{"id":275698,"date":"2024-10-19T18:32:53","date_gmt":"2024-10-19T18:32:53","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bs-79102013a12015\/"},"modified":"2024-10-25T14:58:04","modified_gmt":"2024-10-25T14:58:04","slug":"bs-79102013a12015","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bs-79102013a12015\/","title":{"rendered":"BS 7910:2013+A1:2015"},"content":{"rendered":"

PDF Catalog<\/h4>\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
PDF Pages<\/th>\nPDF Title<\/th>\n<\/tr>\n
10<\/td>\n\t\tForeword <\/td>\n<\/tr>\n
13<\/td>\n\t\tIntroduction <\/td>\n<\/tr>\n
14<\/td>\nFigure 1\u2003Example of integrity management procedure for flaws <\/td>\n<\/tr>\n
16<\/td>\n\t1\tScope
\t2\tNormative references <\/td>\n<\/tr>\n
17<\/td>\n\t3\tSymbols and definitions
\uea01Table 1\u2003Symbols <\/td>\n<\/tr>\n
36<\/td>\n\t4\tTypes of flaw <\/td>\n<\/tr>\n
37<\/td>\n\t5\tGeneral guidance on assessment <\/td>\n<\/tr>\n
39<\/td>\n\t6\tInformation required for assessment <\/td>\n<\/tr>\n
43<\/td>\nFigure 2\u2003Linearization of stress distributions <\/td>\n<\/tr>\n
46<\/td>\nFigure 3\u2003Schematic representation of stress distribution across section <\/td>\n<\/tr>\n
47<\/td>\n\t7\tAssessment for fracture resistance
\tFigure 4\tProcedure for resolving flaws normal to principal stress <\/td>\n<\/tr>\n
48<\/td>\nFigure 5\u2003General flowchart for fracture assessment <\/td>\n<\/tr>\n
49<\/td>\n\tFigure 6\tFlowchart for Option 1 fracture assessment <\/td>\n<\/tr>\n
50<\/td>\n\tFigure 7\tFlowchart for Option 2 fracture assessment <\/td>\n<\/tr>\n
51<\/td>\n\tFigure 8\tFlowchart for Option 3 fracture assessment <\/td>\n<\/tr>\n
53<\/td>\n\tFigure 9\tFlowchart for flaw characterization <\/td>\n<\/tr>\n
54<\/td>\nFigure 10\u2003Definitions of flaw dimensions <\/td>\n<\/tr>\n
55<\/td>\n\tFigure 11\tFlaw alignment rules for non-coplanar flaws <\/td>\n<\/tr>\n
56<\/td>\nFigure 12\u2003Flaw interaction rules for coplanar flaws <\/td>\n<\/tr>\n
58<\/td>\n\tTable 2\tCoefficient of variation (COV) for tensile properties for ferritic steels
\tTable 3\tElastic modulus <\/td>\n<\/tr>\n
59<\/td>\n\tFigure 13\tDe-rating values for yield\/proof strength and tensile strength at temperatures above room temperature in C-Mn steels and duplex stainless steels (DSS): (not applicable to 13% Cr steels) from DNV OS F101 [6] <\/td>\n<\/tr>\n
61<\/td>\nTable 4\u2003Guidance for determining whether yielding is continuous or discontinuous <\/td>\n<\/tr>\n
68<\/td>\n\tTable 5\tMinimum of three equivalent (MOTE)
\tTable 6\tValues of k0.90 at the lower 20th percentile for the one sided tolerance limit for a normal distribution <\/td>\n<\/tr>\n
78<\/td>\n\tFigure 14\tDuctile tearing assessment <\/td>\n<\/tr>\n
80<\/td>\n\tFigure 15\tExample of non-unique solutions
\tTable 7\tLimits for slag inclusions and porosity <\/td>\n<\/tr>\n
82<\/td>\n\t8\tAssessment for fatigue
Table 8\u2003Procedure for assessment of known flaws <\/td>\n<\/tr>\n
87<\/td>\nTable 9\u2003Stress ranges used in fatigue assessments <\/td>\n<\/tr>\n
89<\/td>\nFigure 16\u2003Schematic crack growth relationships
Figure 17\u2003Recommended fatigue crack growth laws <\/td>\n<\/tr>\n
90<\/td>\nTable 10\u2003Recommended fatigue crack growth laws for steels in air\u2009A) <\/td>\n<\/tr>\n
91<\/td>\nTable 11\u2003Recommended fatigue crack growth laws for steels in a marine environments\u2009A) <\/td>\n<\/tr>\n
93<\/td>\n\tTable 12\tRecommended fatigue crack growth threshold, DK0, values for assessing welded\u00a0joints <\/td>\n<\/tr>\n
95<\/td>\nTable 13\u2003Details of quality category S-N curves <\/td>\n<\/tr>\n
96<\/td>\nFigure 18\u2003Quality category S-N curves <\/td>\n<\/tr>\n
101<\/td>\nFigure 19\u2003Quality category approach: assessment of surface flaws in plates under axial loading <\/td>\n<\/tr>\n
103<\/td>\nFigure 20\u2003Quality category approach: assessment of surface flaws in flat material (no weld toe or other stress raiser) in bending <\/td>\n<\/tr>\n
105<\/td>\nFigure 21\u2003Quality category approach: assessment of embedded flaws in axially loaded joints <\/td>\n<\/tr>\n
107<\/td>\nFigure 22\u2003Quality category approach: assessment of weld toe flaws in axially loaded joints <\/td>\n<\/tr>\n
113<\/td>\nFigure 23\u2003Quality category approach: assessment of weld toe flaws in joints loaded in bending <\/td>\n<\/tr>\n
117<\/td>\n\tTable 14\tMinimum values of Drj for assessing non-planar flaws and shape imperfections <\/td>\n<\/tr>\n
118<\/td>\n\tTable 15\tLimits for non-planar flaws in as welded steel and aluminium alloy weldments
\tTable 16\tLimits for non-planar flaws in steel weldments stress relieved by PWHT <\/td>\n<\/tr>\n
119<\/td>\n\tTable 17\tAcceptance levels for misalignment expressed in terms of stress magnification factor, km
\tTable 18\tAcceptance levels for weld toe undercut in material thicknesses from 10 mm to\u00a040\u00a0mm <\/td>\n<\/tr>\n
120<\/td>\n\t9\tAssessment of flaws under creep and creep\/fatigue\u00a0conditions <\/td>\n<\/tr>\n
124<\/td>\nFigure 24\u2003Determination of temperature Tc at which 0.2% creep strain is accumulated at a stress level equal to the proof strength
\tTable 19\tTemperature below which creep is negligible in 200,000 h <\/td>\n<\/tr>\n
125<\/td>\nFigure 25\u2003Insignificant creep curves for austenitic steels
Figure 26\u2003Insignificant creep curves for ferritic steels <\/td>\n<\/tr>\n
127<\/td>\nFigure 27\u2003Schematic behaviour of crack subjected to steady loading at elevated temperature <\/td>\n<\/tr>\n
128<\/td>\nFigure 28\u2003Schematic representation of crack propagation and failure conditions <\/td>\n<\/tr>\n
129<\/td>\nFigure 29\u2003Flowchart for overall creep assessment procedure <\/td>\n<\/tr>\n
144<\/td>\n\t10\tAssessment for other modes of failure <\/td>\n<\/tr>\n
146<\/td>\nFigure 30\u2003Schematic diagrams of typical relationships between crack velocity and stress intensity factor during SCC <\/td>\n<\/tr>\n
148<\/td>\nFigure 31\u2003Types of corrosion fatigue crack growth behaviour <\/td>\n<\/tr>\n
151<\/td>\n\tAnnex A\tEvaluation under mode I, II and III loads
\tFigure A.1\tDefinitions of loading modes <\/td>\n<\/tr>\n
156<\/td>\n\tAnnex B\tAssessment procedures for tubular joints in offshore structures <\/td>\n<\/tr>\n
157<\/td>\nFigure B.1\u2003Assessment method for fatigue crack growth in tubular joints <\/td>\n<\/tr>\n
163<\/td>\n\tAnnex C\tFracture assessment procedures for pressure vessels and pipelines <\/td>\n<\/tr>\n
167<\/td>\n\tAnnex D\tStress due to misalignment <\/td>\n<\/tr>\n
168<\/td>\nTable D.1\u2003Formulae for calculating the bending stress due to misalignment in butt joints <\/td>\n<\/tr>\n
171<\/td>\nTable D.2\u2003Formulae for calculating the bending stress due to misalignment in cruciform joints <\/td>\n<\/tr>\n
173<\/td>\n\tAnnex E\tFlaw recharacterization
\n
Figure E.1\u2003Rules for recharacterization of flaws <\/td>\n<\/tr>\n
174<\/td>\n\tAnnex F\tProcedures for leak-before-break (LbB) assessment
\tFigure F.1\tThe leak-before-break diagram <\/td>\n<\/tr>\n
176<\/td>\nTable F.1\u2003Guidance on selection of assessment sites around a pipe system <\/td>\n<\/tr>\n
177<\/td>\n\tFigure F.2\tFlow charts for LbB procedures <\/td>\n<\/tr>\n
182<\/td>\n\tFigure F.3\tExample characterization of a complex flaw <\/td>\n<\/tr>\n
184<\/td>\n\tFigure F.4\tSchematic flaw profiles at breakthrough <\/td>\n<\/tr>\n
185<\/td>\n\tTable F.2\tAdvice on growth of surface flaws [160] <\/td>\n<\/tr>\n
186<\/td>\nTable F.3\u2003Advice on growth of through-wall defects [160] <\/td>\n<\/tr>\n
187<\/td>\n\tFigure F.5\tDevelopment of flaw shapes for sub-critical growth of surface flaws
\tFigure F.6\tDevelopment of flaw shapes for sub-critical growth of through-wall flaws <\/td>\n<\/tr>\n
188<\/td>\n\tFigure F.7\tRecommended re-characterization of flaws at breakthrough subjected to ductile tearing loading <\/td>\n<\/tr>\n
189<\/td>\nTable F.4\u2003Crack opening area methods for simple geometries and loading <\/td>\n<\/tr>\n
193<\/td>\nTable F.5\u2003Summary of short wave length surface roughness values [208] <\/td>\n<\/tr>\n
198<\/td>\n\tTable F.6\tParticulates in primary system water <\/td>\n<\/tr>\n
199<\/td>\n\tAnnex G\tThe assessment of locally thinned areas (LTAs) <\/td>\n<\/tr>\n
201<\/td>\n\tFigure G.1\tFlow chart of assessment procedure <\/td>\n<\/tr>\n
202<\/td>\n\tFigure G.2\tDimensions of an LTA <\/td>\n<\/tr>\n
204<\/td>\n\tFigure G.3\tDimensions of a bend <\/td>\n<\/tr>\n
205<\/td>\n\tFigure G.4\tDimensions of a sphere and vessel end <\/td>\n<\/tr>\n
207<\/td>\nFigure G.5\u2003Interaction between LTAs <\/td>\n<\/tr>\n
211<\/td>\n\tAnnex H\tReporting of fracture, fatigue or creep assessments <\/td>\n<\/tr>\n
214<\/td>\n\tAnnex I\tThe significance of strength mis-match on the fracture behaviour of welded joints <\/td>\n<\/tr>\n
216<\/td>\n\tFigure I.1\tIdealized weld geometry \u2013 the parent and weld metals have yield strengths of \ufffc and \ufffc respectively <\/td>\n<\/tr>\n
217<\/td>\n\tFigure I.2\tIdealized definition of mis-match ratio, M, and construction of the equivalent stress-strain curve (weighted average of the other two curves) <\/td>\n<\/tr>\n
222<\/td>\n\tAnnex J\tUse of Charpy V-notch impact tests to estimate fracture toughness <\/td>\n<\/tr>\n
223<\/td>\nFigure J.1\u2003 Flowchart for selecting an appropriate correlation for estimating fracture toughness from Charpy data <\/td>\n<\/tr>\n
227<\/td>\n\tAnnex K\tProbabilistic assessment <\/td>\n<\/tr>\n
231<\/td>\nTable K.1\u2003Uncertainties in Paris parameter A <\/td>\n<\/tr>\n
232<\/td>\nTable K.2\u2003Uncertainties in Paris parameter A for the two stage model <\/td>\n<\/tr>\n
233<\/td>\n\tTable K.3\tTarget failure probability (events\/year) <\/td>\n<\/tr>\n
234<\/td>\nTable K.4\u2003Recommended partial factors for different combinations of target reliability and variability of input data based on failure on the FAD <\/td>\n<\/tr>\n
242<\/td>\n\tAnnex L\tFracture toughness determination for welds <\/td>\n<\/tr>\n
252<\/td>\n\tAnnex M\tStress intensity factor solutions <\/td>\n<\/tr>\n
255<\/td>\nFigure M.1\u2003Through-thickness flaw geometry
Figure M.2\u2003Edge flaw geometry <\/td>\n<\/tr>\n
256<\/td>\nFigure M.3\u2003Surface flaw <\/td>\n<\/tr>\n
258<\/td>\nFigure M.4\u2003Elliptical integral as a function of a\/2c used for the calculation of KI for surface and embedded\u00a0flaws
Figure M.5\u2003Stress intensity magnification factor Mm for surface flaws in tension <\/td>\n<\/tr>\n
261<\/td>\nFigure M.6\u2003Stress intensity magnification factor Mb for surface flaws in bending <\/td>\n<\/tr>\n
262<\/td>\nFigure M.7\u2003Extended flaw geometry <\/td>\n<\/tr>\n
263<\/td>\nFigure M.8\u2003Embedded flaw <\/td>\n<\/tr>\n
264<\/td>\nFigure M.9\u2003Stress intensity magnification factor Mm for embedded flaws in tension (at point nearest material surface) <\/td>\n<\/tr>\n
265<\/td>\nFigure M.10\u2003Stress intensity magnification factor Mb for embedded flaws in bending <\/td>\n<\/tr>\n
266<\/td>\nFigure M.11\u2003Corner flaw geometry <\/td>\n<\/tr>\n
268<\/td>\nFigure M.12\u2003Corner flaw at hole geometry <\/td>\n<\/tr>\n
272<\/td>\nFigure M.13\u2003Through-thickness flaw in cylinder oriented axially <\/td>\n<\/tr>\n
273<\/td>\n\tTable M.1 a)\tM1 for axial through-thickness in cylinders: membrane loading <\/td>\n<\/tr>\n
274<\/td>\n\tTable M.1 b)\tM2 for axial through-thickness flaws in cylinders: membrane loading <\/td>\n<\/tr>\n
275<\/td>\n\tTable M.1 c)\tM3 for axial through-thickness flaws in cylinders: bending loading <\/td>\n<\/tr>\n
276<\/td>\n\tTable M.1 d)\tM4 for axial through-thickness flaws in cylinders: bending loading <\/td>\n<\/tr>\n
277<\/td>\n\tFigure M.14\tInternal surface flaw in cylinder oriented axially <\/td>\n<\/tr>\n
278<\/td>\nTable M.2\u2003Mm and Mb for axial internal surface flaw in cylinder <\/td>\n<\/tr>\n
279<\/td>\n\tFigure M.15\tExtended internal surface flaw in cylinder orientated axially
\tTable M.3\tMm and Mb for extended axial internal surface flaw in cylinder <\/td>\n<\/tr>\n
280<\/td>\n\tFigure M.16\tExternal surface flaw in cylinder oriented axially
Table M.4\u2003Mm and Mb for axial external surface flaw in cylinder <\/td>\n<\/tr>\n
281<\/td>\n\tFigure M.17\tExtended axial external surface flaw in cylinder
\tTable M.5\tMm and Mb for extended axial external surface flaw in cylinder <\/td>\n<\/tr>\n
283<\/td>\n\tFigure M.18\tThrough-thickness flaw in cylinder oriented circumferentially <\/td>\n<\/tr>\n
284<\/td>\n\tTable M.6a)\tM1 for circumferential through-thickness flaws in cylinders: membrane loading <\/td>\n<\/tr>\n
285<\/td>\n\tTable M.6b)\tM2 for circumferential through-thickness flaws in cylinders: membrane loading <\/td>\n<\/tr>\n
286<\/td>\n\tTable M.6c)\tM3 for circumferential through-thickness flaws in cylinders: bending loading <\/td>\n<\/tr>\n
287<\/td>\n\tTable M.6d)\tM4 for circumferential through-thickness flaws in cylinders: bending loading <\/td>\n<\/tr>\n
288<\/td>\n\tFigure M.19\tInternal surface flaw in cylinder oriented circumferentially <\/td>\n<\/tr>\n
289<\/td>\nTable M.7\u2003Mm and Mb for circumferential internal surface flaw in cylinder <\/td>\n<\/tr>\n
290<\/td>\n\tFigure M.20\tFully circumferential internal surface flaw in cylinder
\tTable M.8\tMm and Mb for extended circumferential internal surface flaw in cylindrical shell <\/td>\n<\/tr>\n
291<\/td>\n\tFigure M.21\tFully circumferential external surface flaw in cylinder <\/td>\n<\/tr>\n
292<\/td>\nTable M.9\u2003Influence coefficients at points A and B for an equatorial through\u2011thickness flaw in a sphere <\/td>\n<\/tr>\n
294<\/td>\n\tFigure M.22\tThrough-thickness flaw in spherical shell <\/td>\n<\/tr>\n
295<\/td>\nFigure M.23\u2003Flaws in bars and bolts <\/td>\n<\/tr>\n
298<\/td>\n\tFigure M.24\tFully circumferential flaw in a round bar <\/td>\n<\/tr>\n
300<\/td>\n\tFigure M.25\tWelded joint geometries <\/td>\n<\/tr>\n
301<\/td>\n\tFigure M.26\tTransverse load-carrying cruciform joint
\tTable M.12\tValues of v and w for axial and bending loading <\/td>\n<\/tr>\n
306<\/td>\n_GoBack <\/td>\n<\/tr>\n
307<\/td>\n\tAnnex N\tAllowance for constraint effects <\/td>\n<\/tr>\n
313<\/td>\n\tFigure N.1\tSchematic showing curve fitting of low constraint test data to obtain a and k <\/td>\n<\/tr>\n
315<\/td>\n\tFigure N.2\tModifications to the Option 1 failure assessment curve for various values of the\u00a0material parameters, a, k, and constraint levels, b (< 0), using Equation N.23 with k = 3. For a = 0 or b = 0 the curves reduce to the Option 1 curve <\/td>\n<\/tr>\n
316<\/td>\nFigure N.3\u2003FAD analysis for (a) fracture initiation and (b) ductile tearing <\/td>\n<\/tr>\n
318<\/td>\n\tTable N.1\tPolynomial coefficients defining bT for CCT [326 to 328]
\tTable N.2\tPolynomial coefficients defining bT for CCBT <\/td>\n<\/tr>\n
319<\/td>\n\tTable N.3\tPolynomial coefficients defining bT for DECT [311], [326], [328]
\tTable N.4\tPolynomial coefficients defining bT for SECT <\/td>\n<\/tr>\n
320<\/td>\n\tTable N.5\tPolynomial coefficients defining bT for SEB [311, 326, 328]
\tTable N.6\tPolynomial coefficients defining bT for 3PB <\/td>\n<\/tr>\n
321<\/td>\nTable N.7\u2003Polynomial coefficients defining bT for SCT [329] <\/td>\n<\/tr>\n
322<\/td>\nTable N.8\u2003Polynomial coefficients defining bT for SCB [329] <\/td>\n<\/tr>\n
323<\/td>\nTable N.9\u2003Polynomial coefficients defining bT for CISLCCT [326], [330] <\/td>\n<\/tr>\n
324<\/td>\nTable N.10\u2003Polynomial coefficients defining bT for CISSCCBT [331] <\/td>\n<\/tr>\n
325<\/td>\nTable N.11\u2003Polynomial coefficients defining bT for CISSCCT [331] <\/td>\n<\/tr>\n
327<\/td>\nTable N.12\u2003a and k defined with respect to T\/rY for n = 5 <\/td>\n<\/tr>\n
328<\/td>\nTable N.13\u2003a and k defined with respect to T\/rY for n = 6
Table N.14\u2003a and k defined with respect to T\/rY for n = 7 <\/td>\n<\/tr>\n
329<\/td>\nTable N.15\u2003a and k defined with respect to T\/rY for n = 8
Table N.16\u2003a and k defined with respect to T\/rY for n = 9 <\/td>\n<\/tr>\n
330<\/td>\nTable N.17\u2003a and k defined with respect to T\/rY for n = 10
Table N.18\u2003a and k defined with respect to T\/rY for n = 11 <\/td>\n<\/tr>\n
331<\/td>\nTable N.19\u2003a and k defined with respect to T\/rY for n = 12
Table N.20\u2003a and k defined with respect to T\/rY for n = 13 <\/td>\n<\/tr>\n
332<\/td>\nTable N.21\u2003a and k defined with respect to T\/rY for n = 14
Table N.22\u2003a and k defined with respect to T\/rY for n = 15 <\/td>\n<\/tr>\n
333<\/td>\nTable N.23\u2003a and k defined with respect to T\/rY for n = 16
Table N.24\u2003a and k defined with respect to T\/rY for n = 17 <\/td>\n<\/tr>\n
334<\/td>\nTable N.25\u2003a and k defined with respect to T\/rY for n = 18
Table N.26\u2003a and k defined with respect to T\/rY for n = 19 <\/td>\n<\/tr>\n
335<\/td>\nTable N.27\u2003a and k defined with respect to T\/rY for n = 20 <\/td>\n<\/tr>\n
336<\/td>\nTable N.28\u2003a and k defined with respect to Q for n = 5 <\/td>\n<\/tr>\n
337<\/td>\nTable N.29\u2003a and k defined with respect to Q for n = 6
Table N.30\u2003a and k defined with respect to Q for n = 7 <\/td>\n<\/tr>\n
338<\/td>\nTable N.31\u2003a and k defined with respect to Q for n = 8
Table N.32\u2003a and k defined with respect to Q for n = 9 <\/td>\n<\/tr>\n
339<\/td>\nTable N.33\u2003a and k defined with respect to Q for n = 10
Table N.34\u2003a and k defined with respect to Q for n = 11 <\/td>\n<\/tr>\n
340<\/td>\nTable N.35\u2003a and k defined with respect to Q for n = 12
Table N.36\u2003a and k defined with respect to Q for n = 13 <\/td>\n<\/tr>\n
341<\/td>\nTable N.37\u2003a and k defined with respect to Q for n = 14
Table N.38\u2003a and k defined with respect to Q for n = 15 <\/td>\n<\/tr>\n
342<\/td>\nTable N.39\u2003a and k defined with respect to Q for n = 16
Table N.40\u2003a and k defined with respect to Q for n = 17 <\/td>\n<\/tr>\n
343<\/td>\nTable N.41\u2003a and k defined with respect to Q for n = 18
Table N.42\u2003a and k defined with respect to Q for n = 19 <\/td>\n<\/tr>\n
344<\/td>\nTable N.43\u2003a and k defined with respect to Q for n = 20 <\/td>\n<\/tr>\n
345<\/td>\n\tAnnex O\tConsideration of proof testing and warm prestressing <\/td>\n<\/tr>\n
347<\/td>\nFigure O.1\u2003Schematic illustration of a proof test argument (following [3]) <\/td>\n<\/tr>\n
349<\/td>\nFigure O.2\u2003Typical warm prestress cycles <\/td>\n<\/tr>\n
352<\/td>\n\tAnnex P\tCompendium of reference stress and limit load solutions for homogeneous and strength mis\u2011matched structures <\/td>\n<\/tr>\n
354<\/td>\nTable P.1\u2003Calculation of bending stresses as functions of moments <\/td>\n<\/tr>\n
358<\/td>\n\tFigure P.1\tDouble edge cracked plate under tension <\/td>\n<\/tr>\n
360<\/td>\n\tFigure P.2\tExtended embedded flaw in a plate <\/td>\n<\/tr>\n
370<\/td>\n\tFigure P.3\tCircumferential internal and external surface flaws in thick-walled cylinders under combined tension and bending <\/td>\n<\/tr>\n
371<\/td>\nTable P.2\u2003Values of v for bending loading <\/td>\n<\/tr>\n
373<\/td>\n\tTable P.3\tCoefficient Qu for various joint design classifications <\/td>\n<\/tr>\n
374<\/td>\n\tFigure P.4\tT and Y joints under a) axial load, b) in-plane and out-of-plane bending <\/td>\n<\/tr>\n
375<\/td>\n\tFigure P.5\tK joints under a) axial load and b) in-plane and out-of-plane bending <\/td>\n<\/tr>\n
376<\/td>\nFigure P.6\u2003X and DT joints under a) axial load and b) in-plane and out-of-plane bending <\/td>\n<\/tr>\n
377<\/td>\nFigure P.7\u2003Classification of plasticity deformation patterns for mis-matched structures, [367] <\/td>\n<\/tr>\n
381<\/td>\n\tFigure P.8\tCentre cracked plate under tension w = (W \u2212 a)\/h <\/td>\n<\/tr>\n
385<\/td>\nFigure P.9\u2003Double edge cracked plate under tension <\/td>\n<\/tr>\n
389<\/td>\n\tFigure P.10\tSingle edge cracked plate under pure bending <\/td>\n<\/tr>\n
391<\/td>\n\tFigure P.11\tFully circumferential internal flaws in thin-walled pipes\/cylinders under tension <\/td>\n<\/tr>\n
392<\/td>\n\tFigure P.12\tCentre through-thickness flaws in clad plates under tension [372], [373] <\/td>\n<\/tr>\n
394<\/td>\n\tFigure P.13\tThrough-thickness flaw in a clad plate with repair weld <\/td>\n<\/tr>\n
395<\/td>\n\tAnnex Q\tResidual stress distributions in as-welded joints
Table Q.0\u2003Validity ranges for as-welded residual stress distributions in ferritic steels <\/td>\n<\/tr>\n
397<\/td>\nFigure Q.1\u2003Components of longitudinal residual stress distribution for plate butt welds and pipe axial seam welds (austenitic steel)
Table Q.1\u2003Components of longitudinal stress and \ufffc for plate butt welds and pipe axial seam welds (austenitic steel) <\/td>\n<\/tr>\n
398<\/td>\nFigure Q.2\u2003Components of transverse stress distribution for plate butt welds and axial seam welds (austenitic and ferritic steels)
Table Q.2\u2003Components of transverse stress and \ufffc for plate butt welds and axial seam welds (austenitic and ferritic steels) <\/td>\n<\/tr>\n
399<\/td>\nFigure Q.3\u2003Components of longitudinal stress distribution for pipe butt welds (ferritic and austenitic steels)
Table Q.3\u2003Components of longitudinal stress and \ufffc for pipe butt welds (ferritic and austenitic steels) <\/td>\n<\/tr>\n
400<\/td>\nFigure Q.4\u2003Components of transverse stress distribution for pipe butt welds (ferritic steels) <\/td>\n<\/tr>\n
403<\/td>\nTable Q.4\u2003Components of transverse stress and \ufffc for pipe butt welds (ferritic steel)
Table Q.5\u2003Components of transverse stresses and \ufffc for pipe butt welds (austenitic steel) <\/td>\n<\/tr>\n
404<\/td>\nFigure Q.5\u2003Components of longitudinal stress distribution for plate to plate T-butt welds (ferritic steels) <\/td>\n<\/tr>\n
405<\/td>\nTable Q.6\u2003Components of longitudinal stress and \ufffc for plate to plate T-butt welds (ferritic steels) <\/td>\n<\/tr>\n
406<\/td>\n\tFigure Q.6\tComponents of transverse stress distribution for plate to plate T-butt welds (austenitic and ferritic steels)
\tTable Q.7\tComponents of transverse stress and \ufffc for plate to plate T-butt welds (ferritic and austenitic steels) and longitudinal stress and \ufffc for plate to plate T-butt welds (austenitic steels) <\/td>\n<\/tr>\n
407<\/td>\n\tFigure Q.7\tComponents of longitudinal stress distribution for tubular T-butt welds (ferritic\u00a0steels)
Table Q.8\u2003Components of longitudinal stress and \ufffc for tubular T-butt welds (ferritic steels) <\/td>\n<\/tr>\n
408<\/td>\n\tFigure Q.8\tComponents of transverse stress distribution for tubular T-butt welds (ferritic steels) <\/td>\n<\/tr>\n
409<\/td>\nTable Q.9\u2003Components of transverse stress and \ufffc for tubular T-butt welds (ferritic steels) <\/td>\n<\/tr>\n
410<\/td>\n\tFigure Q.9\tResidual stress profile for repair welds (transverse and longitudinal)
\tTable Q.10\tComponents of transverse and longitudinal stress distribution for repair welds (ferritic and austenitic steels) <\/td>\n<\/tr>\n
411<\/td>\n\tFigure Q.10\tFinite surface crack in an infinite width plate <\/td>\n<\/tr>\n
412<\/td>\n\tTable Q.11\tGeometry functions for a finite surface flaw in an infinite width plate \u2013 deepest point of the flaw <\/td>\n<\/tr>\n
413<\/td>\n\tTable Q.12\tGeometry functions for a finite surface flaw in an infinite width plate \u2013 intersection of flaw with free surface <\/td>\n<\/tr>\n
415<\/td>\n\tFigure Q.11\tExtended surface flaw in an infinite width plate
\tTable Q.13\tGeometry functions for an extended surface flaw in an infinite width plate <\/td>\n<\/tr>\n
416<\/td>\n\tAnnex R\tDetermination of plasticity interaction effects with combined primary and secondary loading <\/td>\n<\/tr>\n
419<\/td>\nFigure R.1\u2003Non-dimensional stress intensity factors for through-thickness flaws with through-wall self\u2011balancing stress distributions <\/td>\n<\/tr>\n
421<\/td>\n\tAnnex S\tInformation for making high temperature crack growth assessments <\/td>\n<\/tr>\n
423<\/td>\n\tFigure S.1\tGeneral form of a creep curve defining the average and secondary creep strain rates <\/td>\n<\/tr>\n
424<\/td>\n\tFigure S.2\tDerivation of strain versus time curves from iso-strain curves <\/td>\n<\/tr>\n
425<\/td>\nTable S.1\u2003Mean uniaxial creep properties for different steels for short (<10\u2009000\u00a0h) and long term tests <\/td>\n<\/tr>\n
427<\/td>\nTable S.2\u2003Constants used to derive creep crack growth rates in mm\/h and C* in MPamh\u22121 <\/td>\n<\/tr>\n
434<\/td>\n\tAnnex T\tGuidance on the use of NDT with ECA <\/td>\n<\/tr>\n
438<\/td>\nFigure T.1\u2003Assessment of flaw tolerance using ECA <\/td>\n<\/tr>\n
439<\/td>\n\tFigure T.2\tAssessment of detected flaw <\/td>\n<\/tr>\n
441<\/td>\nTable T.2\u2003Examples of inspection capabilities for back surface flaws <\/td>\n<\/tr>\n
442<\/td>\nTable T.3\u2003Examples of inspection capabilities for flaws at the accessible surface <\/td>\n<\/tr>\n
447<\/td>\n\tTable T.4\tCapabilities for detection and length measurement of surface-breaking flaws by\u00a0MPI ([416]) <\/td>\n<\/tr>\n
448<\/td>\n\tTable T.5\tFlaw detection capability for liquid penetrant testing [444, 445] <\/td>\n<\/tr>\n
451<\/td>\n\tAnnex U\tWorked examples in fatigue assessment using the quality category approach
\tFigure U.1\tButt weld containing embedded flaw <\/td>\n<\/tr>\n
452<\/td>\nFigure U.2\u2003Derivation of actual quality category for a flaw <\/td>\n<\/tr>\n
453<\/td>\n\tFigure U.3\tFillet weld containing a surface flaw <\/td>\n<\/tr>\n
454<\/td>\nFigure U.4\u2003Obtaining the required quality category <\/td>\n<\/tr>\n
455<\/td>\nFigure U.5\u2003Obtaining the quality category for the flaw <\/td>\n<\/tr>\n
458<\/td>\n\t\tBibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":"

Guide to methods for assessing the acceptability of flaws in metallic structures<\/b><\/p>\n\n\n\n\n
Published By<\/td>\nPublication Date<\/td>\nNumber of Pages<\/td>\n<\/tr>\n
BSI<\/b><\/a><\/td>\n2016<\/td>\n492<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n","protected":false},"featured_media":275700,"template":"","meta":{"rank_math_lock_modified_date":false,"ep_exclude_from_search":false},"product_cat":[431,2641],"product_tag":[],"class_list":{"0":"post-275698","1":"product","2":"type-product","3":"status-publish","4":"has-post-thumbnail","6":"product_cat-25-160-40","7":"product_cat-bsi","9":"first","10":"instock","11":"sold-individually","12":"shipping-taxable","13":"purchasable","14":"product-type-simple"},"_links":{"self":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product\/275698","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product"}],"about":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/types\/product"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media\/275700"}],"wp:attachment":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media?parent=275698"}],"wp:term":[{"taxonomy":"product_cat","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_cat?post=275698"},{"taxonomy":"product_tag","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_tag?post=275698"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}