{"id":124854,"date":"2024-10-19T05:00:46","date_gmt":"2024-10-19T05:00:46","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/asce-entropytheoryinhydraulicengineering-2014\/"},"modified":"2024-10-24T23:12:41","modified_gmt":"2024-10-24T23:12:41","slug":"asce-entropytheoryinhydraulicengineering-2014","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/asce\/asce-entropytheoryinhydraulicengineering-2014\/","title":{"rendered":"ASCE EntropyTheoryinHydraulicEngineering 2014"},"content":{"rendered":"
Entropy Theory in Hydraulic Engineering: An Introduction is the first book to explain the basic concepts of entropy theory from a hydraulic perspective and demonstrate the theory\u2019s application in solving practical engineering problems. In the hydraulic context, entropy is valuable as a way of measuring uncertainty or surprise\u2014or even disorder or chaos\u2014as a type of information. As hydraulic systems become more complex, entropy theory enables hydraulic engineers to quantify uncertainty, determine risk and reliability, estimate parameters, model processes, and design more robust and dependable water hydraulic systems. Drawing on many years of experience applying and teaching hydraulics, Vijay Singh provides a clear introduction to the fundamentals of entropy theory as it has evolved over the past 40 years. He explores its application in five areas important to hydraulic engineers: velocity distributions, sediment concentration and discharge, hydraulic geometry, channel design, and water distribution systems. More than 170 solved examples illustrate these applications, and each chapter concludes with problem sets and plentiful references. By illustrating the power, usefulness, and versatility of entropy theory, this book puts a valuable tool in the hands of practitioners. Graduate students, advanced undergraduates, and their professors will benefit from the lucid explanation of a complex theory and its applications. About the Author Vijay P. Singh, Ph.D., D.Sc., P.E., P.H., Hon.D.WRE, is the University Distinguished Professor and holds the Caroline and William N. Lehrer Distinguished Chair in Water Engineering at Texas A & M University. He currently serves as Editor-in-Chief of two water journals and associate editor of more than 20 others. He has won more than 65 national and international awards, including two honorary doctorates, for his technical contributions and professional service. He is widely published in the areas of hydrology, ground water, hydraulics, irrigation engineering, environmental engineering, water resources, and stochastic and mathematical modeling.<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
1<\/td>\n | Cover <\/td>\n<\/tr>\n | ||||||
8<\/td>\n | Contents <\/td>\n<\/tr>\n | ||||||
14<\/td>\n | Preface <\/td>\n<\/tr>\n | ||||||
18<\/td>\n | Chapter 1 Entropy Theory <\/td>\n<\/tr>\n | ||||||
19<\/td>\n | 1.1 Overview of This Volume 1.2 Entropy Concept <\/td>\n<\/tr>\n | ||||||
21<\/td>\n | 1.3 Entropy Theory <\/td>\n<\/tr>\n | ||||||
30<\/td>\n | 1.4 Types of Entropy <\/td>\n<\/tr>\n | ||||||
63<\/td>\n | 1.5 Application of Entropy Theory to Hydraulic Engineering Problems <\/td>\n<\/tr>\n | ||||||
64<\/td>\n | 1.6 Hypothesis on the Cumulative Distribution Function <\/td>\n<\/tr>\n | ||||||
65<\/td>\n | 1.7 Methodology for Application of Entropy Theory <\/td>\n<\/tr>\n | ||||||
72<\/td>\n | Appendix 1.1 <\/td>\n<\/tr>\n | ||||||
73<\/td>\n | Questions <\/td>\n<\/tr>\n | ||||||
76<\/td>\n | References <\/td>\n<\/tr>\n | ||||||
77<\/td>\n | Additional Reading <\/td>\n<\/tr>\n | ||||||
80<\/td>\n | Part 1: Velocity Distributions <\/td>\n<\/tr>\n | ||||||
82<\/td>\n | Chapter 2 One-Dimensional Velocity Distributions <\/td>\n<\/tr>\n | ||||||
84<\/td>\n | 2.1 Preliminaries <\/td>\n<\/tr>\n | ||||||
87<\/td>\n | 2.2 Derivation of One-Dimensional Velocity Distributions <\/td>\n<\/tr>\n | ||||||
98<\/td>\n | 2.3 One-Dimensional Velocity Distribution with No Physical Constraint <\/td>\n<\/tr>\n | ||||||
102<\/td>\n | 2.4 One-Dimensional Velocity Distribution with One Physical Constraint <\/td>\n<\/tr>\n | ||||||
106<\/td>\n | 2.5 Testing of One-Physical-Constraint Velocity Distribution <\/td>\n<\/tr>\n | ||||||
109<\/td>\n | 2.6 One-Dimensional Velocity Distribution with Two Physical Constraints <\/td>\n<\/tr>\n | ||||||
113<\/td>\n | 2.7 One-Dimensional Velocity Distribution with Three Physical Constraints <\/td>\n<\/tr>\n | ||||||
115<\/td>\n | Appendix 2.1: Method of Lagrange Multipliers <\/td>\n<\/tr>\n | ||||||
117<\/td>\n | Questions <\/td>\n<\/tr>\n | ||||||
118<\/td>\n | References <\/td>\n<\/tr>\n | ||||||
120<\/td>\n | Additional Reading <\/td>\n<\/tr>\n | ||||||
122<\/td>\n | Chapter 3 Two-Dimensional Velocity Distributions <\/td>\n<\/tr>\n | ||||||
123<\/td>\n | 3.1 Derivation of Velocity Distributions <\/td>\n<\/tr>\n | ||||||
144<\/td>\n | 3.2 Construction of Isovels and Relation between (x, y) Coordinates and (r, s) Coordinates <\/td>\n<\/tr>\n | ||||||
155<\/td>\n | 3.3 Estimation of Parameters of Velocity Distribution <\/td>\n<\/tr>\n | ||||||
156<\/td>\n | 3.4 Maximum and Mean Velocities <\/td>\n<\/tr>\n | ||||||
169<\/td>\n | 3.5 Comparison of Mean Velocity Estimates <\/td>\n<\/tr>\n | ||||||
170<\/td>\n | 3.6 Alternative Method for Estimation of the Cross-Sectional Area Mean Velocity for New River Sites <\/td>\n<\/tr>\n | ||||||
172<\/td>\n | 3.7 Derivation of 2-D Velocity Distribution Using a Mathematically Sound Coordinate System <\/td>\n<\/tr>\n | ||||||
188<\/td>\n | 3.8 Trapezoidal Domain <\/td>\n<\/tr>\n | ||||||
193<\/td>\n | Appendix 3.1 <\/td>\n<\/tr>\n | ||||||
195<\/td>\n | Appendix 3.2 <\/td>\n<\/tr>\n | ||||||
196<\/td>\n | Questions <\/td>\n<\/tr>\n | ||||||
197<\/td>\n | References <\/td>\n<\/tr>\n | ||||||
199<\/td>\n | Additional Reading <\/td>\n<\/tr>\n | ||||||
202<\/td>\n | Chapter 4 Power Law and Logarithmic Velocity Distributions <\/td>\n<\/tr>\n | ||||||
203<\/td>\n | 4.1 Preliminaries <\/td>\n<\/tr>\n | ||||||
204<\/td>\n | 4.2 One-Dimensional Power Law Velocity Distribution <\/td>\n<\/tr>\n | ||||||
213<\/td>\n | 4.3 One-Dimensional Prandtl\u2013von Karman Universal Velocity Distribution <\/td>\n<\/tr>\n | ||||||
226<\/td>\n | 4.4 Two-Dimensional Power Law Velocity Distribution <\/td>\n<\/tr>\n | ||||||
238<\/td>\n | 4.5 Two-Dimensional Prandtl\u2013von Karman Velocity Distribution <\/td>\n<\/tr>\n | ||||||
249<\/td>\n | 4.6 Two-Dimensional Representation of Velocity Using a General Framework <\/td>\n<\/tr>\n | ||||||
254<\/td>\n | Questions <\/td>\n<\/tr>\n | ||||||
256<\/td>\n | References <\/td>\n<\/tr>\n | ||||||
257<\/td>\n | Additional Reading <\/td>\n<\/tr>\n | ||||||
258<\/td>\n | Chapter 5 Applications of Velocity Distributions 5.1 Sampling Velocity Measurements <\/td>\n<\/tr>\n | ||||||
261<\/td>\n | 5.2 Use of k[sub(1)]\u2013Entropy Relation for Characterizing Open-Channel Flows <\/td>\n<\/tr>\n | ||||||
263<\/td>\n | 5.3 Energy and Momentum Coefficients <\/td>\n<\/tr>\n | ||||||
266<\/td>\n | 5.4 Shear Stress Distribution <\/td>\n<\/tr>\n | ||||||
269<\/td>\n | 5.5 Relation between Maximum Velocity, Darcy\u2019s Friction Factor, and Entropy Number <\/td>\n<\/tr>\n | ||||||
270<\/td>\n | 5.6 Discharge Measurements <\/td>\n<\/tr>\n | ||||||
274<\/td>\n | 5.7 Determination of Discharge at Remote Locations <\/td>\n<\/tr>\n | ||||||
282<\/td>\n | 5.8 Determination of Flow Depth Distribution <\/td>\n<\/tr>\n | ||||||
286<\/td>\n | 5.9 Determination of Entropy Parameter from Hydraulic and Geometric Characteristics <\/td>\n<\/tr>\n | ||||||
289<\/td>\n | Questions <\/td>\n<\/tr>\n | ||||||
290<\/td>\n | References <\/td>\n<\/tr>\n | ||||||
292<\/td>\n | Additional Reading <\/td>\n<\/tr>\n | ||||||
294<\/td>\n | Chapter 6 Velocity Distribution in Pipe Flow 6.1 Derivation of Velocity Distribution <\/td>\n<\/tr>\n | ||||||
299<\/td>\n | 6.2 Comparison with Prandtl\u2013von Karman Velocity Distribution <\/td>\n<\/tr>\n | ||||||
301<\/td>\n | 6.3 Darcy\u2013Weisbach Equation <\/td>\n<\/tr>\n | ||||||
302<\/td>\n | 6.4 Head Loss and Friction Factor <\/td>\n<\/tr>\n | ||||||
304<\/td>\n | 6.5 Relation of Mean Velocity, Maximum Velocity, and Friction Coefficient to M <\/td>\n<\/tr>\n | ||||||
307<\/td>\n | 6.6 Relation of Friction Coefficient, Manning\u2019s n, and M <\/td>\n<\/tr>\n | ||||||
309<\/td>\n | 6.7 Uncertainty in M, fl, n, and Velocity Distribution <\/td>\n<\/tr>\n | ||||||
311<\/td>\n | Questions <\/td>\n<\/tr>\n | ||||||
312<\/td>\n | References Additional Reading <\/td>\n<\/tr>\n | ||||||
314<\/td>\n | Part 2: Sediment Concentration and Discharge <\/td>\n<\/tr>\n | ||||||
316<\/td>\n | Chapter 7 Grain Size Analysis and Distribution 7.1 Grain Size Distribution <\/td>\n<\/tr>\n | ||||||
328<\/td>\n | 7.2 Soil Characteristics Using Grading Entropy <\/td>\n<\/tr>\n | ||||||
372<\/td>\n | Questions References <\/td>\n<\/tr>\n | ||||||
374<\/td>\n | Additional Reading <\/td>\n<\/tr>\n | ||||||
376<\/td>\n | Chapter 8 Suspended Sediment Concentration and Discharge <\/td>\n<\/tr>\n | ||||||
377<\/td>\n | 8.1 Preliminaries <\/td>\n<\/tr>\n | ||||||
390<\/td>\n | 8.2 Sediment Concentration <\/td>\n<\/tr>\n | ||||||
403<\/td>\n | 8.3 Entropy-Based Derivation of Sediment Concentration Distribution <\/td>\n<\/tr>\n | ||||||
408<\/td>\n | 8.4 Suspended Sediment Discharge <\/td>\n<\/tr>\n | ||||||
414<\/td>\n | Questions <\/td>\n<\/tr>\n | ||||||
415<\/td>\n | References Additional Reading <\/td>\n<\/tr>\n | ||||||
416<\/td>\n | Chapter 9 Sediment Concentration In Debris Flow <\/td>\n<\/tr>\n | ||||||
417<\/td>\n | 9.1 Notation and Definition 9.2 Entropy Theory <\/td>\n<\/tr>\n | ||||||
435<\/td>\n | Questions <\/td>\n<\/tr>\n | ||||||
436<\/td>\n | References Additional Reading <\/td>\n<\/tr>\n | ||||||
438<\/td>\n | Part 3: Hydraulic Geometry <\/td>\n<\/tr>\n | ||||||
440<\/td>\n | Chapter 10 Downstream Hydraulic Geometry <\/td>\n<\/tr>\n | ||||||
441<\/td>\n | 10.1 Hydraulic Geometry Relations <\/td>\n<\/tr>\n | ||||||
444<\/td>\n | 10.2 Preliminaries <\/td>\n<\/tr>\n | ||||||
449<\/td>\n | 10.3 Derivation of Hydraulic Geometry Relations <\/td>\n<\/tr>\n | ||||||
456<\/td>\n | 10.4 Downstream Hydraulic Geometry Equations for a Given Discharge <\/td>\n<\/tr>\n | ||||||
467<\/td>\n | Questions <\/td>\n<\/tr>\n | ||||||
469<\/td>\n | References <\/td>\n<\/tr>\n | ||||||
472<\/td>\n | Additional Reading <\/td>\n<\/tr>\n | ||||||
474<\/td>\n | Chapter 11 At-a-Station Hydraulic Geometry 11.1 Hydraulic Geometry Relations <\/td>\n<\/tr>\n | ||||||
481<\/td>\n | 11.2 Preliminaries <\/td>\n<\/tr>\n | ||||||
485<\/td>\n | 11.3 Derivation of At-a-Station Hydraulic Geometry Relations <\/td>\n<\/tr>\n | ||||||
504<\/td>\n | 11.4 Possibilities II to XI <\/td>\n<\/tr>\n | ||||||
525<\/td>\n | Questions <\/td>\n<\/tr>\n | ||||||
527<\/td>\n | References <\/td>\n<\/tr>\n | ||||||
530<\/td>\n | Additional Reading <\/td>\n<\/tr>\n | ||||||
532<\/td>\n | Part 4: Channel Design <\/td>\n<\/tr>\n | ||||||
534<\/td>\n | Chapter 12 Longitudinal River Profile 12.1 Longitudinal Profiles <\/td>\n<\/tr>\n | ||||||
535<\/td>\n | 12.2 Energy Gradient <\/td>\n<\/tr>\n | ||||||
536<\/td>\n | 12.3 Derivation of Longitudinal Profiles <\/td>\n<\/tr>\n | ||||||
548<\/td>\n | 12.4 Longitudinal Channel Profile from Fall Entropy <\/td>\n<\/tr>\n | ||||||
549<\/td>\n | Questions References <\/td>\n<\/tr>\n | ||||||
550<\/td>\n | Additional Reading <\/td>\n<\/tr>\n | ||||||
552<\/td>\n | Chapter 13 Design of Alluvial Channels <\/td>\n<\/tr>\n | ||||||
553<\/td>\n | 13.1 Channel Cross Section <\/td>\n<\/tr>\n | ||||||
554<\/td>\n | 13.2 Notation 13.3 Shannon Entropy <\/td>\n<\/tr>\n | ||||||
555<\/td>\n | 13.4 Entropy Method, Case 1: No Constraint <\/td>\n<\/tr>\n | ||||||
559<\/td>\n | 13.5 Entropy Method, Case 2: One Constraint <\/td>\n<\/tr>\n | ||||||
568<\/td>\n | 13.6 Comparison with Two Bank Profiles <\/td>\n<\/tr>\n | ||||||
571<\/td>\n | 13.7 Evaluation of Entropy-Based Bank Profiles of Threshold Channels <\/td>\n<\/tr>\n | ||||||
574<\/td>\n | 13.8 Local Boundary Stress by Different Methods 13.9 Channel Shape <\/td>\n<\/tr>\n | ||||||
575<\/td>\n | 13.10 Design of Threshold Channels <\/td>\n<\/tr>\n | ||||||
579<\/td>\n | 13.11 Evaluation Using Laboratory Data <\/td>\n<\/tr>\n | ||||||
580<\/td>\n | 13.12 Determination of Friction Factor <\/td>\n<\/tr>\n | ||||||
581<\/td>\n | 13.13 Type I Channels <\/td>\n<\/tr>\n | ||||||
587<\/td>\n | Questions <\/td>\n<\/tr>\n | ||||||
588<\/td>\n | References <\/td>\n<\/tr>\n | ||||||
590<\/td>\n | Additional Reading <\/td>\n<\/tr>\n | ||||||
592<\/td>\n | Part 5: Water Flow and Level Monitoring <\/td>\n<\/tr>\n | ||||||
594<\/td>\n | Chapter 14 Water-Level Monitoring Networks <\/td>\n<\/tr>\n | ||||||
595<\/td>\n | 14.1 Design Considerations <\/td>\n<\/tr>\n | ||||||
596<\/td>\n | 14.2 Information-Related Approaches <\/td>\n<\/tr>\n | ||||||
627<\/td>\n | 14.3 Method of Application <\/td>\n<\/tr>\n | ||||||
641<\/td>\n | 14.4 Informational Correlation Coefficient <\/td>\n<\/tr>\n | ||||||
644<\/td>\n | Questions <\/td>\n<\/tr>\n | ||||||
665<\/td>\n | References <\/td>\n<\/tr>\n | ||||||
667<\/td>\n | Additional Reading <\/td>\n<\/tr>\n | ||||||
670<\/td>\n | Chapter 15 Rating Curves 15.1 Stage\u2013Discharge Relation <\/td>\n<\/tr>\n | ||||||
672<\/td>\n | 15.2 Forms of Stage\u2013Discharge Relations <\/td>\n<\/tr>\n | ||||||
678<\/td>\n | 15.3 Derivation of Rating Curves Using Entropy <\/td>\n<\/tr>\n | ||||||
696<\/td>\n | Questions <\/td>\n<\/tr>\n | ||||||
697<\/td>\n | References Additional Reading <\/td>\n<\/tr>\n | ||||||
700<\/td>\n | Part 6: Water Distribution Systems <\/td>\n<\/tr>\n | ||||||
702<\/td>\n | Chapter 16 Reliability of Water Distribution Systems <\/td>\n<\/tr>\n | ||||||
707<\/td>\n | 16.1 Preliminary Considerations <\/td>\n<\/tr>\n | ||||||
711<\/td>\n | 16.2 Entropy-Based Redundancy Measures <\/td>\n<\/tr>\n | ||||||
725<\/td>\n | 16.3 Transmission of Redundancy through Network <\/td>\n<\/tr>\n | ||||||
736<\/td>\n | 16.4 Extension of Entropy-Based Redundancy Measures <\/td>\n<\/tr>\n | ||||||
740<\/td>\n | 16.5 Modified Redundancy Measure with Path Parameter <\/td>\n<\/tr>\n | ||||||
744<\/td>\n | 16.6 Modified Redundancy Measure with Age Factor <\/td>\n<\/tr>\n | ||||||
745<\/td>\n | 16.7 Modified Overall Network Redundancy <\/td>\n<\/tr>\n | ||||||
746<\/td>\n | 16.8 Flow Reversal and Dual Flow Directions <\/td>\n<\/tr>\n | ||||||
748<\/td>\n | 16.9 Other Considerations <\/td>\n<\/tr>\n | ||||||
749<\/td>\n | 16.10 Optimization for Design of Networks Incorporating Redundancy <\/td>\n<\/tr>\n | ||||||
754<\/td>\n | Questions <\/td>\n<\/tr>\n | ||||||
761<\/td>\n | References <\/td>\n<\/tr>\n | ||||||
762<\/td>\n | Additional Reading <\/td>\n<\/tr>\n | ||||||
768<\/td>\n | Chapter 17 Evaluation of Water Quality and Wastewater Treatment Systems <\/td>\n<\/tr>\n | ||||||
769<\/td>\n | 17.1 Diversity Index 17.2 Evaluation of Water Quality Using the Diversity Index <\/td>\n<\/tr>\n | ||||||
770<\/td>\n | 17.3 Evaluation of Water Treatment Systems <\/td>\n<\/tr>\n | ||||||
782<\/td>\n | 17.4 Relation to Shannon Entropy 17.5 Environmental Performance of Waste Treatment Systems <\/td>\n<\/tr>\n | ||||||
785<\/td>\n | Questions <\/td>\n<\/tr>\n | ||||||
786<\/td>\n | References Additional Reading <\/td>\n<\/tr>\n | ||||||
788<\/td>\n | Index A B <\/td>\n<\/tr>\n | ||||||
789<\/td>\n | C D <\/td>\n<\/tr>\n | ||||||
790<\/td>\n | E <\/td>\n<\/tr>\n | ||||||
791<\/td>\n | F G <\/td>\n<\/tr>\n | ||||||
792<\/td>\n | H I <\/td>\n<\/tr>\n | ||||||
793<\/td>\n | J K L M <\/td>\n<\/tr>\n | ||||||
794<\/td>\n | N O <\/td>\n<\/tr>\n | ||||||
795<\/td>\n | P <\/td>\n<\/tr>\n | ||||||
796<\/td>\n | Q R <\/td>\n<\/tr>\n | ||||||
797<\/td>\n | S <\/td>\n<\/tr>\n | ||||||
798<\/td>\n | T <\/td>\n<\/tr>\n | ||||||
800<\/td>\n | U V <\/td>\n<\/tr>\n | ||||||
801<\/td>\n | W X Y Z <\/td>\n<\/tr>\n | ||||||
802<\/td>\n | About the Author <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" Entropy Theory in Hydraulic Engineering – An Introduction<\/b><\/p>\n |