{"id":82727,"date":"2024-10-18T03:08:13","date_gmt":"2024-10-18T03:08:13","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/ieee-739-1984\/"},"modified":"2024-10-24T19:51:12","modified_gmt":"2024-10-24T19:51:12","slug":"ieee-739-1984","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/ieee\/ieee-739-1984\/","title":{"rendered":"IEEE 739 1984"},"content":{"rendered":"

New IEEE Standard – Inactive – Superseded. Superseded by IEEE Std 739-1995 This recommended practice serves as an engineering guide for use in electrical design for energy conservation. It provides a standard design practice to assist engineers in evaluating electrical options from an energy standpoint. It establishes engineering techniques and procedures to allow efficiency optimization in the design and operation of an electrical system considering all aspects (safety, costs, environment, those occupying the facility, management needs, etc.).<\/p>\n

PDF Catalog<\/h4>\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
PDF Pages<\/th>\nPDF Title<\/th>\n<\/tr>\n
2<\/td>\nFig 6 Time Value Chart <\/td>\n<\/tr>\n
16<\/td>\n1 Introduction
1.1 General Discussion
1.2 Conservation <\/td>\n<\/tr>\n
17<\/td>\n1.3 Methodology
1.4 Energy Management
1.5 Periodicals <\/td>\n<\/tr>\n
18<\/td>\n1.6 Standards and Recommended Practices <\/td>\n<\/tr>\n
19<\/td>\n1.7 Industry Application Society (IAS) <\/td>\n<\/tr>\n
20<\/td>\n1.8 IEEE Publications
1.9 Governmental Regulatory Agencies <\/td>\n<\/tr>\n
21<\/td>\n1.10 Keeping Informed
conditions of service
conventional advice on rates
energy audits
energy conservation services
local
rules <\/td>\n<\/tr>\n
22<\/td>\n1.11 Professional Activities
1.12 Coordination with Other Disciplines <\/td>\n<\/tr>\n
23<\/td>\n1.13 Textorganization <\/td>\n<\/tr>\n
24<\/td>\n1.14 Fuels <\/td>\n<\/tr>\n
28<\/td>\n2 Organizing for Energy Conservation
2.1 Introduction
2.1.1 Types of Industrial Energy Applications <\/td>\n<\/tr>\n
29<\/td>\n2.1.2 Energy Saving Methods
2.2 Organizing the Program <\/td>\n<\/tr>\n
30<\/td>\n2.3 Surveying Energy Uses and Losses <\/td>\n<\/tr>\n
31<\/td>\n2.3.1 Lighting
Walkthrough audit <\/td>\n<\/tr>\n
32<\/td>\n2.3.2 Heating Ventilating and Air Conditioning
2.3.3 Motors and Drives
Weatherstrip <\/td>\n<\/tr>\n
33<\/td>\n2.3.4 Processes
2.3.5 Other Electrical Equipment <\/td>\n<\/tr>\n
34<\/td>\n2.3.6 Building Environmental Shell
2.3.7 Overall Considerations
2.3.8 Energy Balance
Fig 1 EnergyBalance
glaze <\/td>\n<\/tr>\n
35<\/td>\n2.4 Energy Conservation Opportunities <\/td>\n<\/tr>\n
36<\/td>\n2.5 Energy Monitoring and Accounting
2.5.1 Percent Reduction Energy Rate Method
Product Energy Rate <\/td>\n<\/tr>\n
37<\/td>\n2.5.2 Design Energy-Savings Report
2.5.3 Activity Method
Activity Method Report <\/td>\n<\/tr>\n
38<\/td>\nEnegy-Rate Method Report <\/td>\n<\/tr>\n
39<\/td>\n2.5.4 Energy-Rate Method
2.5.5 Variable Energy-Rate Method
Fig 2 Change in Production <\/td>\n<\/tr>\n
40<\/td>\n2.5.6 Tracking Charts
2.6 Employee Participation
Fig 3 Energy Production <\/td>\n<\/tr>\n
41<\/td>\nActual and CMA Energy Rate Versus Production Rate
Fig 5 TrackingChart <\/td>\n<\/tr>\n
42<\/td>\n2.7 Summary <\/td>\n<\/tr>\n
43<\/td>\n2.8 Bibliography <\/td>\n<\/tr>\n
44<\/td>\n3 Translating Energy into Cost
3.1 Introduction
3.2 Important Concepts in an Economic Analysis <\/td>\n<\/tr>\n
45<\/td>\n3.3 Time Value of Money
3.3.1 Determining the Cost of Money
Calculating the Time Value of Money <\/td>\n<\/tr>\n
48<\/td>\n3.4 Economic Models
3.4.1 Break-Even Analysis <\/td>\n<\/tr>\n
49<\/td>\nTime Value Factors <\/td>\n<\/tr>\n
50<\/td>\nMarginal Cost Analysis
3.4.3 Life Cycle Costing
Example of Energy Economics <\/td>\n<\/tr>\n
51<\/td>\nAnnual Cost Dispersions
Present Values of Annual Costs <\/td>\n<\/tr>\n
52<\/td>\nUtility Rate Structures
3.5.1 An Electric Tariff <\/td>\n<\/tr>\n
53<\/td>\n3.5.2 Rate Structure Elements <\/td>\n<\/tr>\n
55<\/td>\n3.5.3 Proposed Electric Rate Structures <\/td>\n<\/tr>\n
56<\/td>\nCalculating the Cost of Electricity
3.6.1 Block Rate with var Charge Example
3.6.2 Demand Usage Rates Example <\/td>\n<\/tr>\n
57<\/td>\nScheduleA <\/td>\n<\/tr>\n
58<\/td>\nScheduleB <\/td>\n<\/tr>\n
59<\/td>\nRiders
Block-Rate Example <\/td>\n<\/tr>\n
60<\/td>\nDemand-Rate Example <\/td>\n<\/tr>\n
61<\/td>\nImportant Observations on the Electric Bill
3.7 Loss Evaluation
3.7.1 Introduction
Dollar Savings from Energy Reduction <\/td>\n<\/tr>\n
62<\/td>\nNo-Load (or single value) Loss Evaluation
3.7.3 LoadLossEvaluation
Voltage <\/td>\n<\/tr>\n
63<\/td>\n3.7.4 Motor Loss Evaluation with Example <\/td>\n<\/tr>\n
64<\/td>\n3.7.5 Transformer Loss and Example <\/td>\n<\/tr>\n
66<\/td>\n3.7.6 Other Equipment
3.8 Bibliography
Motor Losses <\/td>\n<\/tr>\n
68<\/td>\n4 LoadManagement
4.1 Introduction
4.2 Demand Control Techniques
4.3 ManualMethods <\/td>\n<\/tr>\n
69<\/td>\n4.4 Automatic Controllers <\/td>\n<\/tr>\n
70<\/td>\n4.5 Microcomputer System <\/td>\n<\/tr>\n
71<\/td>\nComputerized Energy Management Control System
4.6.1 Energy Distribution
4.6.2 Monitor Energy Consumption
4.6.3 Methods of Conversation
4.6.4 Loadshedding
4.6.5 Cogeneration
4.6.6 Maintenance Prediction <\/td>\n<\/tr>\n
72<\/td>\n(d) Converging Rate Principle (e) Predicted Demand Principle <\/td>\n<\/tr>\n
73<\/td>\n4.7 Economic Justification for Energy Management Systems
4.8 Bibliography <\/td>\n<\/tr>\n
76<\/td>\nConservation Considerations in Electrical Machines and Equipment
5.1 Induction Motors <\/td>\n<\/tr>\n
77<\/td>\ncore-type <\/td>\n<\/tr>\n
78<\/td>\nEffect of Voltage on Motors at Full Load
Motor Characteristics at Various Loads <\/td>\n<\/tr>\n
79<\/td>\nEffect of Voltage Imbalance on a 200 hp Motor at Full Load
dip
flicker
imbalance
full load (Table
reduction technique
Wave distortion
Welders <\/td>\n<\/tr>\n
80<\/td>\nTotal Industrial Electrical Consumption (1972) (billions kWh)
AC Polyphase Motors <\/td>\n<\/tr>\n
81<\/td>\n5.2 Synchronous Motors
5.3 Solid-state Devices
Open. drip proof 1800 r\/min NEMA Design B) <\/td>\n<\/tr>\n
82<\/td>\nThyristor Drive Characteristics
Smoothed DC Load <\/td>\n<\/tr>\n
83<\/td>\n5.4 Transformers
5.5 Reactors
Transformer Load Versus Loss of Life
distorted voltage waveforms <\/td>\n<\/tr>\n
84<\/td>\n5.6 Capacitors
5.7 Frequency Effects
Increase in Harmonics Due to Capacitor
Skin Effect on a 300 MCM Conductor <\/td>\n<\/tr>\n
85<\/td>\n5.8 SizeandEnergy
5.9 Voltage Considerations
Skin Effects on Large Conductors
Voltage considerations
direct current
reaction current
real power diversity
thyristor driver <\/td>\n<\/tr>\n
86<\/td>\n5.10 SystemEvaluation
corona threshold voltage
sine-wave voltage
surge arresters
surge suppressors <\/td>\n<\/tr>\n
88<\/td>\nEnergy Saving Devices
5.12 Bibliography <\/td>\n<\/tr>\n
90<\/td>\nMetering and Measurement
Reasons for Metering <\/td>\n<\/tr>\n
91<\/td>\nTypical Form for Recording Electrical Load <\/td>\n<\/tr>\n
92<\/td>\nTypical Industrial Textile Plant
Waste treatment
chilled water
chilled water pumps <\/td>\n<\/tr>\n
93<\/td>\nPortraying Plant Efficiency <\/td>\n<\/tr>\n
94<\/td>\nSubtractive Metering <\/td>\n<\/tr>\n
95<\/td>\nWeekly Consumption Versus Production Compared to Standard <\/td>\n<\/tr>\n
96<\/td>\nMetering Energy Flow
Basic Meter Components
Voltmeters <\/td>\n<\/tr>\n
97<\/td>\nData Loggers and Demand Controllers <\/td>\n<\/tr>\n
98<\/td>\nElectrical Reading Log Sheet <\/td>\n<\/tr>\n
100<\/td>\nWattmeter Connection <\/td>\n<\/tr>\n
101<\/td>\n6.4 Meter Selection
Voltage transformer <\/td>\n<\/tr>\n
102<\/td>\nMeter Timing for Kilowatt Measurement
Determining Induction Motor Loads
Tachometer
optical
mechanical <\/td>\n<\/tr>\n
103<\/td>\n6.7 Practical Examples
Method of Metering Air Flow from a Centrifugal Compressor <\/td>\n<\/tr>\n
104<\/td>\n6.8 Other Considerations <\/td>\n<\/tr>\n
105<\/td>\nCompared to Individual Feeder Loads <\/td>\n<\/tr>\n
108<\/td>\nEnergy Conservation in Lighting Systems
7.1 Introduction
7.2 Definitions <\/td>\n<\/tr>\n
109<\/td>\nMethod of Presentation <\/td>\n<\/tr>\n
110<\/td>\nTotal Lighting System <\/td>\n<\/tr>\n
111<\/td>\nThe Task and the Working Space
7.4.1 TaskDescription
7.4.2 TaskIllumination
Efficient Room Lighting
Task description <\/td>\n<\/tr>\n
112<\/td>\nLight Source Efficacy
Recommended Surface Reflectances for Offices
Recommended Luminance Ratios
Lamp Energy Data (Nominal Data in %) Initial Ratings <\/td>\n<\/tr>\n
113<\/td>\nLight Source Characteristics
Lamps and Color
Lamp Lumen Efficacies <\/td>\n<\/tr>\n
114<\/td>\nLamp Output Characteristics <\/td>\n<\/tr>\n
115<\/td>\nColor Characteristics of Light Sources <\/td>\n<\/tr>\n
116<\/td>\n7.5.4 Light Sources
7 54.1 Incandescent
7.5.4.2 Fluorescent
Visual comparisons <\/td>\n<\/tr>\n
117<\/td>\n7.5.4.3 High-Intensity Discharge
White light <\/td>\n<\/tr>\n
118<\/td>\n7.5.4.4 Low-Pressure Sodium
Lamp Start Times <\/td>\n<\/tr>\n
119<\/td>\n7.5.4.5 Economic Considerations
7.6 Ballasts
Figures of Merit
7.6.2 Ballast Factor
7.6.3 Fluorescent Ballasts
Effect of Temperature and Voltage Variations
Wall temperature <\/td>\n<\/tr>\n
120<\/td>\n(a) Typical HID Lamp Ballast Input Watts <\/td>\n<\/tr>\n
121<\/td>\n(b) Typical Fluorescent Lamp Ballast Input Watts <\/td>\n<\/tr>\n
122<\/td>\nEnergy Efficient Ballasts-General Concepts
7.6.3.3 Low-Energy Ballasts
7.6.3.4 High\/Low Ballasts
Relationship of Lumens Versus Ambient Temperature <\/td>\n<\/tr>\n
123<\/td>\n7.6.3.5 Low-Loss Ballasts
7.6.3.6 Electronic Ballasts
High-Intensity Discharge Ballasts
7.6.4.1 General
Ballasts for High-pressure Sodium Lamps <\/td>\n<\/tr>\n
124<\/td>\nBallast Regulation Characteristics
Energy Efficient Electronic-Controlled Ballast <\/td>\n<\/tr>\n
125<\/td>\n7.6.4.3 Ballast Interchangeability
7.6.5 Ballast Life
Trapezoid Diagram for the 400 W HPS Lamp <\/td>\n<\/tr>\n
126<\/td>\n7.7 Luminaries
7.7.1 Efficiency Criteria
Glare Control and Utilization <\/td>\n<\/tr>\n
127<\/td>\n7.7.3 Shielding Media
Reflected Glare Illustration <\/td>\n<\/tr>\n
128<\/td>\n7.7.4 Dirt Effect and Maintenance Considerations
7.7.5 AirMovement
7.8 Lighting Controls
7.8.1 General
7.8.2 Switching
Fluorescent Fixture Distribution Pattern <\/td>\n<\/tr>\n
129<\/td>\n7.8.3 Dimming <\/td>\n<\/tr>\n
130<\/td>\nRemote Control Systems
Automatic Control Systems
Optimizing Lighting Energy
People and the Visual Task <\/td>\n<\/tr>\n
131<\/td>\nIllumination Quantity and Quality
7.9.3 Lighting Hardware
7.9.4 Maintenance Characteristics
Space-Mounting Height Ratio <\/td>\n<\/tr>\n
132<\/td>\n7.10 Power Factor
Energy Requirements for Four Lighting Systems <\/td>\n<\/tr>\n
133<\/td>\nInteraction of Lighting with Other Building Subsystems
7.11.1 General
HVAC Subsystem Interaction
Comparative Output of Light Sources <\/td>\n<\/tr>\n
134<\/td>\n7.12 EvaluationTechniques
7.13 Bibliography <\/td>\n<\/tr>\n
135<\/td>\nAnnual Cost Work Sheet <\/td>\n<\/tr>\n
138<\/td>\n8 Cogeneration
8.1 Introduction
Forms of Cogeneration <\/td>\n<\/tr>\n
139<\/td>\nPlant Topping Cycle Cogeneration Steam System
Plant Combined Cycle Cogeneration Steam System <\/td>\n<\/tr>\n
141<\/td>\nOutput <\/td>\n<\/tr>\n
142<\/td>\nDetermining the Feasibility of Cogeneration
Approximations for Determining Cogeneration Feasibility <\/td>\n<\/tr>\n
143<\/td>\nScale Cost Comparisons <\/td>\n<\/tr>\n
144<\/td>\n8.4 Size Considerations
Small Industrial Plant Basic Economic Parameters
Unit steam cost
Unit fuel cost <\/td>\n<\/tr>\n
145<\/td>\n8.5 Typical Systems
Graphic Summary of Typical 1982 Average Cogeneration Steam Costs <\/td>\n<\/tr>\n
146<\/td>\nCogeneration Fuel-Saving Potential <\/td>\n<\/tr>\n
147<\/td>\nCogeneration Fuel-Saving Potential (Unit Comparison) <\/td>\n<\/tr>\n
148<\/td>\n8.6 Other Considerations
Industrial-Industrial Cogeneration System <\/td>\n<\/tr>\n
149<\/td>\nSteam\/kW Cost Effect on Product Energy Cost <\/td>\n<\/tr>\n
150<\/td>\n8.7 Bibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":"

IEEE Recommended Practice for Energy Conservation and Cost-Effective Planning in Industrial Facilities<\/b><\/p>\n\n\n\n\n
Published By<\/td>\nPublication Date<\/td>\nNumber of Pages<\/td>\n<\/tr>\n
IEEE<\/b><\/a><\/td>\n1984<\/td>\n161<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n","protected":false},"featured_media":82728,"template":"","meta":{"rank_math_lock_modified_date":false,"ep_exclude_from_search":false},"product_cat":[2644],"product_tag":[],"class_list":{"0":"post-82727","1":"product","2":"type-product","3":"status-publish","4":"has-post-thumbnail","6":"product_cat-ieee","8":"first","9":"instock","10":"sold-individually","11":"shipping-taxable","12":"purchasable","13":"product-type-simple"},"_links":{"self":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product\/82727","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product"}],"about":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/types\/product"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media\/82728"}],"wp:attachment":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media?parent=82727"}],"wp:term":[{"taxonomy":"product_cat","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_cat?post=82727"},{"taxonomy":"product_tag","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_tag?post=82727"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}