{"id":82361,"date":"2024-10-18T03:04:26","date_gmt":"2024-10-18T03:04:26","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/ieee-399-1990\/"},"modified":"2024-10-24T19:49:55","modified_gmt":"2024-10-24T19:49:55","slug":"ieee-399-1990","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/ieee\/ieee-399-1990\/","title":{"rendered":"IEEE 399 1990"},"content":{"rendered":"

Revision Standard – Inactive – Superseded. Superseded by 399-1997. This recommended practice is a reference source for engineers involved in industrial and commercial power systems analysis. It contains a thorough analysis of the power system data required, and the techniques most commonly used in computer-aided analysis, in order to perform specific power system studies of the following: short-circuit, load flow, motorstarting, cable ampacity, stability, harmonic analysis, switching transient, reliability, ground mat, protective coordination, DC auxiliary power system, and power system modeling.<\/p>\n

PDF Catalog<\/h4>\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
PDF Pages<\/th>\nPDF Title<\/th>\n<\/tr>\n
2<\/td>\nF1
Energizing Voltages -Case
Post-Switching Voltages – Case
system Voltages -Case <\/td>\n<\/tr>\n
3<\/td>\nF1
PI
F1
Fl
F1
1 \/o
2\/0
3\/0
4\/0
250
350
500
750
1000 <\/td>\n<\/tr>\n
4<\/td>\nO.Ol89
F1 <\/td>\n<\/tr>\n
5<\/td>\nFl
Fl <\/td>\n<\/tr>\n
7<\/td>\n0 woo <\/td>\n<\/tr>\n
10<\/td>\nLOAD <\/td>\n<\/tr>\n
11<\/td>\nSYINOTOR
LOAD
10 <\/td>\n<\/tr>\n
12<\/td>\nLOAD <\/td>\n<\/tr>\n
13<\/td>\nLOAD
12 <\/td>\n<\/tr>\n
14<\/td>\nLOAD <\/td>\n<\/tr>\n
15<\/td>\n14 <\/td>\n<\/tr>\n
16<\/td>\nLOAD
1 os
Size Rows <\/td>\n<\/tr>\n
17<\/td>\nLOAD
LOAD
LOAD <\/td>\n<\/tr>\n
24<\/td>\n1 Introduction
1.1 General Discussion
History of Power system Studies <\/td>\n<\/tr>\n
25<\/td>\nand Commercial Power Systems
Purposes of This Recommended Practice
Why a Study?
How to Prepare for a Power System Study <\/td>\n<\/tr>\n
26<\/td>\nThe Most Common System Studies <\/td>\n<\/tr>\n
27<\/td>\n1.5 References <\/td>\n<\/tr>\n
28<\/td>\nPower System <\/td>\n<\/tr>\n
30<\/td>\n2 Applications of Power System Analysis
2.1 Introduction
2.1.1 Digital Computer
Transient Network Analyzer (TNA)
Load Flow Analysis <\/td>\n<\/tr>\n
31<\/td>\n2.3 Short-Circuit Analysis
2.4 Stability Analysis
Motor Starting Analysis
UTILITY
UTILITY <\/td>\n<\/tr>\n
32<\/td>\n2.6 Harmonic Analysis
FDR <\/td>\n<\/tr>\n
33<\/td>\nSwitching Transients Analysis
2.8 ReliabilityAnalysis
2.9 Cable AmpacityAnalysis
2.10 Ground Mat Analysis
FDR <\/td>\n<\/tr>\n
34<\/td>\n2.1 1 Protective Device Coordination Analysis
FDR <\/td>\n<\/tr>\n
35<\/td>\n3 Analytical Procedures
3.1 Introduction <\/td>\n<\/tr>\n
36<\/td>\n3.2 The Fundamentals
3.2.1 Linearity <\/td>\n<\/tr>\n
37<\/td>\n3.2.2 Superposition
Linearity <\/td>\n<\/tr>\n
38<\/td>\nThe Thevenin Equivalent Circuit
Superposition <\/td>\n<\/tr>\n
39<\/td>\nThe Thevenin Equivalent <\/td>\n<\/tr>\n
40<\/td>\nCurrent Flow of a Thevenin Equivalent Representation <\/td>\n<\/tr>\n
41<\/td>\nThe Sinusoidal Forcing Function
Fault Flow
PDR <\/td>\n<\/tr>\n
42<\/td>\n3.2.5 Phasor Representation
The Sinusoidal Forcing Function
FDR <\/td>\n<\/tr>\n
43<\/td>\nThe Fourier Representation
The Phasor Representation <\/td>\n<\/tr>\n
44<\/td>\nThe Laplace Transform
The Fourier Representation <\/td>\n<\/tr>\n
46<\/td>\nLaplace Transform Pairs <\/td>\n<\/tr>\n
47<\/td>\ns-Domain Equivalent Circuits <\/td>\n<\/tr>\n
48<\/td>\nRL Network <\/td>\n<\/tr>\n
49<\/td>\nCurrent Response (Eq
RC Network <\/td>\n<\/tr>\n
50<\/td>\nThe Single-phase Equivalent Circuit
CurrentResponse(Eq <\/td>\n<\/tr>\n
51<\/td>\nVoltage Response <\/td>\n<\/tr>\n
52<\/td>\nThe Symmetrical Component Analysis
(c) Single-Line Impedance Diagram <\/td>\n<\/tr>\n
53<\/td>\n(c) Single-Line Impedance Diagram <\/td>\n<\/tr>\n
54<\/td>\nFig 17 The Symmetrical Component Analysis <\/td>\n<\/tr>\n
56<\/td>\n3.2.10 The Per Unit Method <\/td>\n<\/tr>\n
57<\/td>\nand (c) Simplified Per Unit Representation <\/td>\n<\/tr>\n
59<\/td>\nReferences and Bibliography <\/td>\n<\/tr>\n
60<\/td>\n4 System Modeling
4.1 Introduction
4.2 Modeling <\/td>\n<\/tr>\n
61<\/td>\n4.3 Review of Basics
4.3.1 Passive Elements <\/td>\n<\/tr>\n
62<\/td>\n4.3.2 Active Elements
Impedance and Admittance <\/td>\n<\/tr>\n
63<\/td>\nFig 19 Equivalent Circuit Diagrams Showing Si Convention <\/td>\n<\/tr>\n
64<\/td>\nFig 20 Vector Diagram
Four Defining Expressions for Power Quantities <\/td>\n<\/tr>\n
65<\/td>\n4.4 Power Network Solution
Fundamental Equations for Translation and Rotation <\/td>\n<\/tr>\n
66<\/td>\nFig 21 Section of Qpical Single-Line Diagram (Simplified) <\/td>\n<\/tr>\n
68<\/td>\nFig 22 ImpedanceDiagram <\/td>\n<\/tr>\n
69<\/td>\n4.5 Impedance Diagram <\/td>\n<\/tr>\n
70<\/td>\n4.6 Extent of the Model
4.6.1 General
Fig23 FlowDiagram
FDR
FDR <\/td>\n<\/tr>\n
71<\/td>\nData Presentation for Impedance and Other Diagrams
PDR <\/td>\n<\/tr>\n
72<\/td>\n4.6.2 Utility Supplied Systems
4.6.3 Isolated Systems
4.7 Models of Branch Elements
4.7.1 Lines
Fig 25 Equivalent Circuit of Short Conductor <\/td>\n<\/tr>\n
73<\/td>\nEquivalent Circuit <\/td>\n<\/tr>\n
75<\/td>\n4.7.2 Cables <\/td>\n<\/tr>\n
76<\/td>\n4.7.3 Determination of Constants
Medium Line Equivalent Circuits (a) Nominal T (b) Nominal T
Fig 28 Short Line Equivalent Circuit <\/td>\n<\/tr>\n
77<\/td>\nComparison of Overhead Lines and Cable Constants <\/td>\n<\/tr>\n
78<\/td>\nConductor Data <\/td>\n<\/tr>\n
80<\/td>\n4.7.4 Reactors
4.7.5 Capacitors
4.7.6 Transformers <\/td>\n<\/tr>\n
81<\/td>\nFig 29 Two-Winding Transformer Equivalent Circuits <\/td>\n<\/tr>\n
82<\/td>\nFig 30 Two-Winding Transformer Approximate Equivalent Circuits <\/td>\n<\/tr>\n
83<\/td>\n(a) Simplified-Delta (b) Simplified-Wye <\/td>\n<\/tr>\n
84<\/td>\n(b) Flow Diagram <\/td>\n<\/tr>\n
85<\/td>\n4.8 Power System Data Development
4.8.1 Per Unit Representations <\/td>\n<\/tr>\n
87<\/td>\n4.8.2 Applications Example
Fig 33 Impedance Diagram Raw Data <\/td>\n<\/tr>\n
89<\/td>\nSystem Base Values (Base Power 10 OOO kVA) <\/td>\n<\/tr>\n
90<\/td>\nCable Data
FDR <\/td>\n<\/tr>\n
91<\/td>\nPDR <\/td>\n<\/tr>\n
93<\/td>\nImpedance Diagram Per Unit Data (Base MVA = <\/td>\n<\/tr>\n
94<\/td>\n4.9 Models of Bus Elements
4.9.1 Loads in General <\/td>\n<\/tr>\n
95<\/td>\n4.9.2 Induction Motors
Effect of Voltage Variations for Three Types of Loads <\/td>\n<\/tr>\n
96<\/td>\nFg 36 Induction Motor Equivalent Circuit <\/td>\n<\/tr>\n
97<\/td>\nFig 37 Induction Motor Torque versus Speed
Fig 38 Induction Motor Current versus Speed <\/td>\n<\/tr>\n
98<\/td>\nFig 39 Induction Motor Power Factor versus Speed <\/td>\n<\/tr>\n
99<\/td>\nCharacteristics <\/td>\n<\/tr>\n
100<\/td>\n4.9.3 Synchronous Machines
Model of Induction Motor for Short-circuit Study
FDR <\/td>\n<\/tr>\n
102<\/td>\n0.8 Lead Power Factor <\/td>\n<\/tr>\n
105<\/td>\nModels of Synchronous Machines for Short-circuit Studies <\/td>\n<\/tr>\n
106<\/td>\nGeneral Model for AC Machines in Short-circuit Studies <\/td>\n<\/tr>\n
108<\/td>\nSaturation Curves <\/td>\n<\/tr>\n
109<\/td>\nIEEE Type 1 Excitation System
Lag Circuit <\/td>\n<\/tr>\n
110<\/td>\nFig48 Lead Circuit <\/td>\n<\/tr>\n
111<\/td>\n4.10 Miscellaneous Bus Element Models
4.10.1 Lighting and Electric Heating
4.10.2 Electric Furnaces
4.10.3 Shunt Capacitors
4.10.4 Shunt Reactors <\/td>\n<\/tr>\n
112<\/td>\n4.11 References <\/td>\n<\/tr>\n
114<\/td>\n5 Computer Solutions and Systems
5.1 Introduction <\/td>\n<\/tr>\n
115<\/td>\nNumerical Solution Techniques
Matrix Algebra Fundamentals <\/td>\n<\/tr>\n
118<\/td>\nPower System Network Matrixes
Single-Line Diagram <\/td>\n<\/tr>\n
119<\/td>\nImpedance Diagram and Mesh (Loop) Current Analysis <\/td>\n<\/tr>\n
120<\/td>\nAdmittance Diagram and Node (Bus) Voltage Analysis <\/td>\n<\/tr>\n
121<\/td>\nSolution of Simultaneous Algebraic Equations <\/td>\n<\/tr>\n
126<\/td>\nComputer Program Using Gauss-Seidel Method <\/td>\n<\/tr>\n
128<\/td>\nForm f(x) = <\/td>\n<\/tr>\n
129<\/td>\nSolution of Differential Equations <\/td>\n<\/tr>\n
130<\/td>\nBlock Diagram of an Exciter Control System <\/td>\n<\/tr>\n
131<\/td>\n5.3 Computer Systems
5.3.1 Computer Terminology <\/td>\n<\/tr>\n
132<\/td>\nFig <\/td>\n<\/tr>\n
133<\/td>\n5.3.2 Computer Hardware <\/td>\n<\/tr>\n
134<\/td>\nPower System Analysis Software <\/td>\n<\/tr>\n
136<\/td>\n5.4 Bibliography
Full-Screen Data Input <\/td>\n<\/tr>\n
137<\/td>\nForms for 80-Column File Input <\/td>\n<\/tr>\n
140<\/td>\n6 Load Flow Studies
6.1 Introduction <\/td>\n<\/tr>\n
141<\/td>\nSystem Representation <\/td>\n<\/tr>\n
142<\/td>\nLoad Flow Study Example <\/td>\n<\/tr>\n
143<\/td>\nBus and Generator Representation
Representation of Loads Lines and Transformers <\/td>\n<\/tr>\n
144<\/td>\nInput Data
6.3.1 System Data
6.3.2 BusData <\/td>\n<\/tr>\n
145<\/td>\n6.3.3 Generator Data <\/td>\n<\/tr>\n
146<\/td>\n6.3.4 LineData
6.3.5 Transformer Data <\/td>\n<\/tr>\n
147<\/td>\nLoad Flow Solution Methods
6.4.1 Problem Formulation <\/td>\n<\/tr>\n
148<\/td>\nIterative Solution Algorithms <\/td>\n<\/tr>\n
149<\/td>\nGauss-Seidel Iterative Technique
Load Flow Bus Specifications <\/td>\n<\/tr>\n
150<\/td>\nThree-Bus DC Network <\/td>\n<\/tr>\n
152<\/td>\nFactors <\/td>\n<\/tr>\n
153<\/td>\nNewton-Raphson Iterative Technique <\/td>\n<\/tr>\n
155<\/td>\nComparison of Load Flow Solution Techniques <\/td>\n<\/tr>\n
156<\/td>\nLoad Flow Analysis <\/td>\n<\/tr>\n
158<\/td>\nLoad Flow Study Example <\/td>\n<\/tr>\n
159<\/td>\nLoad Flow Study Example <\/td>\n<\/tr>\n
160<\/td>\nInput Data File for Sample System <\/td>\n<\/tr>\n
161<\/td>\nData Listing for Sample System <\/td>\n<\/tr>\n
162<\/td>\nAnalysis of Sample System <\/td>\n<\/tr>\n
163<\/td>\nSample Load Flow Output <\/td>\n<\/tr>\n
164<\/td>\nExample System Base Case Load Flow Output <\/td>\n<\/tr>\n
167<\/td>\nLoad Flow Programs <\/td>\n<\/tr>\n
168<\/td>\nExample System Load Flow Output After Corrective Changes <\/td>\n<\/tr>\n
169<\/td>\nConclusions
References <\/td>\n<\/tr>\n
170<\/td>\n7 Short-circuit Studies
7.1 Introduction <\/td>\n<\/tr>\n
171<\/td>\nShort-circuit Study Procedure
Preparation of a Study Single-Line Diagram
Determination of Study Requirements <\/td>\n<\/tr>\n
172<\/td>\nDetermination and Use of System Impedances <\/td>\n<\/tr>\n
174<\/td>\nPreparation of an Impedance Diagram
7.2.5 Calculations
Short-circuit Studies <\/td>\n<\/tr>\n
175<\/td>\nDuty Calculations <\/td>\n<\/tr>\n
176<\/td>\nInterpretation and Application of Study Results
Use When Exact Values Are Not Known <\/td>\n<\/tr>\n
177<\/td>\nUse of the Computer <\/td>\n<\/tr>\n
178<\/td>\nShort-circuit Study Example
The Computer Program Capability <\/td>\n<\/tr>\n
179<\/td>\nShort-circuit Computer Program <\/td>\n<\/tr>\n
180<\/td>\nInput Data Requirements <\/td>\n<\/tr>\n
181<\/td>\nShort-circuit Study Example <\/td>\n<\/tr>\n
182<\/td>\nStudy Example <\/td>\n<\/tr>\n
185<\/td>\nComputer Program Input and Output Records <\/td>\n<\/tr>\n
186<\/td>\nComputer Input File For Medium-Voltage Faults <\/td>\n<\/tr>\n
187<\/td>\nMomentary Duties <\/td>\n<\/tr>\n
188<\/td>\nInterrupting Duties <\/td>\n<\/tr>\n
189<\/td>\nComputer Input File for Low-Voltage Faults <\/td>\n<\/tr>\n
190<\/td>\nMomentary Duty <\/td>\n<\/tr>\n
191<\/td>\nShort-circuit Diagram Three-phase Momentary Fault Duties <\/td>\n<\/tr>\n
192<\/td>\nShort-circuit Diagram Three-phase Interrupting Fault Duties <\/td>\n<\/tr>\n
193<\/td>\n7.5 References
Short-circuit Study <\/td>\n<\/tr>\n
194<\/td>\n8 Stability Studies
8.1 Introduction
8.2 Stability Fundamentals
Definition of Stability
8.2.2 Steady-State Stability <\/td>\n<\/tr>\n
195<\/td>\nTransient and Dynamic Stability
Simplified Two-Machine Power System <\/td>\n<\/tr>\n
196<\/td>\nSteady State <\/td>\n<\/tr>\n
198<\/td>\n8.2.4 Two-Machine Systems
8.2.5 Multimachine Systems
Problems Caused by Instability <\/td>\n<\/tr>\n
199<\/td>\nSystem Disturbances That Can Cause Instability
Solutions to Stability Problems
8.5.1 System Design <\/td>\n<\/tr>\n
200<\/td>\nDesign and Selection of Rotating Equipment
8.5.3 System Protection
Voltage Regulator and Exciter Characteristics
Transient Stability Studies <\/td>\n<\/tr>\n
201<\/td>\n8.6.1 History
How Stability Programs Work
Simulation of the System <\/td>\n<\/tr>\n
202<\/td>\nSimulation of Disturbances
Data Requirements for Stability Studies <\/td>\n<\/tr>\n
204<\/td>\nStability Program Output
Interpreting Results – Swing Curves <\/td>\n<\/tr>\n
205<\/td>\nStability Studies on a mical System
inFig80 <\/td>\n<\/tr>\n
206<\/td>\nFigs 79 and81
Shown in Fig <\/td>\n<\/tr>\n
208<\/td>\nwith On-Site Generation <\/td>\n<\/tr>\n
209<\/td>\n8.8 References <\/td>\n<\/tr>\n
210<\/td>\n9 Motor Starting Studies
9.1 Introduction
Need for Motor Starting Studies
9.2.1 Problems Revealed
9.2.2 Voltage Dips <\/td>\n<\/tr>\n
212<\/td>\nWeak Source Generation
When Starting Motors <\/td>\n<\/tr>\n
213<\/td>\nSpecial Torque Requirements
Exciter\/Regulator Systems <\/td>\n<\/tr>\n
214<\/td>\n9.3 Recommendations
9.3.1 Voltage Dips <\/td>\n<\/tr>\n
215<\/td>\nTypical Wound Rotor Motor Speed-Torque Characteristics <\/td>\n<\/tr>\n
216<\/td>\nAnalyzing Starting Requirements
Types of Studies
The Voltage Drop Snapshot
The Detailed Voltage Profile
The Speed-Torque and Acceleration Time Analysis <\/td>\n<\/tr>\n
217<\/td>\n9.4.4 Adaptations
9.5 Data Requirements
9.5.1 Basic Information <\/td>\n<\/tr>\n
218<\/td>\n9.5.2 Simplifying Assumptions
Typical Motor and Load Speed-Torque Characteristics <\/td>\n<\/tr>\n
219<\/td>\nSolution Procedures and Examples
Simplified Equivalent Circuit for a Motor on Starting <\/td>\n<\/tr>\n
220<\/td>\nThe Mathematical Relationships
Simplified Impedance Diagram <\/td>\n<\/tr>\n
221<\/td>\nTypical Single-Line Diagram <\/td>\n<\/tr>\n
222<\/td>\nImpedance Diagram for System in Fig <\/td>\n<\/tr>\n
223<\/td>\n9.6.2 Other Factors <\/td>\n<\/tr>\n
224<\/td>\nofGenerator <\/td>\n<\/tr>\n
225<\/td>\nSystem
Auto-Transformer Line Starting Current <\/td>\n<\/tr>\n
227<\/td>\nThe Simple Voltage Drop Determination
Time-Dependent Bus Voltages <\/td>\n<\/tr>\n
228<\/td>\nLoad Flow Computer Output (Steady State) <\/td>\n<\/tr>\n
229<\/td>\nLoad Flow Computer Output (Voltage Dip on Motor Starting) <\/td>\n<\/tr>\n
230<\/td>\nThe Speed-Torque and Motor Accelerating Time Analysis
Motor Starting <\/td>\n<\/tr>\n
231<\/td>\nTypical Output -Generator Motor Starting Program
Typical Output Generator Motor Starting Program <\/td>\n<\/tr>\n
232<\/td>\nTypical Output -Plot of Generator Voltage Dip
Typical Output Plot of Motor Voltage Dip <\/td>\n<\/tr>\n
233<\/td>\nfor Use in Computer Programs
Speed-Torque Calculations <\/td>\n<\/tr>\n
234<\/td>\nDefined by a Speed Change <\/td>\n<\/tr>\n
235<\/td>\n9.7 Summary
9.8 References
Fig 101 Typical Motor Speed-Current Characteristic <\/td>\n<\/tr>\n
236<\/td>\nTime Program <\/td>\n<\/tr>\n
238<\/td>\n10 Harmonic Analysis Studies
10.1 Introduction
10.2 History <\/td>\n<\/tr>\n
239<\/td>\n10.3 General Theory
10.3.1 What Are Harmonics? <\/td>\n<\/tr>\n
240<\/td>\nFig 103 6.Phase 6-Pulse Rectifier Schematic <\/td>\n<\/tr>\n
241<\/td>\nCurrent Waveforms
FDR <\/td>\n<\/tr>\n
242<\/td>\n10.3.2 Resonance
Fig 105 Series Circuit
Fig 106 Impedanceversus Frequency
FDR <\/td>\n<\/tr>\n
243<\/td>\nFig 107 Series Cicuit (Utility Source Contains No Harmonics)
Fig 108 Series Circuit (Utility Source Contains Harmonics)
Fig 109 Parallel Circuit
Fig 110 Impedance versus Frequency <\/td>\n<\/tr>\n
244<\/td>\n10.4 Modeling <\/td>\n<\/tr>\n
245<\/td>\n10.4.1 Analysis Techniques
Fig 11 1 Typical Thyristor Driver Characteristics <\/td>\n<\/tr>\n
247<\/td>\nDiagram (c) Related Impedance Diagram <\/td>\n<\/tr>\n
249<\/td>\n10.5 Solutions to Harmonic Problems <\/td>\n<\/tr>\n
250<\/td>\nversusFrequency Plot
Fig 114 (a) Broad Band Filter (b) Impedance versus Frequency Plot
Broad Band Filter (b) Impedance versus Frequency Plot <\/td>\n<\/tr>\n
252<\/td>\n10.5.1 Examples
Fig 116 12-Pulse System
Fig 117 24-Pulse System <\/td>\n<\/tr>\n
253<\/td>\nFig 118 Partial Single-Line Diagram <\/td>\n<\/tr>\n
254<\/td>\nFirst Computer Solution – Without Filters <\/td>\n<\/tr>\n
255<\/td>\nSecond Computer Solution – With Filters <\/td>\n<\/tr>\n
256<\/td>\nFig 119 Partial Single-Line Diagram <\/td>\n<\/tr>\n
257<\/td>\n10.6 When Is a Harmonic Study Required? <\/td>\n<\/tr>\n
259<\/td>\n10.7 Distortion Limits
10.7.1 Pending IEEE Std 519-1981 Revision
10.8 References
Systems <\/td>\n<\/tr>\n
260<\/td>\nRevision (Pending))
&-Generators) (IEEE Std 519-1981 Revision (Pending)) <\/td>\n<\/tr>\n
262<\/td>\n11 Switching Transient Studies
11.1 Power System Switching Transients
11.1.1 Introduction
1 1.1.2 Circuit Elements <\/td>\n<\/tr>\n
264<\/td>\n11.1.3 Analytical Techniques
11.1.4 Transient Analysis Based on Laplace Transform <\/td>\n<\/tr>\n
265<\/td>\nFg 120 Double-Energy Network <\/td>\n<\/tr>\n
266<\/td>\nFig 121 Capacitor Voltage <\/td>\n<\/tr>\n
267<\/td>\nFg 122 Parallel RLCCircuit <\/td>\n<\/tr>\n
268<\/td>\n10.6.1 Data Required <\/td>\n<\/tr>\n
269<\/td>\nFig 123 Series RLC Circuit <\/td>\n<\/tr>\n
271<\/td>\n11.1.5 Normalized Damping Curves <\/td>\n<\/tr>\n
272<\/td>\n11.1.6 Switching Transient Examples
Fig 124 Normalized Damping Curves 1 I QP <\/td>\n<\/tr>\n
273<\/td>\nFig 125 Normalized Damping Curves 0.1 I: Qp <\/td>\n<\/tr>\n
274<\/td>\nFig 126 Test Setup of Unloaded Transformer
Fig 127 Equivalent RLC Circuit for Unloaded Transformer <\/td>\n<\/tr>\n
275<\/td>\nFig 128 Capacitor Bank Switching <\/td>\n<\/tr>\n
276<\/td>\nFig 129 Equivalent Circuit for Capacitor Switching <\/td>\n<\/tr>\n
277<\/td>\n11.1.7 Transient Recovery Voltage
Fg 130 Simplified Diagram to Illustrate TRV <\/td>\n<\/tr>\n
279<\/td>\n11.1.8 Summary
11.2 Switching Transient Studies
11.2.1 Introduction
Fig 131 Transient Recovery Voltage <\/td>\n<\/tr>\n
280<\/td>\n11.2.2 Switching Transient Study Objectives
11.2.3 Control of Switching Transients <\/td>\n<\/tr>\n
281<\/td>\n11.2.4 Transient Network Analyzer (TNA) <\/td>\n<\/tr>\n
282<\/td>\n11.2.5 Capacitor Bank Switching-TNA Case Study <\/td>\n<\/tr>\n
283<\/td>\n11.2.6 Electromagnetic Transients Program (EMTP) <\/td>\n<\/tr>\n
284<\/td>\nFig 132 System Single-Line Diagram <\/td>\n<\/tr>\n
285<\/td>\nFig 133 System Voltages-Case <\/td>\n<\/tr>\n
286<\/td>\n1 1.2.7 Capacitor Bank Switching – EMTP Case Study
Fig 134 Probability Distribution – Case <\/td>\n<\/tr>\n
287<\/td>\nFig 135 Voltage Oscillograms Locations 1 and 4-Case <\/td>\n<\/tr>\n
288<\/td>\nFig 136 Current Oscillograms Location 4-Case <\/td>\n<\/tr>\n
289<\/td>\nFig 137 System Voltages-Case <\/td>\n<\/tr>\n
290<\/td>\nFig 138 Probability Distribution – Case <\/td>\n<\/tr>\n
291<\/td>\n11.2.8 Summary
11.2.9 Switching Transient Problem Areas
Fig 139 Voltage Oscillograms Locations 3 and 5-Case <\/td>\n<\/tr>\n
292<\/td>\nFig 140 Current Oscillograms Locations 4 and 5 -Case <\/td>\n<\/tr>\n
293<\/td>\nExpanded Time Scale <\/td>\n<\/tr>\n
294<\/td>\nFig 142 System Single-Line Diagram <\/td>\n<\/tr>\n
295<\/td>\nFilter Energization -Cases Studied <\/td>\n<\/tr>\n
296<\/td>\nFig 143 Voltage Oscillograms at STPT and DFBT Buses-Case <\/td>\n<\/tr>\n
297<\/td>\n1 1.3 Switching Transients – Field Measurements
11.3.1 Introduction
Fig 144 Voltage Oscillograms at DFLT and YFLT Buses – Case <\/td>\n<\/tr>\n
298<\/td>\nFig 145 Voltage Oscillograms at STPT and DFBT Buses-Case <\/td>\n<\/tr>\n
299<\/td>\n1 1.3.2 Sial Derivation
Fig 146 Voltage Oscillograms at DFLT and YFLT Buses-Case <\/td>\n<\/tr>\n
300<\/td>\nFig 147 Voltage Oscillograms at STI” and DFLT Buses-Case <\/td>\n<\/tr>\n
301<\/td>\n11.3.3 Sial Circuits Terminations and Grounding
Fig 148 Voltage Oscillograms at DFLT and YFLT Buses – Case <\/td>\n<\/tr>\n
302<\/td>\nSummary of Maximum Calculated Voltages in kV
Summary of Maximum Calculated Voltages in pu <\/td>\n<\/tr>\n
303<\/td>\n11.3.4 Equipment for Measuring Transients <\/td>\n<\/tr>\n
304<\/td>\n11.4 Typical Circuit Parameters for Transient Studies
11.4.1 Introduction
11.4.2 System and Equipment Data Requirements <\/td>\n<\/tr>\n
305<\/td>\n25- to 6O.Cycle Self.Cooled Two-Winding Power Transformers <\/td>\n<\/tr>\n
306<\/td>\n11.5 References
Outdoor Bushing Capacitance to Ground <\/td>\n<\/tr>\n
307<\/td>\nSynchronous Machine Constants <\/td>\n<\/tr>\n
308<\/td>\n11.6 Bibliography
and Grounded) <\/td>\n<\/tr>\n
309<\/td>\nGenerator Armature Capacitance to Ground <\/td>\n<\/tr>\n
310<\/td>\nPhase Bus Capacitance
Mical Values of Inductance Between Capacitor Banks <\/td>\n<\/tr>\n
311<\/td>\nmical Transmission Line Characteristics of 69 to 230 kV <\/td>\n<\/tr>\n
312<\/td>\nGround <\/td>\n<\/tr>\n
313<\/td>\nFig 150 Typical X\/R Ratio and Resistance of Reactors <\/td>\n<\/tr>\n
314<\/td>\nFig 151 Typical X\/R Ratio of Generators
Fig 152 Typical Charging Current for Cable <\/td>\n<\/tr>\n
315<\/td>\nFig 153 Typical X\/R Ratio of Transformers
Fig 154 Typical X\/R Ratio of Induction Motors <\/td>\n<\/tr>\n
316<\/td>\n12 Reliability Studies
12.1 Introduction
12.2 Definitions <\/td>\n<\/tr>\n
318<\/td>\nSystem Reliability Indexes
Data Needed for System Reliability Evaluations <\/td>\n<\/tr>\n
319<\/td>\nMethod for System Reliability Evaluation
12.5.1 Service Interruption Definition
12.5.2 Failure Modes and Effects Analysis <\/td>\n<\/tr>\n
320<\/td>\n12.5.3 Computation of Quantitative Reliability Indexes <\/td>\n<\/tr>\n
321<\/td>\n12.6 Reference
Interruptions Associated with Forced Outages Only <\/td>\n<\/tr>\n
322<\/td>\n13 Cable Ampacity Studies
13.1 Introduction <\/td>\n<\/tr>\n
323<\/td>\nHeat Flow Analysis <\/td>\n<\/tr>\n
324<\/td>\nThermal Resistances <\/td>\n<\/tr>\n
326<\/td>\nApplication of Computer Program <\/td>\n<\/tr>\n
327<\/td>\nAmpacity Adjustment Factors <\/td>\n<\/tr>\n
328<\/td>\nDetermine the Cable Ampacity (3-1\/C Cables Shown) <\/td>\n<\/tr>\n
330<\/td>\nFactor)
13.4.2 Fth (Thermal Resistivity Adjustment Factor) <\/td>\n<\/tr>\n
331<\/td>\nand Ambient Temperatures When T 75 “C and T 40 “C
and Ambient Temperatures When T 90 “C and T 40 “C <\/td>\n<\/tr>\n
334<\/td>\n13.4.3 Fg (Grouping Adjustment Factor)
13.5 Example <\/td>\n<\/tr>\n
338<\/td>\nFig 157 3 X 5 Duct Bank Arrangement <\/td>\n<\/tr>\n
339<\/td>\n13.5.1 Base Ampacities
13.5.2 Manual Method
13.5.3 Computer Method <\/td>\n<\/tr>\n
340<\/td>\n13.6 Conclusion <\/td>\n<\/tr>\n
342<\/td>\n13.7 References
13.8 Bibliography <\/td>\n<\/tr>\n
344<\/td>\nGround Mat Studies
14.1 Introduction
Justification for Ground Mat Studies
Modeling the Human Body <\/td>\n<\/tr>\n
345<\/td>\nFig 158 Touch Potential <\/td>\n<\/tr>\n
346<\/td>\nFig 159 Step Potential <\/td>\n<\/tr>\n
347<\/td>\nTraditional Analysis of the Ground Mat
14.4.1 Ground Resistivity <\/td>\n<\/tr>\n
348<\/td>\n14.4.2 Fault Current -Magnitude and Duration <\/td>\n<\/tr>\n
349<\/td>\n14.4.3 Fault Current-The Role of Grid Resistance <\/td>\n<\/tr>\n
350<\/td>\n14.4.4 Grid Geometry <\/td>\n<\/tr>\n
352<\/td>\nAdvanced Grid Modeling
Single Conductor <\/td>\n<\/tr>\n
354<\/td>\n14.6 Benchmark Problems
14.7 Input\/Output Techniques <\/td>\n<\/tr>\n
355<\/td>\nFig 161 Experimental Grids Showing Various (Mesh) Arrangements <\/td>\n<\/tr>\n
356<\/td>\n14.8 Sample Problem
System Data <\/td>\n<\/tr>\n
357<\/td>\n14.9 Conclusion
Potentials as Identified by Computer Analysis <\/td>\n<\/tr>\n
358<\/td>\nwith Hazardous Touch Potentials <\/td>\n<\/tr>\n
359<\/td>\n14.10 Reference
14.11 Bibliography
Touch Potentials <\/td>\n<\/tr>\n
360<\/td>\nCritical Step and Touch Potentials Near Grid Corners <\/td>\n<\/tr>\n
361<\/td>\nGrid Potentials <\/td>\n<\/tr>\n
362<\/td>\nand Ground Fault Conditions <\/td>\n<\/tr>\n
364<\/td>\n15 Coordination Studies
15.1 Introduction <\/td>\n<\/tr>\n
365<\/td>\nBasics of Coordination
Light Table <\/td>\n<\/tr>\n
366<\/td>\nComputer Programs for Coordination <\/td>\n<\/tr>\n
367<\/td>\nCoordination <\/td>\n<\/tr>\n
368<\/td>\nFig 171 Manually Produced Time-Current Curve <\/td>\n<\/tr>\n
369<\/td>\nFig 172 Computer-Produced Time-Current Curve Plotted on a Printer <\/td>\n<\/tr>\n
370<\/td>\n15.3.1 Coordination Programs
15.3.2 TCC Plotting Programs
Common Structure for Computer Programs
15.4.1 Project Data Base Files <\/td>\n<\/tr>\n
371<\/td>\n15.4.2 Interactive Data Entry
15.4.3 User-Defined Device Libraries
15.4.4 Single-Line Diagram Generator
15.4.5 Graphics Monitor <\/td>\n<\/tr>\n
372<\/td>\n15.4.6 PlotterPrinter Graphical Interface
15.4.7 Graphical Output Reports
Computer Method <\/td>\n<\/tr>\n
373<\/td>\n15.4.8 Device Setting Report Generator
How to Make Use of Coordination Software
15.5.1 In-House Mainframe Computer
Fig 174 Example of Screen Plot <\/td>\n<\/tr>\n
374<\/td>\nFig 175 Example of Plot on K&E 48-5258 Form <\/td>\n<\/tr>\n
375<\/td>\n15.5.2 Personal Computer
15.5.3 Time Share <\/td>\n<\/tr>\n
376<\/td>\n15.5.4 Consulting Service
15.6 Equipment Needs
15.7 Conclusion
15.8 References <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":"

IEEE Recommended Practice for Industrial and Commercial Power System Analysis<\/b><\/p>\n\n\n\n\n
Published By<\/td>\nPublication Date<\/td>\nNumber of Pages<\/td>\n<\/tr>\n
IEEE<\/b><\/a><\/td>\n1990<\/td>\n384<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n","protected":false},"featured_media":82362,"template":"","meta":{"rank_math_lock_modified_date":false,"ep_exclude_from_search":false},"product_cat":[2644],"product_tag":[],"class_list":{"0":"post-82361","1":"product","2":"type-product","3":"status-publish","4":"has-post-thumbnail","6":"product_cat-ieee","8":"first","9":"instock","10":"sold-individually","11":"shipping-taxable","12":"purchasable","13":"product-type-simple"},"_links":{"self":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product\/82361","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product"}],"about":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/types\/product"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media\/82362"}],"wp:attachment":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media?parent=82361"}],"wp:term":[{"taxonomy":"product_cat","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_cat?post=82361"},{"taxonomy":"product_tag","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_tag?post=82361"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}