{"id":78844,"date":"2024-10-17T18:26:20","date_gmt":"2024-10-17T18:26:20","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/asce-9780784404270-2001\/"},"modified":"2024-10-24T19:38:19","modified_gmt":"2024-10-24T19:38:19","slug":"asce-9780784404270-2001","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/asce\/asce-9780784404270-2001\/","title":{"rendered":"ASCE 9780784404270 2001"},"content":{"rendered":"
Hyman and Dupont describe conventional treatment technologies to remediate contaminated soil and groundwater and explain how these treatments are designed and what they cost.<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
16<\/td>\n | Table of Contents <\/td>\n<\/tr>\n | ||||||
26<\/td>\n | Chapter 1 The Basis for Remediation Process Design and Cost Estimating 1.1 The Importance of Cost Analysis <\/td>\n<\/tr>\n | ||||||
28<\/td>\n | 1.2 Natural Attenuation <\/td>\n<\/tr>\n | ||||||
29<\/td>\n | 1.3 Selecting Among Competing Remediation Methods 1.3.1 Listing the process options <\/td>\n<\/tr>\n | ||||||
35<\/td>\n | 1.3.2 Comparing process options <\/td>\n<\/tr>\n | ||||||
53<\/td>\n | 1.3.3 Defining and evaluating alternative treatment trains <\/td>\n<\/tr>\n | ||||||
57<\/td>\n | 1.4 The Approach to Process Design and Cost Estimating <\/td>\n<\/tr>\n | ||||||
60<\/td>\n | Chapter 2 Process and Conceptual Design of Remediation Systems <\/td>\n<\/tr>\n | ||||||
61<\/td>\n | 2.1 Basic Principles <\/td>\n<\/tr>\n | ||||||
62<\/td>\n | 2.2 Feasibility Studies and Work Plans 2.2.1 Feasibility Study Alternatives <\/td>\n<\/tr>\n | ||||||
63<\/td>\n | 2.2.2 Work Plans, Corrective Action Plans, Remedial Action Plans 2.2.3 Informal Studies, CERCLA Studies And Records Of Decision, RCRA Studies <\/td>\n<\/tr>\n | ||||||
64<\/td>\n | 2.2.4 The Observational Approach <\/td>\n<\/tr>\n | ||||||
65<\/td>\n | 2.3 Treatability Studies <\/td>\n<\/tr>\n | ||||||
67<\/td>\n | 2.4 Process Flow Diagram 2.4.1 Main Parameters and Mass Balance <\/td>\n<\/tr>\n | ||||||
68<\/td>\n | 2.4.2 Energy Balance <\/td>\n<\/tr>\n | ||||||
69<\/td>\n | 2.4.3 Sizing and Rating of Equipment 2.5 Site Plan and Preliminary Plot Plan <\/td>\n<\/tr>\n | ||||||
71<\/td>\n | 2.6 P&ID and Sequence of Operations 2.6.1 P&ID Development <\/td>\n<\/tr>\n | ||||||
75<\/td>\n | 2.6.2 Pressure Instrumentation <\/td>\n<\/tr>\n | ||||||
76<\/td>\n | 2.6.3 Liquid Level Instrumentation <\/td>\n<\/tr>\n | ||||||
78<\/td>\n | 2.6.4 Temperature Instrumentation <\/td>\n<\/tr>\n | ||||||
80<\/td>\n | 2.6.5 Flow Instrumentation <\/td>\n<\/tr>\n | ||||||
82<\/td>\n | 2.6.6 Analysis Instrumentation 2.6.7 Sequence of Operations Development 2.7 Logic Diagrams <\/td>\n<\/tr>\n | ||||||
84<\/td>\n | 2.8 Computerized Controls and Process Monitoring <\/td>\n<\/tr>\n | ||||||
85<\/td>\n | 2.8.1 Computer Functions <\/td>\n<\/tr>\n | ||||||
87<\/td>\n | 2.8.2 Remote Monitoring <\/td>\n<\/tr>\n | ||||||
88<\/td>\n | 2.9 Design Basis, Tradeoff Analysis, and Preliminary Specifications <\/td>\n<\/tr>\n | ||||||
90<\/td>\n | 2.9.1 Preliminary Specifications <\/td>\n<\/tr>\n | ||||||
91<\/td>\n | 2.9.2 Conceptual Design Report <\/td>\n<\/tr>\n | ||||||
94<\/td>\n | Chapter 3 Metals Removal from Groundwater <\/td>\n<\/tr>\n | ||||||
95<\/td>\n | 3.1 Basic Principles 3.1.1 Chemical Precipitation Basics <\/td>\n<\/tr>\n | ||||||
96<\/td>\n | 3.1.2 Membrane Separation Basics for Dissolved Ions 3.1.3 Ion Exchange Basics <\/td>\n<\/tr>\n | ||||||
97<\/td>\n | 3.1.4 Adsorption Basics <\/td>\n<\/tr>\n | ||||||
98<\/td>\n | 3.1.5 Evaporation Basics 3.2 Chemical Precipitation 3.2.1 Alkaline Precipitation <\/td>\n<\/tr>\n | ||||||
100<\/td>\n | 3.2.2 Sulfide Precipitation 3.2.3 Precipitation with Iron 3.2.4 Precipitation Examples <\/td>\n<\/tr>\n | ||||||
104<\/td>\n | 3.2.5 Alternatives to Conventional Clarification 3.3 Membrane Separation for Dissolved Ions <\/td>\n<\/tr>\n | ||||||
106<\/td>\n | 3.4 Ion Exchange 3.4.1 Ion Exchange for Nitrates And Chromate <\/td>\n<\/tr>\n | ||||||
107<\/td>\n | 3.4.2 Ion Exchange for Radionuclides 3.5 Adsorption <\/td>\n<\/tr>\n | ||||||
108<\/td>\n | 3.6 Forced Evaporation <\/td>\n<\/tr>\n | ||||||
109<\/td>\n | 3.7 Main System Design Parameters 3.7.1 Sizing and Rating of Major Equipment <\/td>\n<\/tr>\n | ||||||
116<\/td>\n | 3.7.2 Conceptual and Process Design <\/td>\n<\/tr>\n | ||||||
118<\/td>\n | 3.7.3 Controls <\/td>\n<\/tr>\n | ||||||
119<\/td>\n | 3.7.4 Utilities Requirements 3.8 Treatability Studies for Metal Removal 3.8.1 Treatability Studies for Precipitation and Prediction of Treated Effluent Concentrations <\/td>\n<\/tr>\n | ||||||
121<\/td>\n | 3.8.2 Treatability Studies for Reverse Osmosis <\/td>\n<\/tr>\n | ||||||
122<\/td>\n | 3.8.3 Treatability Studies for Ion Exchange and Adsorbent Systems <\/td>\n<\/tr>\n | ||||||
124<\/td>\n | 3.8.4 Treatability Studies for Evaporation 3.9 Cost Estimating for Metals Removal <\/td>\n<\/tr>\n | ||||||
131<\/td>\n | 3.10 Summary of Important Points for Metals Removal <\/td>\n<\/tr>\n | ||||||
134<\/td>\n | Chapter 4 Groundwater Remediation Using Carbon Adsorption 4.1 Basic Principles of Carbon Adsorption <\/td>\n<\/tr>\n | ||||||
136<\/td>\n | 4.2 Adsorption Isotherms <\/td>\n<\/tr>\n | ||||||
138<\/td>\n | 4.3 Methods of Determining Adsorptive Capacity 4.4 Breakthrough Curves <\/td>\n<\/tr>\n | ||||||
139<\/td>\n | 4.5 Sizing of Carbon Beds and Duration of Bed Life <\/td>\n<\/tr>\n | ||||||
143<\/td>\n | 4.6 Arrangements and Performance of Organic Adsorption Systems 4.6.1 Prestripping 4.6.2 Prefiltering and Preventing Overpressure <\/td>\n<\/tr>\n | ||||||
144<\/td>\n | 4.6.3 Improving Performance with Three-Stage Adsorption <\/td>\n<\/tr>\n | ||||||
145<\/td>\n | 4.6.4 Presoaking and Backwashing 4.6.5 Lower Explosive Limit (LEL) monitoring for Breakthrough <\/td>\n<\/tr>\n | ||||||
147<\/td>\n | 4.7 Main System Design Parameters 4.7.1 Concept and Process Design <\/td>\n<\/tr>\n | ||||||
150<\/td>\n | 4.7.2 Sizing and Rating of Major Equipment <\/td>\n<\/tr>\n | ||||||
152<\/td>\n | 4.7.3 Controls 4.7.4 Utilities Requirements <\/td>\n<\/tr>\n | ||||||
153<\/td>\n | 4.8 Aqueous Phase Adsorption Treatability Studies <\/td>\n<\/tr>\n | ||||||
156<\/td>\n | 4.9 Cost Estimating <\/td>\n<\/tr>\n | ||||||
159<\/td>\n | 4.10 Summary of Important Points for Carbon Adsorption <\/td>\n<\/tr>\n | ||||||
162<\/td>\n | Chapter 5 Stripping of Groundwater 5.1 Basic Principles of Stripping <\/td>\n<\/tr>\n | ||||||
163<\/td>\n | 5.1.1 Use of Polishing Carbon <\/td>\n<\/tr>\n | ||||||
165<\/td>\n | 5.1.2 The Design Problem <\/td>\n<\/tr>\n | ||||||
169<\/td>\n | 5.2 Packed Strippers 5.2.1 Packing Depth and A\/W (or G\/L) Ratio <\/td>\n<\/tr>\n | ||||||
173<\/td>\n | 5.2.2 Packed Strippers \u2013 Pressure Drop and Cross-Sectional Area <\/td>\n<\/tr>\n | ||||||
174<\/td>\n | 5.2.3 Packed Strippers \u2013 Computer Applications <\/td>\n<\/tr>\n | ||||||
175<\/td>\n | 5.3 Alternatives to Packed Towers 5.3.1 Tray Designs, <\/td>\n<\/tr>\n | ||||||
176<\/td>\n | 5.3.2 Aeration Chambers 5.3.3 Cooling Towers Used as Air Strippers <\/td>\n<\/tr>\n | ||||||
177<\/td>\n | 5.3.4 In Situ Air Stripping (In-Well Stripping and Air Sparging) <\/td>\n<\/tr>\n | ||||||
179<\/td>\n | 5.4 Blower Arrangements and Mist Separation <\/td>\n<\/tr>\n | ||||||
181<\/td>\n | 5.5 Turndown and Liquid Distribution <\/td>\n<\/tr>\n | ||||||
182<\/td>\n | 5.6 Recycled Strippers <\/td>\n<\/tr>\n | ||||||
183<\/td>\n | 5.7 Heated Strippers <\/td>\n<\/tr>\n | ||||||
185<\/td>\n | 5.8 Emission Abatement <\/td>\n<\/tr>\n | ||||||
186<\/td>\n | 5.8.1 Carbon Adsorption <\/td>\n<\/tr>\n | ||||||
188<\/td>\n | 5.8.2 Regenerating Vapor-Phase Activated Carbon <\/td>\n<\/tr>\n | ||||||
189<\/td>\n | 5.8.3 Direct Thermal Oxidizers <\/td>\n<\/tr>\n | ||||||
190<\/td>\n | 5.8.4 Catalytic Oxidizers <\/td>\n<\/tr>\n | ||||||
191<\/td>\n | 5.8.5 Auxiliary Fuel Consumption and Heat Exchange <\/td>\n<\/tr>\n | ||||||
194<\/td>\n | 5.9 Main System Design Parameters 5.9.1 Concept and Process Design <\/td>\n<\/tr>\n | ||||||
200<\/td>\n | 5.9.2 Sizing and Rating of Major Equipment <\/td>\n<\/tr>\n | ||||||
202<\/td>\n | 5.9.3 Controls <\/td>\n<\/tr>\n | ||||||
203<\/td>\n | 5.9.4 Utilities Requirements <\/td>\n<\/tr>\n | ||||||
204<\/td>\n | 5.10 Treatability Studies for Groundwater Stripping 5.11 Cost Estimating for Groundwater Stripping 5.11.1 Equipment Costs <\/td>\n<\/tr>\n | ||||||
205<\/td>\n | 5.11.2 Operating Costs and Total Costs 5.11.3 Emission Abatement Costs <\/td>\n<\/tr>\n | ||||||
207<\/td>\n | 5.11.4 Software for Stripping Process Design and Cost Estimating <\/td>\n<\/tr>\n | ||||||
209<\/td>\n | 5.12 Summary of Important Points for Groundwater Stripping <\/td>\n<\/tr>\n | ||||||
214<\/td>\n | Chapter 6 Aqueous Chemical Oxidation 6.1 Basic Principles 6.1.1 Ranking of Oxidants and UV Oxidation Power Consumption 6.1.2 Ultraviolet Light <\/td>\n<\/tr>\n | ||||||
215<\/td>\n | 6.1.3 Emerging Technology Using Electrochemical Oxidation <\/td>\n<\/tr>\n | ||||||
216<\/td>\n | 6.2 Wet Air and Supercritical Water Oxidation <\/td>\n<\/tr>\n | ||||||
218<\/td>\n | 6.3 Fenton’s Reagent 6.4 UV Light with Oxidants <\/td>\n<\/tr>\n | ||||||
220<\/td>\n | 6.5 Main System Design Parameters <\/td>\n<\/tr>\n | ||||||
223<\/td>\n | 6.6 Treatability Studies for Aqueous Oxidation <\/td>\n<\/tr>\n | ||||||
224<\/td>\n | 6.7 Costs for Aqueous Oxidation <\/td>\n<\/tr>\n | ||||||
226<\/td>\n | 6.8 Summary of Important Points for Aqueous Chemical Oxidation <\/td>\n<\/tr>\n | ||||||
228<\/td>\n | Chapter 7 Bioremediation Systems 7.1 Basic Principles <\/td>\n<\/tr>\n | ||||||
230<\/td>\n | 7.1.1 Microbial Metabolism <\/td>\n<\/tr>\n | ||||||
232<\/td>\n | 7.1.2 System Environmental Requirements <\/td>\n<\/tr>\n | ||||||
237<\/td>\n | 7.1.3 In Situ Versus Ex Situ Treatment <\/td>\n<\/tr>\n | ||||||
240<\/td>\n | 7.1.4 Bioaugmentation Versus Bioacclimation <\/td>\n<\/tr>\n | ||||||
242<\/td>\n | 7.2 Aqueous Phase Treatment 7.2.1 Ex Situ Treatment <\/td>\n<\/tr>\n | ||||||
251<\/td>\n | 7.2.2 In Situ Treatment <\/td>\n<\/tr>\n | ||||||
286<\/td>\n | 7.3 Solid Phase Biological Treatment 7.3.1 Ex Situ Treatment <\/td>\n<\/tr>\n | ||||||
310<\/td>\n | 7.3.2 In Situ Treatment <\/td>\n<\/tr>\n | ||||||
335<\/td>\n | 7.4 Treatability Studies for Bioremediation Systems <\/td>\n<\/tr>\n | ||||||
336<\/td>\n | 7.4.1 Treatability Studies Applicable to Aqueous Phase Treatment <\/td>\n<\/tr>\n | ||||||
337<\/td>\n | 7.4.2 Treatability Studies Applicable to Solid Phase Systems <\/td>\n<\/tr>\n | ||||||
340<\/td>\n | 7.5 Cost-Estimating for Bioremediation Systems 7.5.1 Costs for Aqueous Phase Treatment <\/td>\n<\/tr>\n | ||||||
345<\/td>\n | 7.5.2 Costs for Solid Phase Treatment <\/td>\n<\/tr>\n | ||||||
352<\/td>\n | 7.6 Summary of Important Points for Bioremediation <\/td>\n<\/tr>\n | ||||||
358<\/td>\n | Chapter 8 Soil Venting <\/td>\n<\/tr>\n | ||||||
359<\/td>\n | 8.1 Basic Principles of Soil Venting <\/td>\n<\/tr>\n | ||||||
362<\/td>\n | 8.2 Inducing Vacuum 8.2.1 Vacuum Blowers <\/td>\n<\/tr>\n | ||||||
365<\/td>\n | 8.2.2 Internal Combustion Engines (ICEs) <\/td>\n<\/tr>\n | ||||||
366<\/td>\n | 8.2.3 Passive Soil Venting 8.3 Vapor Treatment and Discharge <\/td>\n<\/tr>\n | ||||||
368<\/td>\n | 8.3.1 Adsorption <\/td>\n<\/tr>\n | ||||||
369<\/td>\n | 8.3.2 Oxidizers <\/td>\n<\/tr>\n | ||||||
371<\/td>\n | 8.4 Main System Design Parameters 8.4.1 Pneumatic testing <\/td>\n<\/tr>\n | ||||||
372<\/td>\n | 8.4.2 Radius of Influence of Extraction Wells and Soil Air Permeability <\/td>\n<\/tr>\n | ||||||
377<\/td>\n | 8.4.3 Volumetric Air Flow and Contaminant Mass Removal Rate <\/td>\n<\/tr>\n | ||||||
379<\/td>\n | 8.4.4 Ventilation wells 8.5 Treatability Studies for Soil Venting <\/td>\n<\/tr>\n | ||||||
380<\/td>\n | 8.6 Cost Estimating for Soil Venting <\/td>\n<\/tr>\n | ||||||
386<\/td>\n | 8.6.1 Utilities Costs 8.6.2 Carbon Adsorption Costs <\/td>\n<\/tr>\n | ||||||
387<\/td>\n | 8.6.3 Software for Soil Venting Process Design and Cost Estimating <\/td>\n<\/tr>\n | ||||||
388<\/td>\n | 8.7 Summary of Important Points for Soil Venting <\/td>\n<\/tr>\n | ||||||
392<\/td>\n | Chapter 9 Thermal Treatment for Soils and Sludges 9.1 Basic Principles 9.1.1 Incineration Basics <\/td>\n<\/tr>\n | ||||||
395<\/td>\n | 9.1.2 Low-Temperature Thermal Desorption Basics <\/td>\n<\/tr>\n | ||||||
398<\/td>\n | 9.1.3 Heat Recovery 9.2 Incinerators 9.2.1 Rotary kilns <\/td>\n<\/tr>\n | ||||||
400<\/td>\n | 9.2.2 Fluidized CBCs <\/td>\n<\/tr>\n | ||||||
403<\/td>\n | 9.2.3 Infrared Furnace Systems <\/td>\n<\/tr>\n | ||||||
404<\/td>\n | 9.3 Thermal Desorbers <\/td>\n<\/tr>\n | ||||||
405<\/td>\n | 9.4 Handling of Feed and of Treated Soils 9.5 Air Pollution Control 9.5.1 Use of Afterburners (Thermal Oxidizers) <\/td>\n<\/tr>\n | ||||||
406<\/td>\n | 9.5.2 Recovery of Organic Fluids from Indirect-Fired Desorbers <\/td>\n<\/tr>\n | ||||||
407<\/td>\n | 9.5.3 Abatement of Particulate Emissions and Acid Gases <\/td>\n<\/tr>\n | ||||||
413<\/td>\n | 9.5.4 Emissions of NOx <\/td>\n<\/tr>\n | ||||||
414<\/td>\n | 9.5.5 CO Emissions <\/td>\n<\/tr>\n | ||||||
415<\/td>\n | 9.6 Main System Design Parameters for Thermal Treatment <\/td>\n<\/tr>\n | ||||||
416<\/td>\n | 9.6.1 Characterization of the “Waste” for Thermal Treatment <\/td>\n<\/tr>\n | ||||||
417<\/td>\n | 9.6.2 Vapor Pressure Considerations for Thermal Desorbers <\/td>\n<\/tr>\n | ||||||
420<\/td>\n | 9.6.3 Examples of Design Calculations <\/td>\n<\/tr>\n | ||||||
426<\/td>\n | 9.6.4 Contaminant Destruction Efficiency and Emission Limitations <\/td>\n<\/tr>\n | ||||||
427<\/td>\n | 9.6.5 Limitations on Particulate Emissions and Plume Opacity Correlations <\/td>\n<\/tr>\n | ||||||
431<\/td>\n | 9.6.6 Baghouse Design Parameters <\/td>\n<\/tr>\n | ||||||
432<\/td>\n | 9.6.7 Wet Scrubber Power Requirements <\/td>\n<\/tr>\n | ||||||
434<\/td>\n | 9.6.8 Design of Vertical Packed Acid Gas Scrubbers <\/td>\n<\/tr>\n | ||||||
436<\/td>\n | 9.6.9 Venturi Scrubber Design Parameters <\/td>\n<\/tr>\n | ||||||
437<\/td>\n | 9.7 Treatability Studies and Trial Burns <\/td>\n<\/tr>\n | ||||||
438<\/td>\n | 9.7.1 Testing Thermal Desorption from Soils <\/td>\n<\/tr>\n | ||||||
439<\/td>\n | 9.7.2 Trial Burns <\/td>\n<\/tr>\n | ||||||
440<\/td>\n | 9.8 Cost Estimating for Thermal Soil Treatment 9.8.1 Incineration Costs <\/td>\n<\/tr>\n | ||||||
442<\/td>\n | 9.8.2 Desorption Costs <\/td>\n<\/tr>\n | ||||||
446<\/td>\n | 9.8.3 Total Project Costs for Ex Situ Soil Remediation <\/td>\n<\/tr>\n | ||||||
447<\/td>\n | 9.9 Summary of Important Points for Thermal Desorption <\/td>\n<\/tr>\n | ||||||
452<\/td>\n | Chapter 10 Soil Washing <\/td>\n<\/tr>\n | ||||||
453<\/td>\n | 10.1 Basic Principles of Soil Washing <\/td>\n<\/tr>\n | ||||||
455<\/td>\n | 10.2 In Situ Soil Flushing <\/td>\n<\/tr>\n | ||||||
457<\/td>\n | 10.3 Soil Washing and Solvent Extraction <\/td>\n<\/tr>\n | ||||||
460<\/td>\n | 10.3.1 Aqueous Soil Washing for Particle Size Separation <\/td>\n<\/tr>\n | ||||||
462<\/td>\n | 10.3.2 Solvent Extraction for Removing Organic Contaminants <\/td>\n<\/tr>\n | ||||||
465<\/td>\n | 10.4 Main System Design Parameters for Soil Washing 10.4.1 Conceptual Designs <\/td>\n<\/tr>\n | ||||||
466<\/td>\n | 10.4.2 Mass Balances <\/td>\n<\/tr>\n | ||||||
473<\/td>\n | 10.4.3 Treatment of Wash Water <\/td>\n<\/tr>\n | ||||||
478<\/td>\n | 10.5 Treatability Studies for Soil Washing <\/td>\n<\/tr>\n | ||||||
481<\/td>\n | 10.6 Cost Estimating for Soil Washing <\/td>\n<\/tr>\n | ||||||
483<\/td>\n | 10.7 Summary of Important Points for Soil Washing <\/td>\n<\/tr>\n | ||||||
486<\/td>\n | Chapter 11 Stabilization and Solidification 11.1 Basic Principles for Stabilization and Solidification <\/td>\n<\/tr>\n | ||||||
487<\/td>\n | 11.2 In Situ Applications and Area Mixing <\/td>\n<\/tr>\n | ||||||
488<\/td>\n | 11.3 Microencapsulation 11.3.1 Cement\/Pozzolanic (Silicaceous) Solidifiers <\/td>\n<\/tr>\n | ||||||
490<\/td>\n | 11.3.2 Thermoplastic Agents <\/td>\n<\/tr>\n | ||||||
491<\/td>\n | 11.4 Silicate Sorbents 11.5 Main System Design Parameters <\/td>\n<\/tr>\n | ||||||
492<\/td>\n | 11.6 Treatability Studies for Stabilization and Solidification <\/td>\n<\/tr>\n | ||||||
495<\/td>\n | 11.7 Cost Estimating for Stabilization and Solidification <\/td>\n<\/tr>\n | ||||||
500<\/td>\n | 11.8 Summary of Important Points for Stabilization and Solidification <\/td>\n<\/tr>\n | ||||||
502<\/td>\n | Chapter 12 Cost Estimating and Life Cycle Analysis 12.1 Basic Principles <\/td>\n<\/tr>\n | ||||||
503<\/td>\n | 12.2 Investment Costs 12.2.1 Preliminary Estimates for Investment Cost <\/td>\n<\/tr>\n | ||||||
508<\/td>\n | 12.2.2 Definitive Estimating of Investment Cost <\/td>\n<\/tr>\n | ||||||
510<\/td>\n | 12.3 Estimating Annual Expenses 12.3.1 Utilities Consumption <\/td>\n<\/tr>\n | ||||||
513<\/td>\n | 12.3.2 Operating Labor and Overhead <\/td>\n<\/tr>\n | ||||||
514<\/td>\n | 12.3.3 Maintenance Expense 12.3.4 Chemicals, Adsorbents, and Supplies <\/td>\n<\/tr>\n | ||||||
515<\/td>\n | 12.3.5 Property Taxes and Insurance 12.3.6 Monitoring and Reporting <\/td>\n<\/tr>\n | ||||||
516<\/td>\n | 12.3.7 Other Direct Costs <\/td>\n<\/tr>\n | ||||||
517<\/td>\n | 12.4 Computer Applications to Cost Estimating <\/td>\n<\/tr>\n | ||||||
518<\/td>\n | 12.5 Life Cycle Analysis <\/td>\n<\/tr>\n | ||||||
519<\/td>\n | 12.5.1 Investment, Expense, Closure and Post-Closure Costs <\/td>\n<\/tr>\n | ||||||
520<\/td>\n | 12.5.2 Present value Factors <\/td>\n<\/tr>\n | ||||||
522<\/td>\n | 12.6 Summary of Important Points for Cost Estimating <\/td>\n<\/tr>\n | ||||||
525<\/td>\n | Appendix 12-A Investment Costs and Yearly Expense Example <\/td>\n<\/tr>\n | ||||||
530<\/td>\n | References <\/td>\n<\/tr>\n | ||||||
550<\/td>\n | Index A B <\/td>\n<\/tr>\n | ||||||
551<\/td>\n | C <\/td>\n<\/tr>\n | ||||||
552<\/td>\n | D E F <\/td>\n<\/tr>\n | ||||||
553<\/td>\n | G H I J K <\/td>\n<\/tr>\n | ||||||
554<\/td>\n | L M N <\/td>\n<\/tr>\n | ||||||
555<\/td>\n | O P <\/td>\n<\/tr>\n | ||||||
556<\/td>\n | Q R <\/td>\n<\/tr>\n | ||||||
557<\/td>\n | S <\/td>\n<\/tr>\n | ||||||
558<\/td>\n | T U <\/td>\n<\/tr>\n | ||||||
559<\/td>\n | V W Z <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" Groundwater and Soil Remediation<\/b><\/p>\n |