{"id":218092,"date":"2024-10-19T14:08:52","date_gmt":"2024-10-19T14:08:52","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bs-en-iso-19905-12012\/"},"modified":"2024-10-25T07:20:57","modified_gmt":"2024-10-25T07:20:57","slug":"bs-en-iso-19905-12012","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bs-en-iso-19905-12012\/","title":{"rendered":"BS EN ISO 19905-1:2012"},"content":{"rendered":"
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
11<\/td>\n | 1 Scope <\/td>\n<\/tr>\n | ||||||
12<\/td>\n | 2 Normative references 3 Terms and definitions <\/td>\n<\/tr>\n | ||||||
23<\/td>\n | 4 Symbols and abbreviated terms 4.1 Symbols <\/td>\n<\/tr>\n | ||||||
24<\/td>\n | 4.2 Abbreviated terms <\/td>\n<\/tr>\n | ||||||
25<\/td>\n | 5 Overall considerations 5.1 General 5.1.1 Competency 5.1.2 Planning 5.1.3 Assessment situations and associated criteria <\/td>\n<\/tr>\n | ||||||
26<\/td>\n | 5.1.4 Reporting 5.1.5 Regulations 5.2 Assessment approach <\/td>\n<\/tr>\n | ||||||
28<\/td>\n | 5.3 Selection of limit states 5.4 Determination of assessment situations 5.4.1 General <\/td>\n<\/tr>\n | ||||||
29<\/td>\n | 5.4.2 Reaction point and foundation fixity 5.4.3 Extreme storm event approach angle 5.4.4 Weights and centre of gravity 5.4.5 Hull elevation 5.4.6 Leg length reserve 5.4.7 Adjacent structures <\/td>\n<\/tr>\n | ||||||
30<\/td>\n | 5.4.8 Other 5.5 Exposure levels 5.5.1 General 5.5.2 Life-safety categories <\/td>\n<\/tr>\n | ||||||
31<\/td>\n | 5.5.3 Consequence categories <\/td>\n<\/tr>\n | ||||||
33<\/td>\n | 5.5.4 Determination of exposure level 5.6 Analytical tools <\/td>\n<\/tr>\n | ||||||
34<\/td>\n | 6 Data to assemble for each site 6.1 Applicability 6.2 Jack-up data 6.3 Site and operational data 6.4 Metocean data <\/td>\n<\/tr>\n | ||||||
35<\/td>\n | 6.5 Geophysical and geotechnical data <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | 6.6 Earthquake data 7 Actions 7.1 Applicability 7.2 General <\/td>\n<\/tr>\n | ||||||
37<\/td>\n | 7.3 Metocean actions 7.3.1 General 7.3.2 Hydrodynamic model 7.3.3 Wave and current actions 7.3.4 Wind actions <\/td>\n<\/tr>\n | ||||||
38<\/td>\n | 7.4 Functional actions 7.5 Displacement dependent effects 7.6 Dynamic effects 7.7 Earthquakes 7.8 Other actions 8 Structural modelling 8.1 Applicability 8.2 Overall considerations 8.2.1 General <\/td>\n<\/tr>\n | ||||||
39<\/td>\n | 8.2.2 Modelling philosophy 8.2.3 Levels of FE modelling 8.3 Modelling the leg 8.3.1 General 8.3.2 Detailed leg 8.3.3 Equivalent leg (stick model) <\/td>\n<\/tr>\n | ||||||
40<\/td>\n | 8.3.4 Combination of detailed and equivalent leg 8.3.5 Stiffness adjustment 8.3.6 Leg inclination 8.4 Modelling the hull 8.4.1 General 8.4.2 Detailed hull model 8.4.3 Equivalent hull model 8.5 Modelling the leg-to-hull connection 8.5.1 General 8.5.2 Guide systems 8.5.3 Elevating system <\/td>\n<\/tr>\n | ||||||
41<\/td>\n | 8.5.4 Fixation system 8.5.5 Shock pad \u2013 floating jacking systems 8.5.6 Jackcase and associated bracing 8.5.7 Equivalent leg-to-hull stiffness 8.6 Modelling the spudcan and foundation 8.6.1 Spudcan structure 8.6.2 Seabed reaction point 8.6.3 Foundation modelling <\/td>\n<\/tr>\n | ||||||
42<\/td>\n | 8.7 Mass modelling 8.8 Application of actions 8.8.1 Assessment actions 8.8.1.1 General <\/td>\n<\/tr>\n | ||||||
43<\/td>\n | 8.8.1.2 Two-stage deterministic storm analysis 8.8.1.3 Stochastic storm analysis 8.8.1.4 Earthquake analysis <\/td>\n<\/tr>\n | ||||||
44<\/td>\n | 8.8.2 Functional actions due to fixed load and variable load 8.8.3 Hull sagging 8.8.4 Metocean actions 8.8.5 Inertial actions <\/td>\n<\/tr>\n | ||||||
45<\/td>\n | 8.8.6 Large displacement effects 8.8.7 Conductor actions 8.8.8 Earthquake actions 9 Foundations 9.1 Applicability 9.2 General <\/td>\n<\/tr>\n | ||||||
46<\/td>\n | 9.3 Geotechnical analysis of independent leg foundations 9.3.1 Foundation modelling and assessment 9.3.2 Leg penetration during preloading <\/td>\n<\/tr>\n | ||||||
47<\/td>\n | 9.3.3 Yield interaction 9.3.4 Foundation stiffnesses 9.3.5 Vertical-horizontal foundation capacity envelopes <\/td>\n<\/tr>\n | ||||||
48<\/td>\n | 9.3.6 Acceptance checks <\/td>\n<\/tr>\n | ||||||
49<\/td>\n | 9.4 Other considerations 9.4.1 Skirted spudcans 9.4.2 Hard sloping strata <\/td>\n<\/tr>\n | ||||||
50<\/td>\n | 9.4.3 Footprint considerations 9.4.4 Leaning instability 9.4.5 Leg extraction difficulties 9.4.6 Cyclic mobility 9.4.7 Scour 9.4.8 Spudcan interaction with adjacent infrastructure <\/td>\n<\/tr>\n | ||||||
51<\/td>\n | 9.4.9 Geohazards 9.4.10 Carbonate material 10 Structural response 10.1 Applicability 10.2 General considerations 10.3 Types of analyses and associated methods <\/td>\n<\/tr>\n | ||||||
52<\/td>\n | 10.4 Common parameters 10.4.1 General 10.4.2 Natural periods and affecting factors 10.4.2.1 General <\/td>\n<\/tr>\n | ||||||
53<\/td>\n | 10.4.2.2 Stiffness 10.4.2.3 Mass 10.4.2.4 Variability in natural period 10.4.2.5 Cancellation and reinforcement 10.4.3 Damping <\/td>\n<\/tr>\n | ||||||
54<\/td>\n | 10.4.4 Foundations 10.4.5 Storm excitation 10.5 Storm analysis 10.5.1 General <\/td>\n<\/tr>\n | ||||||
55<\/td>\n | 10.5.2 Two-stage deterministic storm analysis <\/td>\n<\/tr>\n | ||||||
56<\/td>\n | 10.5.3 Stochastic storm analysis 10.5.4 Initial leg inclination 10.5.5 Limit state checks <\/td>\n<\/tr>\n | ||||||
57<\/td>\n | 10.6 Fatigue analysis 10.7 Earthquake analysis 10.8 Accidental situations <\/td>\n<\/tr>\n | ||||||
58<\/td>\n | 10.9 Alternative analysis methods 10.9.1 Ultimate strength analysis 10.9.2 Types of analysis 11 Long-term applications 11.1 Applicability 11.2 Assessment data <\/td>\n<\/tr>\n | ||||||
59<\/td>\n | 11.3 Special requirements 11.3.1 Fatigue assessment 11.3.2 Weight control 11.3.3 Corrosion protection 11.3.4 Marine growth 11.3.5 Foundations <\/td>\n<\/tr>\n | ||||||
60<\/td>\n | 11.4 Survey requirements 12 Structural strength 12.1 Applicability 12.1.1 General 12.1.2 Truss type legs <\/td>\n<\/tr>\n | ||||||
61<\/td>\n | 12.1.3 Other leg types 12.1.4 Fixation system and\/or elevating system 12.1.5 Spudcan strength including connection to the leg 12.1.6 Overview of the assessment procedure 12.2 Classification of member cross-sections 12.2.1 Member types 12.2.2 Material yield strength 12.2.3 Classification definitions <\/td>\n<\/tr>\n | ||||||
62<\/td>\n | 12.3 Section properties of non-circular prismatic members 12.3.1 General 12.3.2 Plastic and compact sections 12.3.3 Semi-compact sections <\/td>\n<\/tr>\n | ||||||
63<\/td>\n | 12.3.4 Slender sections 12.3.5 Cross-section properties for the assessment 12.4 Effects of axial force on bending moment 12.5 Strength of tubular members 12.6 Strength of non-circular prismatic members 12.7 Assessment of joints <\/td>\n<\/tr>\n | ||||||
64<\/td>\n | 13 Acceptance criteria 13.1 Applicability 13.1.1 General 13.1.2 Ultimate limit states 13.1.3 Serviceability and accidental limit states <\/td>\n<\/tr>\n | ||||||
65<\/td>\n | 13.1.4 Fatigue limit states 13.2 General formulation of the assessment check 13.3 Leg strength assessment <\/td>\n<\/tr>\n | ||||||
66<\/td>\n | 13.4 Spudcan strength assessment 13.5 Holding system strength assessment 13.6 Hull elevation assessment 13.7 Leg length reserve assessment <\/td>\n<\/tr>\n | ||||||
67<\/td>\n | 13.8 Overturning stability assessment 13.9 Foundation integrity assessment 13.9.1 Foundation capacity check <\/td>\n<\/tr>\n | ||||||
68<\/td>\n | 13.9.2 Displacement check 13.10 Interaction with adjacent infrastructure <\/td>\n<\/tr>\n | ||||||
69<\/td>\n | 13.11 Temperatures <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" Petroleum and natural gas industries. Site-specific assessment of mobile offshore units – Jack-ups<\/b><\/p>\n |