/td>\n<\/tr>\n | ||||||
321<\/td>\n | 12.6 Reference Interruptions Associated with Forced Outages Only <\/td>\n<\/tr>\n | ||||||
322<\/td>\n | 13 Cable Ampacity Studies 13.1 Introduction <\/td>\n<\/tr>\n | ||||||
323<\/td>\n | Heat Flow Analysis <\/td>\n<\/tr>\n | ||||||
324<\/td>\n | Thermal Resistances <\/td>\n<\/tr>\n | ||||||
326<\/td>\n | Application of Computer Program <\/td>\n<\/tr>\n | ||||||
327<\/td>\n | Ampacity Adjustment Factors <\/td>\n<\/tr>\n | ||||||
328<\/td>\n | Determine the Cable Ampacity (3-1\/C Cables Shown) <\/td>\n<\/tr>\n | ||||||
330<\/td>\n | Factor) 13.4.2 Fth (Thermal Resistivity Adjustment Factor) <\/td>\n<\/tr>\n | ||||||
331<\/td>\n | and Ambient Temperatures When T 75 “C and T 40 “C and Ambient Temperatures When T 90 “C and T 40 “C <\/td>\n<\/tr>\n | ||||||
334<\/td>\n | 13.4.3 Fg (Grouping Adjustment Factor) 13.5 Example <\/td>\n<\/tr>\n | ||||||
338<\/td>\n | Fig 157 3 X 5 Duct Bank Arrangement <\/td>\n<\/tr>\n | ||||||
339<\/td>\n | 13.5.1 Base Ampacities 13.5.2 Manual Method 13.5.3 Computer Method <\/td>\n<\/tr>\n | ||||||
340<\/td>\n | 13.6 Conclusion <\/td>\n<\/tr>\n | ||||||
342<\/td>\n | 13.7 References 13.8 Bibliography <\/td>\n<\/tr>\n | ||||||
344<\/td>\n | Ground Mat Studies 14.1 Introduction Justification for Ground Mat Studies Modeling the Human Body <\/td>\n<\/tr>\n | ||||||
345<\/td>\n | Fig 158 Touch Potential <\/td>\n<\/tr>\n | ||||||
346<\/td>\n | Fig 159 Step Potential <\/td>\n<\/tr>\n | ||||||
347<\/td>\n | Traditional Analysis of the Ground Mat 14.4.1 Ground Resistivity <\/td>\n<\/tr>\n | ||||||
348<\/td>\n | 14.4.2 Fault Current -Magnitude and Duration <\/td>\n<\/tr>\n | ||||||
349<\/td>\n | 14.4.3 Fault Current-The Role of Grid Resistance <\/td>\n<\/tr>\n | ||||||
350<\/td>\n | 14.4.4 Grid Geometry <\/td>\n<\/tr>\n | ||||||
352<\/td>\n | Advanced Grid Modeling Single Conductor <\/td>\n<\/tr>\n | ||||||
354<\/td>\n | 14.6 Benchmark Problems 14.7 Input\/Output Techniques <\/td>\n<\/tr>\n | ||||||
355<\/td>\n | Fig 161 Experimental Grids Showing Various (Mesh) Arrangements <\/td>\n<\/tr>\n | ||||||
356<\/td>\n | 14.8 Sample Problem System Data <\/td>\n<\/tr>\n | ||||||
357<\/td>\n | 14.9 Conclusion Potentials as Identified by Computer Analysis <\/td>\n<\/tr>\n | ||||||
358<\/td>\n | with Hazardous Touch Potentials <\/td>\n<\/tr>\n | ||||||
359<\/td>\n | 14.10 Reference 14.11 Bibliography Touch Potentials <\/td>\n<\/tr>\n | ||||||
360<\/td>\n | Critical Step and Touch Potentials Near Grid Corners <\/td>\n<\/tr>\n | ||||||
361<\/td>\n | Grid Potentials <\/td>\n<\/tr>\n | ||||||
362<\/td>\n | and Ground Fault Conditions <\/td>\n<\/tr>\n | ||||||
364<\/td>\n | 15 Coordination Studies 15.1 Introduction <\/td>\n<\/tr>\n | ||||||
365<\/td>\n | Basics of Coordination Light Table <\/td>\n<\/tr>\n | ||||||
366<\/td>\n | Computer Programs for Coordination <\/td>\n<\/tr>\n | ||||||
367<\/td>\n | Coordination <\/td>\n<\/tr>\n | ||||||
368<\/td>\n | Fig 171 Manually Produced Time-Current Curve <\/td>\n<\/tr>\n | ||||||
369<\/td>\n | Fig 172 Computer-Produced Time-Current Curve Plotted on a Printer <\/td>\n<\/tr>\n | ||||||
370<\/td>\n | 15.3.1 Coordination Programs 15.3.2 TCC Plotting Programs Common Structure for Computer Programs 15.4.1 Project Data Base Files <\/td>\n<\/tr>\n | ||||||
371<\/td>\n | 15.4.2 Interactive Data Entry 15.4.3 User-Defined Device Libraries 15.4.4 Single-Line Diagram Generator 15.4.5 Graphics Monitor <\/td>\n<\/tr>\n | ||||||
372<\/td>\n | 15.4.6 PlotterPrinter Graphical Interface 15.4.7 Graphical Output Reports Computer Method <\/td>\n<\/tr>\n | ||||||
373<\/td>\n | 15.4.8 Device Setting Report Generator How to Make Use of Coordination Software 15.5.1 In-House Mainframe Computer Fig 174 Example of Screen Plot <\/td>\n<\/tr>\n | ||||||
374<\/td>\n | Fig 175 Example of Plot on K&E 48-5258 Form <\/td>\n<\/tr>\n | ||||||
375<\/td>\n | 15.5.2 Personal Computer 15.5.3 Time Share <\/td>\n<\/tr>\n | ||||||
376<\/td>\n | 15.5.4 Consulting Service 15.6 Equipment Needs 15.7 Conclusion 15.8 References <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" IEEE Recommended Practice for Industrial and Commercial Power System Analysis<\/b><\/p>\n |