{"id":394111,"date":"2024-10-20T04:12:29","date_gmt":"2024-10-20T04:12:29","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/fema-p-2192-volume2-2020\/"},"modified":"2024-10-26T07:51:42","modified_gmt":"2024-10-26T07:51:42","slug":"fema-p-2192-volume2-2020","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/fema\/fema-p-2192-volume2-2020\/","title":{"rendered":"FEMA P 2192 Volume2 2020"},"content":{"rendered":"
None<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
1<\/td>\n | 2020 NEHRP Recommended Seismic Provisions: Design Examples, Training Materials, and Design Flow Charts <\/td>\n<\/tr>\n | ||||||
5<\/td>\n | Table of Contents <\/td>\n<\/tr>\n | ||||||
6<\/td>\n | Chapter 1 Introduction to the 2020 NEHRP Provisions Design Examples <\/td>\n<\/tr>\n | ||||||
7<\/td>\n | Learning Objectives <\/td>\n<\/tr>\n | ||||||
8<\/td>\n | Outline of Presentation <\/td>\n<\/tr>\n | ||||||
9<\/td>\n | Overview of the 2020 NEHRP Provisions <\/td>\n<\/tr>\n | ||||||
10<\/td>\n | The NEHRP Recommended Seismic Provisions <\/td>\n<\/tr>\n | ||||||
11<\/td>\n | Intent of the 2020 NEHRP Provisions <\/td>\n<\/tr>\n | ||||||
12<\/td>\n | From Research to Improved Standards and Seismic Design Practice <\/td>\n<\/tr>\n | ||||||
13<\/td>\n | How US Seismic Codes are Developed <\/td>\n<\/tr>\n | ||||||
14<\/td>\n | 2020 NEHRP Provisions \u2013 BSSC Provisions Update Committee <\/td>\n<\/tr>\n | ||||||
15<\/td>\n | 2020 NEHRP Provisions Organization <\/td>\n<\/tr>\n | ||||||
16<\/td>\n | Resources to Support the 2020 NEHRP Provisions and ASCE\/SEI 7-22 <\/td>\n<\/tr>\n | ||||||
17<\/td>\n | Evolution of Earthquake Engineering <\/td>\n<\/tr>\n | ||||||
18<\/td>\n | Recent North American Earthquakes and Subsequent Code Changes <\/td>\n<\/tr>\n | ||||||
19<\/td>\n | Recent North American Earthquakes and Subsequent Code Changes <\/td>\n<\/tr>\n | ||||||
20<\/td>\n | Recent North American Earthquakes and Subsequent Code Changes <\/td>\n<\/tr>\n | ||||||
21<\/td>\n | Recent North American Earthquakes and Subsequent Code Changes <\/td>\n<\/tr>\n | ||||||
22<\/td>\n | History and Role of the NEHRP Provisions <\/td>\n<\/tr>\n | ||||||
23<\/td>\n | U.S. Seismic Code Development and Role of the NEHRP Provisions <\/td>\n<\/tr>\n | ||||||
24<\/td>\n | U.S. Seismic Code Development and Role of the NEHRP Provisions <\/td>\n<\/tr>\n | ||||||
25<\/td>\n | Evolution of the NEHRP Provisions <\/td>\n<\/tr>\n | ||||||
26<\/td>\n | Highlights of Major Changes in the 2020 NEHRP Provisions and in ASCE\/SEI 7-22 <\/td>\n<\/tr>\n | ||||||
27<\/td>\n | Highlights of Major Changes to 2020 NEHRP Provisions and ASCE\/SEI 7-22 <\/td>\n<\/tr>\n | ||||||
28<\/td>\n | Move from Two-Point Spectra (2PRS) to Multi-Point Spectra (MPRS) <\/td>\n<\/tr>\n | ||||||
29<\/td>\n | Three New Shear Wall Seismic Force-Resisting Systems <\/td>\n<\/tr>\n | ||||||
30<\/td>\n | Updates to Diaphragm Design Provisions <\/td>\n<\/tr>\n | ||||||
31<\/td>\n | Relaxation in Requirement for Response Spectrum Analysis <\/td>\n<\/tr>\n | ||||||
32<\/td>\n | Revisions in Displacement Requirements <\/td>\n<\/tr>\n | ||||||
33<\/td>\n | Changes in Nonbuilding Structures Requirements <\/td>\n<\/tr>\n | ||||||
34<\/td>\n | Addition of Quantitative R eliability Targets for Individual Members and Essential Facilities <\/td>\n<\/tr>\n | ||||||
35<\/td>\n | Part 3 Paper on a New Approach to Seismic Lateral Earth Pressures <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | New Seismic Design Force Equation <\/td>\n<\/tr>\n | ||||||
37<\/td>\n | Building Modal Periods, Tn,bldg <\/td>\n<\/tr>\n | ||||||
38<\/td>\n | PFA\/PGA (Hf) Amplification Factor <\/td>\n<\/tr>\n | ||||||
39<\/td>\n | Seismic Force-Resisting System <\/td>\n<\/tr>\n | ||||||
40<\/td>\n | Building Ductility, R\u03bc <\/td>\n<\/tr>\n | ||||||
41<\/td>\n | Chapter 13: Other Significant Changes from ASCE\/SEI 7-16 to ASCE\/SEI 7-22 <\/td>\n<\/tr>\n | ||||||
42<\/td>\n | Chapter 13: Other Significant Changes from ASCE\/SEI 7-16 to ASCE\/SEI 7-22 <\/td>\n<\/tr>\n | ||||||
43<\/td>\n | Chapter 13: Other Significant Changes from ASCE\/SEI 7-16 to ASCE\/SEI 7-22 <\/td>\n<\/tr>\n | ||||||
44<\/td>\n | Questions? <\/td>\n<\/tr>\n | ||||||
45<\/td>\n | Overview of Design Example Chapters <\/td>\n<\/tr>\n | ||||||
46<\/td>\n | Chapter 2 (Section 2.1 to 2.6) -Fundamentals <\/td>\n<\/tr>\n | ||||||
47<\/td>\n | Chapter 2 -Fundamentals (Harris): Topics <\/td>\n<\/tr>\n | ||||||
48<\/td>\n | Chapter 2 \u2013 Fundamentals: Yield, Ductility, Overstrength <\/td>\n<\/tr>\n | ||||||
49<\/td>\n | Section 2.7 \u2013 Resilience-Based Design <\/td>\n<\/tr>\n | ||||||
50<\/td>\n | Section 2.7 -Resilience-Based Design (Bonowitz): Topics <\/td>\n<\/tr>\n | ||||||
51<\/td>\n | Section 2.7 -The \u201cResilience Field\u201d <\/td>\n<\/tr>\n | ||||||
52<\/td>\n | Section 2.7 -Functional Recovery vs. Community Resilience <\/td>\n<\/tr>\n | ||||||
53<\/td>\n | Section 2.7 -FEMA-NIST Definitions* for Functional Recovery <\/td>\n<\/tr>\n | ||||||
54<\/td>\n | Section 2.7 -Functional Recovery and Performance-Based Engineering <\/td>\n<\/tr>\n | ||||||
55<\/td>\n | Section 2.7 -Functional Recovery Objective: CLT Design Example <\/td>\n<\/tr>\n | ||||||
56<\/td>\n | Chapter 3 \u2013 Earthquake Ground Motions <\/td>\n<\/tr>\n | ||||||
58<\/td>\n | Section 3.2: USGS NSHMs and BSSC PUC Requirements <\/td>\n<\/tr>\n | ||||||
59<\/td>\n | Section 3.2 -Updates to 2020 NEHRP Design Ground Motions in Conterminous US <\/td>\n<\/tr>\n | ||||||
60<\/td>\n | Section 3.2 -Hazard Changes (CEUS) <\/td>\n<\/tr>\n | ||||||
61<\/td>\n | Section 3.2 -Hazard Changes (WUS) <\/td>\n<\/tr>\n | ||||||
62<\/td>\n | Section 3.2 Part 2 \u2013 Dissection of Example Changes to the MCER Ground Motion Values (Luco): Topics <\/td>\n<\/tr>\n | ||||||
63<\/td>\n | Section 3.2 -Deterministic Caps <\/td>\n<\/tr>\n | ||||||
64<\/td>\n | Section 3.2 -Examples of Changes in MCER Values <\/td>\n<\/tr>\n | ||||||
65<\/td>\n | Section 3.2 -Examples of Changes in SDC <\/td>\n<\/tr>\n | ||||||
66<\/td>\n | Section 3.2 -BSSC Tool for Seismic Design Map Values https:\/\/doi.org\/10.5066\/F7NK3C76 <\/td>\n<\/tr>\n | ||||||
67<\/td>\n | Section 3.3 \u2013 Multi-Period Response Spectra (Kircher): Topics <\/td>\n<\/tr>\n | ||||||
68<\/td>\n | Section 3.3 -The \u201cProblem\u201d with ASCE 7-10 <\/td>\n<\/tr>\n | ||||||
69<\/td>\n | Section 3.3 -Comparison of ASCE\/SEI 7-16 Two-Period (ELF) Design Spectrum w\/o Spectrum Shape Adjustment with MPRS Design Spectrum <\/td>\n<\/tr>\n | ||||||
70<\/td>\n | Section 3.3 -Interim Solution of ASCE\/SEI 7-16 (2015 NEHRP Provisions) <\/td>\n<\/tr>\n | ||||||
71<\/td>\n | Section 3.3 -Long-Term Solution -MPRS in 2020 NEHRP Provisions and ASCE\/SEI 7-22 <\/td>\n<\/tr>\n | ||||||
72<\/td>\n | Section 3.3 -New Site Classes and Associated Values of Shear Wave Velocities (Table 2.2-1, FEMA P-2078, June 2020) <\/td>\n<\/tr>\n | ||||||
73<\/td>\n | Section 3.3 -MPRS Format <\/td>\n<\/tr>\n | ||||||
74<\/td>\n | Move from Two-Point Spectra (2PRS) to Multi-Point Spectra (MPRS) <\/td>\n<\/tr>\n | ||||||
75<\/td>\n | Section 3.3 -Design (As Usual) Using New MPRS <\/td>\n<\/tr>\n | ||||||
76<\/td>\n | Section 3.4 \u2013 Other Changes to Ground Motion Provisions in ASCE\/SEI 7-22 (Crouse): Topics <\/td>\n<\/tr>\n | ||||||
77<\/td>\n | Chapter 4 \u2013 Ductile Reinforced Concrete Shear Walls <\/td>\n<\/tr>\n | ||||||
78<\/td>\n | Chapter 4 \u2013 Ductile Coupled RC Shear Walls (Ghosh and Dasgupta): Topics <\/td>\n<\/tr>\n | ||||||
79<\/td>\n | Chapter 2 \u2013 Ductile Coupled RC Shear Wall: Details <\/td>\n<\/tr>\n | ||||||
80<\/td>\n | Chapter 5 \u2013 Coupled Composite Plate Shear Walls\/Concrete Filled (C-PSW\/CF) <\/td>\n<\/tr>\n | ||||||
81<\/td>\n | Chapter 5 \u2013 Coupled Composite Plate Shear Walls \/ Concrete Filled (Shafaei and Varma): Topics <\/td>\n<\/tr>\n | ||||||
82<\/td>\n | Chapter 5 \u2013 C-PSW\/CF: Seismic Design Philosophy <\/td>\n<\/tr>\n | ||||||
83<\/td>\n | Chapter 5 \u2013 C-PSW\/CF: Coupling Beam-to-Wall Connection <\/td>\n<\/tr>\n | ||||||
84<\/td>\n | Chapter 6 \u2013 Cross-Laminated Timber Shear Walls <\/td>\n<\/tr>\n | ||||||
85<\/td>\n | Chapter 6 -Cross-Laminated Timber (CLT) Shear Wall (Line and Amini): Topics <\/td>\n<\/tr>\n | ||||||
86<\/td>\n | Chapter 6 \u2013 CLT Shear Wall: Construction <\/td>\n<\/tr>\n | ||||||
87<\/td>\n | Chapter 6 \u2013 CLT: Shear Wall Details <\/td>\n<\/tr>\n | ||||||
88<\/td>\n | Chapter 7 \u2013 Horizontal Diaphragm Design <\/td>\n<\/tr>\n | ||||||
89<\/td>\n | Chapter 7 \u2013 Horizontal Diaphragm Design (Cobeen): Topics <\/td>\n<\/tr>\n | ||||||
90<\/td>\n | Chapter 7: Diaphragm Seismic Design Method Comparison <\/td>\n<\/tr>\n | ||||||
91<\/td>\n | Chapter 7: Section 12.10.3 Alternative Design Provisions <\/td>\n<\/tr>\n | ||||||
92<\/td>\n | Chapter 7: Section 12.10.4 Alternative RWFD Design Method <\/td>\n<\/tr>\n | ||||||
93<\/td>\n | Chapter 7: Section 12.10.4 Alternative RWFD Design Method <\/td>\n<\/tr>\n | ||||||
94<\/td>\n | Chapter 8 -Nonstructural Components <\/td>\n<\/tr>\n | ||||||
95<\/td>\n | Chapter 8 -Design Examples for Nonstructural Components (Lizundia): Topics <\/td>\n<\/tr>\n | ||||||
96<\/td>\n | Chapter 8 -Nonstructural Components Example: Architectural Precast Concrete <\/td>\n<\/tr>\n | ||||||
97<\/td>\n | Chapter 8 -Nonstructural Components Example: Rocking Cladding Mechanism <\/td>\n<\/tr>\n | ||||||
98<\/td>\n | Chapter 8 -Nonstructural Components Example: Piping System Seismic Design <\/td>\n<\/tr>\n | ||||||
99<\/td>\n | Chapter 8 -Nonstructural Components Example: Egress Stairs <\/td>\n<\/tr>\n | ||||||
100<\/td>\n | Chapter 8 -Nonstructural Components Example: Elevated Vessel <\/td>\n<\/tr>\n | ||||||
101<\/td>\n | Chapter 8 -Nonstructural Components Example: Elevated Vessel <\/td>\n<\/tr>\n | ||||||
102<\/td>\n | Chapter 8 -Prescribed Seismic Forces: Vessel Support and Attachments <\/td>\n<\/tr>\n | ||||||
103<\/td>\n | Chapter 8 -Nonstructural Component Example: HVAC Fan Unit Support <\/td>\n<\/tr>\n | ||||||
104<\/td>\n | Organization and Presentation of the Design Example Chapters <\/td>\n<\/tr>\n | ||||||
105<\/td>\n | Outline of the 2020 Design Examples Chapters <\/td>\n<\/tr>\n | ||||||
106<\/td>\n | How to Use the 2015 and 2020 Design Examples Together <\/td>\n<\/tr>\n | ||||||
107<\/td>\n | How to Use the 2015 and 2020 Design Examples Together <\/td>\n<\/tr>\n | ||||||
108<\/td>\n | How to Use the 2015 and 2020 Design Examples Together <\/td>\n<\/tr>\n | ||||||
109<\/td>\n | How to Use the 2015 and 2020 Design Examples Together <\/td>\n<\/tr>\n | ||||||
110<\/td>\n | Presentation Techniques in the 2020 Design Examples <\/td>\n<\/tr>\n | ||||||
112<\/td>\n | BSSC NEHRP Webinar Training: nibs.org\/events\/nehrp-webinar-series <\/td>\n<\/tr>\n | ||||||
113<\/td>\n | Questions? <\/td>\n<\/tr>\n | ||||||
114<\/td>\n | DISCLAIMER <\/td>\n<\/tr>\n | ||||||
115<\/td>\n | Chapter 2 (Sections 2.1 to 2.6) Fundamentals <\/td>\n<\/tr>\n | ||||||
116<\/td>\n | Overview <\/td>\n<\/tr>\n | ||||||
117<\/td>\n | Fundamental Concepts (1) <\/td>\n<\/tr>\n | ||||||
118<\/td>\n | Fundamental Concepts (2) <\/td>\n<\/tr>\n | ||||||
119<\/td>\n | Overview <\/td>\n<\/tr>\n | ||||||
120<\/td>\n | Seismic Activity on Earth <\/td>\n<\/tr>\n | ||||||
121<\/td>\n | Tectonic Plates <\/td>\n<\/tr>\n | ||||||
122<\/td>\n | Section of Earth Crust at Ocean Rift Valley <\/td>\n<\/tr>\n | ||||||
123<\/td>\n | Section of Earth Crust at Plate Boundary (Subduction Zone) <\/td>\n<\/tr>\n | ||||||
124<\/td>\n | Fault Features Strike angle Dip angle <\/td>\n<\/tr>\n | ||||||
125<\/td>\n | Faults and Fault Rupture <\/td>\n<\/tr>\n | ||||||
126<\/td>\n | Types of Faults <\/td>\n<\/tr>\n | ||||||
127<\/td>\n | Seismic Wave Forms (Body Waves) <\/td>\n<\/tr>\n | ||||||
128<\/td>\n | Seismic Wave Forms (Surface Waves) <\/td>\n<\/tr>\n | ||||||
129<\/td>\n | Arrival of Seismic Waves <\/td>\n<\/tr>\n | ||||||
130<\/td>\n | Effects of Earthquakes <\/td>\n<\/tr>\n | ||||||
131<\/td>\n | Recorded Ground Motions <\/td>\n<\/tr>\n | ||||||
132<\/td>\n | Shaking at the Holiday Inn During the 1971 San Fernando Valley EQ <\/td>\n<\/tr>\n | ||||||
133<\/td>\n | Overview <\/td>\n<\/tr>\n | ||||||
134<\/td>\n | NEHRP (2009) Seismic Hazard Maps <\/td>\n<\/tr>\n | ||||||
136<\/td>\n | Mass <\/td>\n<\/tr>\n | ||||||
137<\/td>\n | Linear Viscous Damping <\/td>\n<\/tr>\n | ||||||
138<\/td>\n | Damping and Energy Dissipation <\/td>\n<\/tr>\n | ||||||
139<\/td>\n | Elastic Stiffness <\/td>\n<\/tr>\n | ||||||
140<\/td>\n | Inelastic Behavior <\/td>\n<\/tr>\n | ||||||
141<\/td>\n | Undamped Free Vibration <\/td>\n<\/tr>\n | ||||||
142<\/td>\n | Undamped Free Vibration (2) <\/td>\n<\/tr>\n | ||||||
143<\/td>\n | Periods of Vibration of Common Structures <\/td>\n<\/tr>\n | ||||||
144<\/td>\n | Damped Free Vibration <\/td>\n<\/tr>\n | ||||||
145<\/td>\n | Damped Free Vibration (2) <\/td>\n<\/tr>\n | ||||||
146<\/td>\n | Damped Free Vibration (3) <\/td>\n<\/tr>\n | ||||||
147<\/td>\n | Damping in Structures <\/td>\n<\/tr>\n | ||||||
148<\/td>\n | Undamped Harmonic Loading and Resonance <\/td>\n<\/tr>\n | ||||||
149<\/td>\n | Damped Harmonic Loading and Resonance <\/td>\n<\/tr>\n | ||||||
150<\/td>\n | Resonant Response Curve <\/td>\n<\/tr>\n | ||||||
151<\/td>\n | General Dynamic Loading <\/td>\n<\/tr>\n | ||||||
152<\/td>\n | Effective Earthquake Force <\/td>\n<\/tr>\n | ||||||
153<\/td>\n | Simplified SDOF Equation of Motion <\/td>\n<\/tr>\n | ||||||
154<\/td>\n | Use of Simplified Equation of Motion <\/td>\n<\/tr>\n | ||||||
155<\/td>\n | Use of Simplified Equation <\/td>\n<\/tr>\n | ||||||
156<\/td>\n | Creating an Elastic Response Spectrum <\/td>\n<\/tr>\n | ||||||
157<\/td>\n | Pseudoacceleration Spectrum <\/td>\n<\/tr>\n | ||||||
158<\/td>\n | Pseudoacceleration is Total Acceleration <\/td>\n<\/tr>\n | ||||||
159<\/td>\n | Using Pseudoacceleration to Compute Seismic Force <\/td>\n<\/tr>\n | ||||||
160<\/td>\n | Response Spectra for 1971 San Fernando Valley EQ (Holiday Inn) <\/td>\n<\/tr>\n | ||||||
161<\/td>\n | Averaged Spectrum and Code Spectrum <\/td>\n<\/tr>\n | ||||||
162<\/td>\n | NEHRP\/ASCE 7 Design Spectrum <\/td>\n<\/tr>\n | ||||||
163<\/td>\n | NEHRP 2020 Multi-Period Spectrum and \u201cTwo\u201d Period Spectrum <\/td>\n<\/tr>\n | ||||||
164<\/td>\n | Overview <\/td>\n<\/tr>\n | ||||||
165<\/td>\n | MDOF Systems <\/td>\n<\/tr>\n | ||||||
166<\/td>\n | Analysis of Linear MDOF Systems <\/td>\n<\/tr>\n | ||||||
167<\/td>\n | Analysis of Linear MDOF Systems <\/td>\n<\/tr>\n | ||||||
168<\/td>\n | Overview <\/td>\n<\/tr>\n | ||||||
169<\/td>\n | Basic Base Shear Equations in NEHRP and ASCE 7 <\/td>\n<\/tr>\n | ||||||
170<\/td>\n | Building Designed for Wind or Seismic Load <\/td>\n<\/tr>\n | ||||||
171<\/td>\n | Comparison of EQ vs Wind <\/td>\n<\/tr>\n | ||||||
172<\/td>\n | How to Deal with Huge EQ Force? <\/td>\n<\/tr>\n | ||||||
173<\/td>\n | Nonlinear Static Pushover Analysis <\/td>\n<\/tr>\n | ||||||
174<\/td>\n | Mathematical Model and Ground Motion <\/td>\n<\/tr>\n | ||||||
175<\/td>\n | Results of Nonlinear Analysis <\/td>\n<\/tr>\n | ||||||
176<\/td>\n | Response Computed by Nonlin <\/td>\n<\/tr>\n | ||||||
177<\/td>\n | Interim Conclusion (the Good News) <\/td>\n<\/tr>\n | ||||||
178<\/td>\n | Interim Conclusion (The Bad News) <\/td>\n<\/tr>\n | ||||||
179<\/td>\n | Development of the Equal Displacement Concept <\/td>\n<\/tr>\n | ||||||
180<\/td>\n | The Equal Displacement Concept <\/td>\n<\/tr>\n | ||||||
181<\/td>\n | Repeated Analysis for Various Yield Strengths (and constant stiffness) <\/td>\n<\/tr>\n | ||||||
182<\/td>\n | Constant Displacement Idealization of Inelastic Response <\/td>\n<\/tr>\n | ||||||
183<\/td>\n | Equal Displacement Idealization of Inelastic Response <\/td>\n<\/tr>\n | ||||||
184<\/td>\n | Equal Displacement Concept of Inelastic Design <\/td>\n<\/tr>\n | ||||||
185<\/td>\n | Key Ingredient: Ductility <\/td>\n<\/tr>\n | ||||||
186<\/td>\n | Application in Principle <\/td>\n<\/tr>\n | ||||||
187<\/td>\n | Application in Practice (NEHRP and ASCE 7) <\/td>\n<\/tr>\n | ||||||
188<\/td>\n | Ductility\/Overstrength First Significant Yield <\/td>\n<\/tr>\n | ||||||
189<\/td>\n | First Significant Yield and Design Strength <\/td>\n<\/tr>\n | ||||||
190<\/td>\n | Overstrength <\/td>\n<\/tr>\n | ||||||
191<\/td>\n | Sources of Overstrength <\/td>\n<\/tr>\n | ||||||
192<\/td>\n | Definition of Overstrength Factor \uf057 <\/td>\n<\/tr>\n | ||||||
193<\/td>\n | Definition of Ductility Reduction Factor Rd <\/td>\n<\/tr>\n | ||||||
194<\/td>\n | Definition of Response Modification Coefficient R <\/td>\n<\/tr>\n | ||||||
195<\/td>\n | Definition of Response Modification Coefficient R <\/td>\n<\/tr>\n | ||||||
196<\/td>\n | Definition of Deflection Amplification Factor Cd <\/td>\n<\/tr>\n | ||||||
197<\/td>\n | Example of Design Factors for Reinforced Concrete Structures <\/td>\n<\/tr>\n | ||||||
198<\/td>\n | Design Spectra as Adjusted for Inelastic Behavior <\/td>\n<\/tr>\n | ||||||
199<\/td>\n | Using Inelastic Spectrum to Determine Inelastic Force Demand <\/td>\n<\/tr>\n | ||||||
200<\/td>\n | Using the Inelastic Spectrum and Cd to Determine the Inelastic Displacement Demand <\/td>\n<\/tr>\n | ||||||
201<\/td>\n | Overview <\/td>\n<\/tr>\n | ||||||
202<\/td>\n | Design and Detailing Requirements <\/td>\n<\/tr>\n | ||||||
203<\/td>\n | Questions <\/td>\n<\/tr>\n | ||||||
204<\/td>\n | DISCLAIMER <\/td>\n<\/tr>\n | ||||||
205<\/td>\n | Chapter 2 (Section 2.7) Resilience-Based Design <\/td>\n<\/tr>\n | ||||||
206<\/td>\n | Content <\/td>\n<\/tr>\n | ||||||
207<\/td>\n | Consensus <\/td>\n<\/tr>\n | ||||||
208<\/td>\n | Consensus understanding of resilience <\/td>\n<\/tr>\n | ||||||
209<\/td>\n | The \u201cResilience Field\u201d <\/td>\n<\/tr>\n | ||||||
210<\/td>\n | The \u201cResilience Field\u201d <\/td>\n<\/tr>\n | ||||||
211<\/td>\n | FR : Building : CR : Community Facility <\/td>\n<\/tr>\n | ||||||
212<\/td>\n | \u201cResilience-Based Design and the NEHRP Provisions\u201d <\/td>\n<\/tr>\n | ||||||
213<\/td>\n | New definitions: Functional Recovery <\/td>\n<\/tr>\n | ||||||
214<\/td>\n | FEMA-NIST definitions* <\/td>\n<\/tr>\n | ||||||
215<\/td>\n | Functional recovery and performance-based engineering <\/td>\n<\/tr>\n | ||||||
216<\/td>\n | The technical question <\/td>\n<\/tr>\n | ||||||
217<\/td>\n | Functional recovery and the current building code <\/td>\n<\/tr>\n | ||||||
218<\/td>\n | CLT Shear Wall Design Example (Chapter 6) <\/td>\n<\/tr>\n | ||||||
219<\/td>\n | CLT Shear Wall Design Example (Chapter 6) <\/td>\n<\/tr>\n | ||||||
220<\/td>\n | Functional recovery objective <\/td>\n<\/tr>\n | ||||||
221<\/td>\n | Policy precedents for acceptable FR time? <\/td>\n<\/tr>\n | ||||||
222<\/td>\n | Policy precedents for acceptable FR time? <\/td>\n<\/tr>\n | ||||||
223<\/td>\n | Functional recovery objective <\/td>\n<\/tr>\n | ||||||
224<\/td>\n | Expected FR time: What does current research say? <\/td>\n<\/tr>\n | ||||||
225<\/td>\n | Expected FR time: What does current research say? <\/td>\n<\/tr>\n | ||||||
226<\/td>\n | Expected FR time: What does current research say? <\/td>\n<\/tr>\n | ||||||
227<\/td>\n | Expected FR time: What does current research say? <\/td>\n<\/tr>\n | ||||||
228<\/td>\n | Functional recovery objective <\/td>\n<\/tr>\n | ||||||
229<\/td>\n | CLT Shear Wall structural design criteria <\/td>\n<\/tr>\n | ||||||
230<\/td>\n | CLT Shear Wall structural design criteria <\/td>\n<\/tr>\n | ||||||
231<\/td>\n | CLT Shear Wall structural design criteria <\/td>\n<\/tr>\n | ||||||
232<\/td>\n | CLT Shear Wall structural design criteria <\/td>\n<\/tr>\n | ||||||
233<\/td>\n | Townhouse nonstructural design criteria <\/td>\n<\/tr>\n | ||||||
234<\/td>\n | Townhouse nonstructural design criteria <\/td>\n<\/tr>\n | ||||||
235<\/td>\n | Characteristics of RC IV functionality (NEHRP Provisions Section 1.1.5) <\/td>\n<\/tr>\n | ||||||
236<\/td>\n | Characteristics of RC IV functionality (NEHRP Provisions Section 1.1.5) <\/td>\n<\/tr>\n | ||||||
237<\/td>\n | Characteristics of RC IV functionality (NEHRP Provisions Section 1.1.5) <\/td>\n<\/tr>\n | ||||||
238<\/td>\n | Voluntary FR and emerging best practices <\/td>\n<\/tr>\n | ||||||
239<\/td>\n | Voluntary FR and emerging best practices <\/td>\n<\/tr>\n | ||||||
240<\/td>\n | Voluntary FR and emerging best practices <\/td>\n<\/tr>\n | ||||||
241<\/td>\n | Q&A <\/td>\n<\/tr>\n | ||||||
242<\/td>\n | References <\/td>\n<\/tr>\n | ||||||
243<\/td>\n | References <\/td>\n<\/tr>\n | ||||||
244<\/td>\n | DISCLAIMER <\/td>\n<\/tr>\n | ||||||
245<\/td>\n | Chapter 3 (Section 3.2 -Part 1) The 2018 Update of the USGS National Seismic Hazard Model <\/td>\n<\/tr>\n | ||||||
246<\/td>\n | Outline <\/td>\n<\/tr>\n | ||||||
247<\/td>\n | USGS NSHMs & BSSC PUC Requirements <\/td>\n<\/tr>\n | ||||||
248<\/td>\n | Updates to 2020 NEHRP Design Ground Motions in Conterminous US <\/td>\n<\/tr>\n | ||||||
249<\/td>\n | Updates to 2020 NEHRP Design Ground Motions in Conterminous US <\/td>\n<\/tr>\n | ||||||
250<\/td>\n | Updates to 2020 NEHRP Design Ground Motions in Conterminous US <\/td>\n<\/tr>\n | ||||||
251<\/td>\n | Old CEUS Ground Motion Models <\/td>\n<\/tr>\n | ||||||
252<\/td>\n | New CEUS Ground Motion Models <\/td>\n<\/tr>\n | ||||||
253<\/td>\n | New CEUS Ground Motion Models <\/td>\n<\/tr>\n | ||||||
254<\/td>\n | New CEUS Site-Effects Models <\/td>\n<\/tr>\n | ||||||
255<\/td>\n | Hazard Changes (CEUS) <\/td>\n<\/tr>\n | ||||||
256<\/td>\n | Deep Basin Effects <\/td>\n<\/tr>\n | ||||||
257<\/td>\n | Deep Basin Effects <\/td>\n<\/tr>\n | ||||||
258<\/td>\n | Hazard Changes (WUS) <\/td>\n<\/tr>\n | ||||||
259<\/td>\n | Outside of Conterminous US (OCONUS) <\/td>\n<\/tr>\n | ||||||
260<\/td>\n | Outside of Conterminous US (OCONUS) <\/td>\n<\/tr>\n | ||||||
261<\/td>\n | Summary <\/td>\n<\/tr>\n | ||||||
262<\/td>\n | Questions <\/td>\n<\/tr>\n | ||||||
263<\/td>\n | DISCLAIMER <\/td>\n<\/tr>\n | ||||||
264<\/td>\n | Chapter 3 (Section 3.2 -Part 2) Dissection of Example Changes to the MCER Ground Motion Values <\/td>\n<\/tr>\n | ||||||
265<\/td>\n | Commentary to Chapter 22 <\/td>\n<\/tr>\n | ||||||
266<\/td>\n | USGS 2018 National Seismic Hazard Model (NSHM) Updates <\/td>\n<\/tr>\n | ||||||
267<\/td>\n | BSSC Project \u201817 Recommendations <\/td>\n<\/tr>\n | ||||||
268<\/td>\n | Maximum-Direction Scale Factors <\/td>\n<\/tr>\n | ||||||
269<\/td>\n | Maximum-Direction Scale Factors <\/td>\n<\/tr>\n | ||||||
270<\/td>\n | Deterministic Caps <\/td>\n<\/tr>\n | ||||||
271<\/td>\n | Deterministic Caps <\/td>\n<\/tr>\n | ||||||
272<\/td>\n | Commentary to Chapter 22 <\/td>\n<\/tr>\n | ||||||
273<\/td>\n | Examples of Changes in MCER Values <\/td>\n<\/tr>\n | ||||||
274<\/td>\n | Examples of Changes in MCER Values <\/td>\n<\/tr>\n | ||||||
275<\/td>\n | Examples of Changes in MCER Values <\/td>\n<\/tr>\n | ||||||
276<\/td>\n | Examples of Changes in MCER Values <\/td>\n<\/tr>\n | ||||||
277<\/td>\n | Examples of Changes in SDC <\/td>\n<\/tr>\n | ||||||
278<\/td>\n | Examples of Changes in SDC <\/td>\n<\/tr>\n | ||||||
279<\/td>\n | Summary of Changes in MCER Values <\/td>\n<\/tr>\n | ||||||
280<\/td>\n | Commentary to Chapter 22 <\/td>\n<\/tr>\n | ||||||
281<\/td>\n | USGS Seismic Design Geodatabase <\/td>\n<\/tr>\n | ||||||
282<\/td>\n | USGS Seismic Design Geodatabase <\/td>\n<\/tr>\n | ||||||
283<\/td>\n | USGS Seismic Design Web Service <\/td>\n<\/tr>\n | ||||||
284<\/td>\n | USGS Seismic Design Web Service <\/td>\n<\/tr>\n | ||||||
285<\/td>\n | BSSC Tool for Seismic Design Map Values <\/td>\n<\/tr>\n | ||||||
286<\/td>\n | BSSC Tool for Seismic Design Map Values <\/td>\n<\/tr>\n | ||||||
287<\/td>\n | https:\/\/doi.org\/10.5066\/F7NK3C76 <\/td>\n<\/tr>\n | ||||||
288<\/td>\n | Questions <\/td>\n<\/tr>\n | ||||||
289<\/td>\n | DISCLAIMER <\/td>\n<\/tr>\n | ||||||
290<\/td>\n | Chapter 3 (Section 3.3) New Multi-Period Response Spectra and Ground Motion Requirements <\/td>\n<\/tr>\n | ||||||
291<\/td>\n | Design (As Usual) Using New MPRS <\/td>\n<\/tr>\n | ||||||
292<\/td>\n | New Multi-Period Response Spectra (MPRS) <\/td>\n<\/tr>\n | ||||||
293<\/td>\n | Summary of MPRS and Related Changes (to ASCE\/SEI 7-16) <\/td>\n<\/tr>\n | ||||||
294<\/td>\n | Summary of MPRS and Related Changes (to ASCE\/SEI 7-16) <\/td>\n<\/tr>\n | ||||||
295<\/td>\n | Two-Period Design Response Spectrum (Multi-Period Design Spectrum) (Figure 11.4-1, ASCE\/SEI 7-05, ASCE\/SEI 7-10 and ASCE\/SEI 7-16 with annotation) <\/td>\n<\/tr>\n | ||||||
296<\/td>\n | The \u201cProblem\u201d with ASCE\/SEI 7-10 <\/td>\n<\/tr>\n | ||||||
297<\/td>\n | Comparison of ASCE\/SEI 7-16 Two-Period (ELF) Design Spectrum w\/o Spectrum Shape Adjustment and Multi-Period Response Spectra based on M7.0 earthquake ground motions at RX= 6.8 km) \u2013Site Class C Comparison of ASCE\/SEI 7-16 Two-Period (ELF) Design Spectrum w\/o Spectrum Shape Adjustment and Multi-Period Response Spectra based on M7.0 earthquake ground motions at RX= 6.8 km) \u2013Site Class C <\/td>\n<\/tr>\n | ||||||
298<\/td>\n | Comparison of ASCE\/SEI 7-16 Two-Period (ELF) Design Spectrum w\/o Spectrum Shape Adjustment and Multi-Period Response Spectra based on M7.0 earthquake ground motions at RX = 6.8 km) \u2013 Site Class D <\/td>\n<\/tr>\n | ||||||
299<\/td>\n | Comparison of ASCE\/SEI 7-16 Two-Period (ELF) Design Spectrum w\/o Spectrum Shape Adjustment and Multi-Period Response Spectra based on M7.0 earthquake ground motions at RX = 6.8 km) \u2013 Site Class E <\/td>\n<\/tr>\n | ||||||
300<\/td>\n | Comparison of ASCE\/SEI 7-16 Two-Period (ELF) Design Spectrum w\/o Spectrum Shape Adjustment and Multi-Period Response Spectra based on M8.0 earthquake ground motions at RX = 9.9 km) \u2013 Site Class E <\/td>\n<\/tr>\n | ||||||
301<\/td>\n | Interim Solution of ASCE\/SEI 7-16 (2015 NEHRP Provisions) <\/td>\n<\/tr>\n | ||||||
302<\/td>\n | Site-Specific Requirements of Section 11.4.7 of ASCE\/SEI 7-16 (2015 NEHRP Provisions) <\/td>\n<\/tr>\n | ||||||
303<\/td>\n | Site-Specific Requirements of Section 11.4.7 of ASCE\/SEI 7-16 (2015 NEHRP Provisions) <\/td>\n<\/tr>\n | ||||||
304<\/td>\n | Conterminous United States Regions with S1 \u2265 0.2g (ASCE\/SEI 7-16) <\/td>\n<\/tr>\n | ||||||
305<\/td>\n | Long-Term Solution -Multi-Period Response Spectra (MPRS) (2020 NEHRP Provisions and ASCE\/SEI 7-22) <\/td>\n<\/tr>\n | ||||||
306<\/td>\n | MCER Ground Motions (Section 21.2) (Site-specific requirements of the 2020 NEHRP Provisions and ASCE\/SEI 7-22) <\/td>\n<\/tr>\n | ||||||
307<\/td>\n | Approach for Developing Multi-Period Response Spectra for United States Regions of Interest (CONUS and OCONUS sites) <\/td>\n<\/tr>\n | ||||||
308<\/td>\n | Multi-Period Response Spectra Format (example matrix showing the combinations of twenty-two response periods, plus PGAG, and eight hypothetical site classes of the standard format of multi-period response spectra) <\/td>\n<\/tr>\n | ||||||
309<\/td>\n | Multi-Period Response Spectra Format (example matrix showing the combinations of twenty-two response periods, plus PGAG, and eight hypothetical site classes of the standard format of multi-period response spectra) <\/td>\n<\/tr>\n | ||||||
310<\/td>\n | Example Multi-Period Response Spectra (MPRS) (showing the new deterministic MCER Lower Limit, Table 21.2-1, 2020 NEHRP Provisions and ASCE\/SEI 7-22, which are anchored to SS = SSD = 1.5 g, S1 = S1D = 0.6 g) <\/td>\n<\/tr>\n | ||||||
311<\/td>\n | Conterminous United States Regions Governed Solely by Probabilistic MCER Ground Motions for Default Site Conditions <\/td>\n<\/tr>\n | ||||||
312<\/td>\n | New Site Classes and Associated Values of Shear Wave Velocities (Table 2.2-1, FEMA P-2078, June 2020) <\/td>\n<\/tr>\n | ||||||
313<\/td>\n | Distribution of 9,050 of Census Tracts of Densely Populated Areas of California, Oregon and Washington by Site Class (90% of Population) <\/td>\n<\/tr>\n | ||||||
314<\/td>\n | Improved Values of Seismic Design Parameters <\/td>\n<\/tr>\n | ||||||
315<\/td>\n | Example Derivation of SDS and SD1 from a Multi-Period Design Spectrum <\/td>\n<\/tr>\n | ||||||
316<\/td>\n | Comparison of ASCE\/SEI 7-16 Two-Period (ELF) Design Spectrum w\/o Spectrum Shape Adjustment and Multi-Period Response Spectra based on M8.0 earthquake ground motions at RX = 9.9 km) \u2013 Site Class E <\/td>\n<\/tr>\n | ||||||
317<\/td>\n | Multi-Period Design Spectrum (Figure 11.4-1, 2020 NEHRP Provisions and ASCE\/SEI 7-22 with annotation) <\/td>\n<\/tr>\n | ||||||
318<\/td>\n | Example Comparisons of Design Spectra (default site conditions) <\/td>\n<\/tr>\n | ||||||
319<\/td>\n | Comparison of Design Response Spectra \u2013 Irvine (assuming default site conditions, Figure 8.2-1, FEMA P-2078, June 2020) <\/td>\n<\/tr>\n | ||||||
320<\/td>\n | Comparison of Design Response Spectra \u2013 San Mateo (assuming default site conditions, Figure 8.2-2, FEMA P-2078, June 2020) <\/td>\n<\/tr>\n | ||||||
321<\/td>\n | Comparison of Design Response Spectra \u2013 Anchorage (assuming default site conditions, Figure 8.2-4, FEMA P-2078, June 2020) <\/td>\n<\/tr>\n | ||||||
322<\/td>\n | Comparison of Design Response Spectra \u2013 Memphis (assuming default site conditions, Figure 8.2-4, FEMA P-2078, June 2020) <\/td>\n<\/tr>\n | ||||||
323<\/td>\n | Design (As Usual) Using New MPRS <\/td>\n<\/tr>\n | ||||||
324<\/td>\n | Questions <\/td>\n<\/tr>\n | ||||||
325<\/td>\n | DISCLAIMER <\/td>\n<\/tr>\n | ||||||
326<\/td>\n | Chapter 3 (Section 3.4) Additional Revisions to Ground-Motion Provisions <\/td>\n<\/tr>\n | ||||||
327<\/td>\n | Presentation <\/td>\n<\/tr>\n | ||||||
328<\/td>\n | MCEGPeak Ground Acceleration (ASCE\/SEI 7-22, Section 21.5) <\/td>\n<\/tr>\n | ||||||
329<\/td>\n | MCEGPeak Ground Acceleration (ASCE\/SEI 7-22, Section 21.5) <\/td>\n<\/tr>\n | ||||||
330<\/td>\n | Additional Revisions (ASCE\/SEI 7-22, Section 21.5) <\/td>\n<\/tr>\n | ||||||
331<\/td>\n | Additional Revisions (ASCE\/SEI 7-22, Section 21.5) <\/td>\n<\/tr>\n | ||||||
332<\/td>\n | Vertical Ground Motion (ASCE\/SEI 7-22, Section 11.9) <\/td>\n<\/tr>\n | ||||||
333<\/td>\n | Vertical Ground Motion (ASCE\/SEI 7-22, Section 11.9) <\/td>\n<\/tr>\n | ||||||
334<\/td>\n | Vertical Ground Motion (ASCE\/SEI 7-22, Section 11.9) <\/td>\n<\/tr>\n | ||||||
335<\/td>\n | Site Class when Shear Wave Velocity Data Unavailable (ASCE\/SEI 7-22, Section 20.3) <\/td>\n<\/tr>\n | ||||||
336<\/td>\n | Site Class when Shear Wave Velocity Data Unavailable (ASCE\/SEI 7-22, Section 20.3) <\/td>\n<\/tr>\n | ||||||
337<\/td>\n | Site Class when Shear Wave Velocity Data Unavailable <\/td>\n<\/tr>\n | ||||||
338<\/td>\n | Site Class when Shear Wave Velocity Data Unavailable <\/td>\n<\/tr>\n | ||||||
339<\/td>\n | Questions <\/td>\n<\/tr>\n | ||||||
340<\/td>\n | DISCLAIMER <\/td>\n<\/tr>\n | ||||||
341<\/td>\n | Chapter 4 Reinforced Concrete Ductile Coupled Shear Walls <\/td>\n<\/tr>\n | ||||||
342<\/td>\n | Coupled Walls <\/td>\n<\/tr>\n | ||||||
343<\/td>\n | Coupled Walls <\/td>\n<\/tr>\n | ||||||
344<\/td>\n | Coupled Walls <\/td>\n<\/tr>\n | ||||||
345<\/td>\n | Coupled Walls <\/td>\n<\/tr>\n | ||||||
346<\/td>\n | Coupled Walls <\/td>\n<\/tr>\n | ||||||
347<\/td>\n | Ductile Coupled Shear Walls <\/td>\n<\/tr>\n | ||||||
348<\/td>\n | Energy Dissipation in Coupling Beams <\/td>\n<\/tr>\n | ||||||
349<\/td>\n | Energy Dissipation in Coupling Beams <\/td>\n<\/tr>\n | ||||||
350<\/td>\n | ACI 318-19 18.10.9 Ductile Coupled Walls <\/td>\n<\/tr>\n | ||||||
351<\/td>\n | Special Shear Walls <\/td>\n<\/tr>\n | ||||||
352<\/td>\n | Ductile Coupling Beams <\/td>\n<\/tr>\n | ||||||
353<\/td>\n | Ductile Coupling Beams <\/td>\n<\/tr>\n | ||||||
354<\/td>\n | Ductile Coupling Beams <\/td>\n<\/tr>\n | ||||||
355<\/td>\n | 2020 NEHRP Provisions <\/td>\n<\/tr>\n | ||||||
356<\/td>\n | 2020 NEHRP Provisions <\/td>\n<\/tr>\n | ||||||
357<\/td>\n | P695 Study <\/td>\n<\/tr>\n | ||||||
358<\/td>\n | Additional ACI 318-19 Changes in Special Shear Wall Design <\/td>\n<\/tr>\n | ||||||
359<\/td>\n | Additional ACI 318-19 Changes in Special Shear Wall Design <\/td>\n<\/tr>\n | ||||||
360<\/td>\n | Shear Amplification: Concrete Shear Walls <\/td>\n<\/tr>\n | ||||||
361<\/td>\n | Shear Amplification: Concrete Shear Walls <\/td>\n<\/tr>\n | ||||||
362<\/td>\n | Shear Amplification: Concrete Shear Walls <\/td>\n<\/tr>\n | ||||||
363<\/td>\n | Earthquake Force-Resisting Structural Systems of Concrete \u2014 ASCE\/SEI 7-22 <\/td>\n<\/tr>\n | ||||||
364<\/td>\n | Earthquake Force-Resisting Structural Systems of Concrete \u2014 ASCE\/SEI 7-22 <\/td>\n<\/tr>\n | ||||||
365<\/td>\n | Earthquake Force-Resisting Structural Systems of Concrete \u2014 ASCE\/SEI 7-22 <\/td>\n<\/tr>\n | ||||||
366<\/td>\n | Example Problem <\/td>\n<\/tr>\n | ||||||
367<\/td>\n | Introduction <\/td>\n<\/tr>\n | ||||||
368<\/td>\n | Example Building Configuration <\/td>\n<\/tr>\n | ||||||
369<\/td>\n | Example Building Configuration <\/td>\n<\/tr>\n | ||||||
370<\/td>\n | Design Criteria <\/td>\n<\/tr>\n | ||||||
371<\/td>\n | Design Criteria <\/td>\n<\/tr>\n | ||||||
372<\/td>\n | Design Criteria <\/td>\n<\/tr>\n | ||||||
373<\/td>\n | Design Criteria <\/td>\n<\/tr>\n | ||||||
374<\/td>\n | Design Procedure <\/td>\n<\/tr>\n | ||||||
375<\/td>\n | Analysis by Equivalent Lateral Force Procedure <\/td>\n<\/tr>\n | ||||||
376<\/td>\n | Analysis by Equivalent Lateral Force Procedure <\/td>\n<\/tr>\n | ||||||
377<\/td>\n | Modal Response Spectrum Analysis <\/td>\n<\/tr>\n | ||||||
378<\/td>\n | Floor Forces from MRSA <\/td>\n<\/tr>\n | ||||||
379<\/td>\n | Story Drifts from MRSA (X-Direction) <\/td>\n<\/tr>\n | ||||||
380<\/td>\n | Story Drifts from MRSA (Y-Direction) <\/td>\n<\/tr>\n | ||||||
381<\/td>\n | Story Drift Limitation <\/td>\n<\/tr>\n | ||||||
382<\/td>\n | Design of Shear Wall <\/td>\n<\/tr>\n | ||||||
383<\/td>\n | Design of Shear Wall \u2013 Design Loads <\/td>\n<\/tr>\n | ||||||
384<\/td>\n | Design of Shear Wall \u2013 Design for Shear <\/td>\n<\/tr>\n | ||||||
385<\/td>\n | Design of Shear Wall \u2013 Design for Shear <\/td>\n<\/tr>\n | ||||||
386<\/td>\n | Design of Shear Wall \u2013 Design for Shear <\/td>\n<\/tr>\n | ||||||
387<\/td>\n | Design of Shear Wall \u2013 Design for Shear <\/td>\n<\/tr>\n | ||||||
388<\/td>\n | Design of Shear Wall \u2013 Design for Shear <\/td>\n<\/tr>\n | ||||||
389<\/td>\n | Design of Shear Wall \u2013 Design for Shear <\/td>\n<\/tr>\n | ||||||
390<\/td>\n | Design of Shear Wall \u2013 Design for Shear <\/td>\n<\/tr>\n | ||||||
391<\/td>\n | Design of Shear Wall \u2013 Design for Shear <\/td>\n<\/tr>\n | ||||||
392<\/td>\n | Boundary Elements of Special RC Shear Walls <\/td>\n<\/tr>\n | ||||||
393<\/td>\n | Boundary Elements of Special RC Shear Walls <\/td>\n<\/tr>\n | ||||||
394<\/td>\n | Boundary Elements of Special RC Shear Walls <\/td>\n<\/tr>\n | ||||||
395<\/td>\n | Boundary Elements of Special RC Shear Walls <\/td>\n<\/tr>\n | ||||||
396<\/td>\n | Boundary Elements of Special RC Shear Walls <\/td>\n<\/tr>\n | ||||||
397<\/td>\n | Boundary Elements of Special RC Shear Walls <\/td>\n<\/tr>\n | ||||||
398<\/td>\n | Boundary Elements of Special RC Shear Walls <\/td>\n<\/tr>\n | ||||||
399<\/td>\n | Boundary Elements of Special RC Shear Walls <\/td>\n<\/tr>\n | ||||||
400<\/td>\n | Boundary Elements of Special RC Shear Walls <\/td>\n<\/tr>\n | ||||||
401<\/td>\n | Boundary Elements of Special RC Shear Walls <\/td>\n<\/tr>\n | ||||||
402<\/td>\n | Boundary Elements of Special RC Shear Walls <\/td>\n<\/tr>\n | ||||||
403<\/td>\n | Boundary Elements of Special RC Shear Walls <\/td>\n<\/tr>\n | ||||||
404<\/td>\n | Design of Shear Wall (Grade 60 Reinforcement) <\/td>\n<\/tr>\n | ||||||
405<\/td>\n | Check Strength Under Flexure and Axial Loads <\/td>\n<\/tr>\n | ||||||
406<\/td>\n | Design of Shear Wall (Grade 80 Reinforcement) <\/td>\n<\/tr>\n | ||||||
407<\/td>\n | Design of Shear Wall (Grade 80 Reinforcement) <\/td>\n<\/tr>\n | ||||||
408<\/td>\n | Design of Coupling Beam <\/td>\n<\/tr>\n | ||||||
409<\/td>\n | Design of Coupling Beam \u2013 Design Loads <\/td>\n<\/tr>\n | ||||||
410<\/td>\n | Design of Coupling Beam \u2013 Design for Flexure <\/td>\n<\/tr>\n | ||||||
411<\/td>\n | Design of Coupling Beam \u2013 Design for Flexure <\/td>\n<\/tr>\n | ||||||
412<\/td>\n | Design of Coupling Beam \u2013 Design for Flexure <\/td>\n<\/tr>\n | ||||||
413<\/td>\n | Design of Coupling Beam \u2013 Design for Flexure <\/td>\n<\/tr>\n | ||||||
414<\/td>\n | Design of Coupling Beam \u2013 Design for Flexure <\/td>\n<\/tr>\n | ||||||
415<\/td>\n | Design of Coupling Beam \u2013 Minimum Transverse Requirements <\/td>\n<\/tr>\n | ||||||
416<\/td>\n | Design of Coupling Beam \u2013 Design for Shear <\/td>\n<\/tr>\n | ||||||
417<\/td>\n | Design of Coupling Beam \u2013 Design for Shear <\/td>\n<\/tr>\n | ||||||
418<\/td>\n | Design of Coupling Beam \u2013 Design for Shear <\/td>\n<\/tr>\n | ||||||
419<\/td>\n | Questions <\/td>\n<\/tr>\n | ||||||
420<\/td>\n | DISCLAIMER <\/td>\n<\/tr>\n | ||||||
421<\/td>\n | Chapter 5 Seismic Design of Coupled Composite Plate Shear Walls \/ Concrete Filled (C-PSW\/CF) <\/td>\n<\/tr>\n | ||||||
422<\/td>\n | Topics Covered <\/td>\n<\/tr>\n | ||||||
423<\/td>\n | Introduction to Coupled C-PSW\/CFs (SpeedCore System) <\/td>\n<\/tr>\n | ||||||
424<\/td>\n | C-PSW\/CF (SpeedCore System) <\/td>\n<\/tr>\n | ||||||
425<\/td>\n | A New Chapter in Composite Construction <\/td>\n<\/tr>\n | ||||||
427<\/td>\n | A New Chapter in Composite Construction <\/td>\n<\/tr>\n | ||||||
428<\/td>\n | Coupled Composite Plate Shear Walls \u2013 Core Walls <\/td>\n<\/tr>\n | ||||||
429<\/td>\n | A New Chapter in Composite Construction <\/td>\n<\/tr>\n | ||||||
430<\/td>\n | Section Detailing, Limits, Requirements <\/td>\n<\/tr>\n | ||||||
431<\/td>\n | Key Components of C-PSW\/CF (SpeedCore System) <\/td>\n<\/tr>\n | ||||||
432<\/td>\n | Steel Plates <\/td>\n<\/tr>\n | ||||||
433<\/td>\n | Local Buckling, Plate Slenderness, Axial Compression <\/td>\n<\/tr>\n | ||||||
434<\/td>\n | Local Buckling, Plate Slenderness, Axial Compression <\/td>\n<\/tr>\n | ||||||
435<\/td>\n | Local Buckling, Plate Slenderness, Axial Compression <\/td>\n<\/tr>\n | ||||||
436<\/td>\n | Tie Bar Size, Spacing, and Stability of Empty Modules <\/td>\n<\/tr>\n | ||||||
438<\/td>\n | Tie Bar Size, Spacing, and Stability of Empty Modules <\/td>\n<\/tr>\n | ||||||
439<\/td>\n | Recommendations for Stiffness <\/td>\n<\/tr>\n | ||||||
440<\/td>\n | Recommendations for Flexural Strength <\/td>\n<\/tr>\n | ||||||
441<\/td>\n | Recommendations for Shear Strength <\/td>\n<\/tr>\n | ||||||
442<\/td>\n | Seismic Design of Coupled Composite Plate Shear Walls \/ Concrete Filled (Capacity Design) <\/td>\n<\/tr>\n | ||||||
443<\/td>\n | Seismic Design of Coupled C-PSW\/CF <\/td>\n<\/tr>\n | ||||||
444<\/td>\n | Seismic Design of Coupled C-PSW\/CF <\/td>\n<\/tr>\n | ||||||
445<\/td>\n | Seismic Design Philosophy for Coupled C-PSW\/CF <\/td>\n<\/tr>\n | ||||||
446<\/td>\n | Seismic Design Philosophy <\/td>\n<\/tr>\n | ||||||
447<\/td>\n | Design Example <\/td>\n<\/tr>\n | ||||||
448<\/td>\n | Building Description <\/td>\n<\/tr>\n | ||||||
449<\/td>\n | Building Description <\/td>\n<\/tr>\n | ||||||
450<\/td>\n | Material Properties <\/td>\n<\/tr>\n | ||||||
451<\/td>\n | Loads & Load Combinations <\/td>\n<\/tr>\n | ||||||
452<\/td>\n | Building Description <\/td>\n<\/tr>\n | ||||||
453<\/td>\n | Seismic Forces <\/td>\n<\/tr>\n | ||||||
454<\/td>\n | Design Base Shear <\/td>\n<\/tr>\n | ||||||
455<\/td>\n | C-PSW\/CFs and Coupling Beam Dimensions <\/td>\n<\/tr>\n | ||||||
456<\/td>\n | 2D Modeling of Coupled C-PSW\/CF <\/td>\n<\/tr>\n | ||||||
457<\/td>\n | Inter-story Drift Limit <\/td>\n<\/tr>\n | ||||||
458<\/td>\n | Linear Elastic Analysis <\/td>\n<\/tr>\n | ||||||
459<\/td>\n | Design Of Coupling Beams <\/td>\n<\/tr>\n | ||||||
460<\/td>\n | Design Of Coupling Beams <\/td>\n<\/tr>\n | ||||||
461<\/td>\n | Design Of Coupling Beams <\/td>\n<\/tr>\n | ||||||
462<\/td>\n | Design Of C-PSW\/CFs <\/td>\n<\/tr>\n | ||||||
463<\/td>\n | Design Of C-PSW\/CFs <\/td>\n<\/tr>\n | ||||||
464<\/td>\n | Design Of C-PSW\/CFs <\/td>\n<\/tr>\n | ||||||
465<\/td>\n | Design Of C-PSW\/CFs <\/td>\n<\/tr>\n | ||||||
466<\/td>\n | Design Of C-PSW\/CFs <\/td>\n<\/tr>\n | ||||||
467<\/td>\n | Design Of C-PSW\/CFs <\/td>\n<\/tr>\n | ||||||
468<\/td>\n | Design Of C-PSW\/CFs <\/td>\n<\/tr>\n | ||||||
469<\/td>\n | Design Of C-PSW\/CFs (Flexural Strengt <\/td>\n<\/tr>\n | ||||||
470<\/td>\n | Design Of C-PSW\/CFs (Flexural Strength) <\/td>\n<\/tr>\n | ||||||
471<\/td>\n | P-M Interaction of C-PSW\/CFs <\/td>\n<\/tr>\n | ||||||
472<\/td>\n | Design Of C-PSW\/CFs (Shear Strength) <\/td>\n<\/tr>\n | ||||||
473<\/td>\n | Coupling Beam-to-Wall Connection <\/td>\n<\/tr>\n | ||||||
474<\/td>\n | Coupling Beam-to-Wall Connection <\/td>\n<\/tr>\n | ||||||
475<\/td>\n | Coupling Beam-to-Wall Connection <\/td>\n<\/tr>\n | ||||||
476<\/td>\n | Coupling Beam-to-Wall Connection <\/td>\n<\/tr>\n | ||||||
477<\/td>\n | Check Shear Strength of Coupling Beam Flange Plate <\/td>\n<\/tr>\n | ||||||
478<\/td>\n | Check Shear Strength of Wall Web Plates <\/td>\n<\/tr>\n | ||||||
479<\/td>\n | Check Ductile Behavior of Flange Plates <\/td>\n<\/tr>\n | ||||||
480<\/td>\n | Calculate Forces in Web Plates <\/td>\n<\/tr>\n | ||||||
481<\/td>\n | Calculate Force Demand on C-Shaped Weld <\/td>\n<\/tr>\n | ||||||
482<\/td>\n | Calculate Capacity of C-Shaped Weld <\/td>\n<\/tr>\n | ||||||
483<\/td>\n | Calculate Capacity of C-Shaped Weld <\/td>\n<\/tr>\n | ||||||
484<\/td>\n | Questions <\/td>\n<\/tr>\n | ||||||
485<\/td>\n | DISCLAIMER <\/td>\n<\/tr>\n | ||||||
486<\/td>\n | Chapter 6 Cross-Laminated Timber (CLT) Shear Walls <\/td>\n<\/tr>\n | ||||||
487<\/td>\n | 6.1Overview -Cross-Laminated Timber (CLT) Shear Wall Example <\/td>\n<\/tr>\n | ||||||
488<\/td>\n | 6.1Overview -Useful Design Aid Resources <\/td>\n<\/tr>\n | ||||||
489<\/td>\n | 6.2Background <\/td>\n<\/tr>\n | ||||||
490<\/td>\n | 6.2Background <\/td>\n<\/tr>\n | ||||||
491<\/td>\n | 6.2Background <\/td>\n<\/tr>\n | ||||||
492<\/td>\n | 6.2Background <\/td>\n<\/tr>\n | ||||||
493<\/td>\n | 6.2Background <\/td>\n<\/tr>\n | ||||||
494<\/td>\n | 6.2Background <\/td>\n<\/tr>\n | ||||||
495<\/td>\n | 6.2Background <\/td>\n<\/tr>\n | ||||||
496<\/td>\n | 6.2Background <\/td>\n<\/tr>\n | ||||||
497<\/td>\n | 6.2Background <\/td>\n<\/tr>\n | ||||||
498<\/td>\n | 6.2Background <\/td>\n<\/tr>\n | ||||||
499<\/td>\n | 6.2Background <\/td>\n<\/tr>\n | ||||||
500<\/td>\n | 6.3Cross-Laminated T imber Shear Wall Example Description <\/td>\n<\/tr>\n | ||||||
501<\/td>\n | 6.3Cross-Laminated Timber Shear Wall Example Description <\/td>\n<\/tr>\n | ||||||
502<\/td>\n | 6.3Cross-Laminated Timber Shear Wall Example Description <\/td>\n<\/tr>\n | ||||||
503<\/td>\n | 6.4Seismic Forces <\/td>\n<\/tr>\n | ||||||
504<\/td>\n | 6.4Seismic Forces <\/td>\n<\/tr>\n | ||||||
505<\/td>\n | 6.5.1 Shear Capacity of Prescribed Connectors <\/td>\n<\/tr>\n | ||||||
506<\/td>\n | 6.5.1 Shear Capacity of Prescribed Connectors <\/td>\n<\/tr>\n | ||||||
507<\/td>\n | 6.5.1Shear Capacity of Prescribed Connectors <\/td>\n<\/tr>\n | ||||||
508<\/td>\n | 6.5.2 Shear Capacity of CLT Panel <\/td>\n<\/tr>\n | ||||||
509<\/td>\n | 6.6.1 CLT Shear Wall Hold-down Design <\/td>\n<\/tr>\n | ||||||
510<\/td>\n | 6.6.1 CLT Shear Wall Hold-down Design <\/td>\n<\/tr>\n | ||||||
511<\/td>\n | 6.6.1 CLT Shear Wall Hold-down Design <\/td>\n<\/tr>\n | ||||||
512<\/td>\n | 6.6.1 CLT Shear Wall Hold-down Design <\/td>\n<\/tr>\n | ||||||
513<\/td>\n | 6.6.2 CLT Shear Wall Compression Zone <\/td>\n<\/tr>\n | ||||||
514<\/td>\n | 6.6.2 CLT Shear Wall Compression Zone <\/td>\n<\/tr>\n | ||||||
515<\/td>\n | 6.7 CLT Shear Wall Deflection <\/td>\n<\/tr>\n | ||||||
516<\/td>\n | 6.7 CLT Shear Wall Deflection <\/td>\n<\/tr>\n | ||||||
517<\/td>\n | 6.8References <\/td>\n<\/tr>\n | ||||||
518<\/td>\n | Questions <\/td>\n<\/tr>\n | ||||||
519<\/td>\n | DISCLAIMER <\/td>\n<\/tr>\n | ||||||
520<\/td>\n | Chapter 7 Horizontal Diaphragm Design <\/td>\n<\/tr>\n | ||||||
521<\/td>\n | What\u2019s New in Diaphragm Design Provisions <\/td>\n<\/tr>\n | ||||||
522<\/td>\n | What\u2019s New in Diaphragm Design Provisions <\/td>\n<\/tr>\n | ||||||
523<\/td>\n | Why Are Diaphragm Design Provisions Changing? <\/td>\n<\/tr>\n | ||||||
524<\/td>\n | Diaphragm Design Presentation Outline \u2013 Part 1 <\/td>\n<\/tr>\n | ||||||
525<\/td>\n | Diaphragm Design Presentation Outline \u2013 Part 2 <\/td>\n<\/tr>\n | ||||||
526<\/td>\n | Overview of Diaphragm Design <\/td>\n<\/tr>\n | ||||||
527<\/td>\n | Overview of Diaphragm Design <\/td>\n<\/tr>\n | ||||||
528<\/td>\n | Overview of Diaphragm Design <\/td>\n<\/tr>\n | ||||||
529<\/td>\n | Overview of Diaphragm Design <\/td>\n<\/tr>\n | ||||||
530<\/td>\n | Overview of Diaphragm Design <\/td>\n<\/tr>\n | ||||||
531<\/td>\n | Overview of Diaphragm Design \u2013 Transfer Forces <\/td>\n<\/tr>\n | ||||||
532<\/td>\n | Overview of Diaphragm Design -NEHRP Diaphragm Tech Bri efs <\/td>\n<\/tr>\n | ||||||
533<\/td>\n | Overview of Diaphragm Design -NEHRP Diaphragm Tech Briefs <\/td>\n<\/tr>\n | ||||||
534<\/td>\n | Diaphragm Seismic Design Methods <\/td>\n<\/tr>\n | ||||||
535<\/td>\n | Diaphragm Seismic Design Methods <\/td>\n<\/tr>\n | ||||||
536<\/td>\n | Diaphragm Seismic Design Methods <\/td>\n<\/tr>\n | ||||||
537<\/td>\n | Diaphragm Seismic Design Methods <\/td>\n<\/tr>\n | ||||||
538<\/td>\n | Diaphragm Seismic Design Methods <\/td>\n<\/tr>\n | ||||||
539<\/td>\n | Diaphragm Seismic Design Methods <\/td>\n<\/tr>\n | ||||||
540<\/td>\n | Introduction t o Section 12.10.3 Alternative Design Provisions <\/td>\n<\/tr>\n | ||||||
541<\/td>\n | Introduction t o Section 12.10.3 Alternative Design Provisions <\/td>\n<\/tr>\n | ||||||
542<\/td>\n | Introduction to Section 12.10.3 Alternative Design Provisions <\/td>\n<\/tr>\n | ||||||
543<\/td>\n | Introduction to Section 12.10.3 Alternative Design Provisions \u2013 Part 1 <\/td>\n<\/tr>\n | ||||||
544<\/td>\n | Introduction to Section 12.10.3 Alternative Design Provisions \u2013 Part 2 <\/td>\n<\/tr>\n | ||||||
545<\/td>\n | Introduction t o Section 12.10.4 Alternative RWFD Design Method <\/td>\n<\/tr>\n | ||||||
546<\/td>\n | Introduction to Section 12.10.4 Alternative RWFD Design Method <\/td>\n<\/tr>\n | ||||||
547<\/td>\n | Introduction to Section 12.10.4 Alternative RWFD Design Method <\/td>\n<\/tr>\n | ||||||
548<\/td>\n | Introduction t o Section 12.10.4 Alternative RWFD Design Method <\/td>\n<\/tr>\n | ||||||
549<\/td>\n | Example Multi-Story Steel Building with Steel Deck Diaphragms <\/td>\n<\/tr>\n | ||||||
550<\/td>\n | Example Multi-Story Steel Building with Steel Deck Diaphragms <\/td>\n<\/tr>\n | ||||||
551<\/td>\n | Example Multi-Story Steel Building with Steel Deck Diaphragms <\/td>\n<\/tr>\n | ||||||
552<\/td>\n | Example Multi-Story Steel Building with Steel Deck Diaphragms <\/td>\n<\/tr>\n | ||||||
553<\/td>\n | Example Multi-Story Steel Building with Steel Deck Diaphragms <\/td>\n<\/tr>\n | ||||||
554<\/td>\n | Example Multi-Story Steel Building with Steel Deck Diaphragms <\/td>\n<\/tr>\n | ||||||
555<\/td>\n | Example Multi-Story Steel Building with Steel Deck Diaphragms <\/td>\n<\/tr>\n | ||||||
556<\/td>\n | Example Multi-Story Steel Building with Steel Deck Diaphragms <\/td>\n<\/tr>\n | ||||||
557<\/td>\n | Example Multi-Story Steel Building with Steel Deck Diaphragms <\/td>\n<\/tr>\n | ||||||
558<\/td>\n | Example Multi-Story Steel Building with Steel Deck Diaphragms <\/td>\n<\/tr>\n | ||||||
559<\/td>\n | Example Multi-Story Steel Building with Steel Deck Diaphragms <\/td>\n<\/tr>\n | ||||||
560<\/td>\n | Example Multi-Story Steel Building with Steel Deck Diaphragms <\/td>\n<\/tr>\n | ||||||
561<\/td>\n | Example Multi-Story Steel Building with Steel Deck Diaphragms Traditional Design Method (12.10.1 & 12.10.2) <\/td>\n<\/tr>\n | ||||||
562<\/td>\n | Traditional Design Method <\/td>\n<\/tr>\n | ||||||
563<\/td>\n | Traditional Design Method <\/td>\n<\/tr>\n | ||||||
564<\/td>\n | Traditional Design Method <\/td>\n<\/tr>\n | ||||||
565<\/td>\n | Traditional Design Method <\/td>\n<\/tr>\n | ||||||
566<\/td>\n | Traditional Design Method <\/td>\n<\/tr>\n | ||||||
567<\/td>\n | Traditional Design Method <\/td>\n<\/tr>\n | ||||||
568<\/td>\n | Traditional Design Method <\/td>\n<\/tr>\n | ||||||
569<\/td>\n | Traditional Design Method <\/td>\n<\/tr>\n | ||||||
570<\/td>\n | Traditional Design Method <\/td>\n<\/tr>\n | ||||||
571<\/td>\n | Traditional Design Method <\/td>\n<\/tr>\n | ||||||
572<\/td>\n | Traditional Design Method <\/td>\n<\/tr>\n | ||||||
573<\/td>\n | Traditional Design Method <\/td>\n<\/tr>\n | ||||||
574<\/td>\n | Traditional Design Method <\/td>\n<\/tr>\n | ||||||
575<\/td>\n | Example Multi-Story Steel Building with Steel Deck Diaphragms <\/td>\n<\/tr>\n | ||||||
576<\/td>\n | Alternative Design Provisions (Section 12.10.3) -Introduction <\/td>\n<\/tr>\n | ||||||
577<\/td>\n | Alternative Design Method (Section 12.10.3) -Introduction <\/td>\n<\/tr>\n | ||||||
578<\/td>\n | Example Multi-Story Steel Building with Steel Deck Diaphragms <\/td>\n<\/tr>\n | ||||||
579<\/td>\n | Alternative Design Method (Section 12.10.3) <\/td>\n<\/tr>\n | ||||||
580<\/td>\n | Alternative Design Method (Section 12.10.3) <\/td>\n<\/tr>\n | ||||||
581<\/td>\n | Alternative Design Method (Section 12.10.3) <\/td>\n<\/tr>\n | ||||||
582<\/td>\n | Alternative Design Method (Section 12.10.3) <\/td>\n<\/tr>\n | ||||||
583<\/td>\n | Alternative Design Method (Section 12.10.3) <\/td>\n<\/tr>\n | ||||||
584<\/td>\n | Alternative Design Method (Section 12.10.3) <\/td>\n<\/tr>\n | ||||||
585<\/td>\n | Alternative Design Method (Section 12.10.3) <\/td>\n<\/tr>\n | ||||||
586<\/td>\n | Alternative Design Method (Section 12.10.3) <\/td>\n<\/tr>\n | ||||||
587<\/td>\n | Alternative Design Method (Section 12.10.3) <\/td>\n<\/tr>\n | ||||||
588<\/td>\n | Alternative Design Method (Section 12.10.3) <\/td>\n<\/tr>\n | ||||||
589<\/td>\n | Alternative Design Method (Section 12.10.3) <\/td>\n<\/tr>\n | ||||||
590<\/td>\n | Alternative Design Method (Section 12.10.3) <\/td>\n<\/tr>\n | ||||||
591<\/td>\n | Alternative Design Method (Section 12.10.3) <\/td>\n<\/tr>\n | ||||||
592<\/td>\n | Alternative Design Method (Section 12.10.3) <\/td>\n<\/tr>\n | ||||||
593<\/td>\n | Alternative Design Method (Section 12.10.3) <\/td>\n<\/tr>\n | ||||||
594<\/td>\n | Alternative Design Method (Section 12.10.3) <\/td>\n<\/tr>\n | ||||||
595<\/td>\n | Alternative Design Method (Section 12.10.3) <\/td>\n<\/tr>\n | ||||||
596<\/td>\n | Alternative Design Method (Section 12.10.3) <\/td>\n<\/tr>\n | ||||||
597<\/td>\n | Alternative Design Method (Section 12.10.3) <\/td>\n<\/tr>\n | ||||||
598<\/td>\n | Example Multi-Story Steel Building with Steel Deck Diaphragms <\/td>\n<\/tr>\n | ||||||
599<\/td>\n | Comparison of Design Me thods <\/td>\n<\/tr>\n | ||||||
600<\/td>\n | Comparison of Design Me thods <\/td>\n<\/tr>\n | ||||||
601<\/td>\n | Comparison of Design Me thods <\/td>\n<\/tr>\n | ||||||
602<\/td>\n | Part 1 Closing Comments <\/td>\n<\/tr>\n | ||||||
603<\/td>\n | Questions <\/td>\n<\/tr>\n | ||||||
604<\/td>\n | DISCLAIMER <\/td>\n<\/tr>\n | ||||||
605<\/td>\n | Chapter 7 \u2013 Part 2 Horizontal Diaphragm Design <\/td>\n<\/tr>\n | ||||||
606<\/td>\n | Example One-Story RWFD Building with Bare Steel Deck Diaphragm <\/td>\n<\/tr>\n | ||||||
607<\/td>\n | Diaphragm Design Presentation Outline \u2013 Part 2 <\/td>\n<\/tr>\n | ||||||
608<\/td>\n | Example One-Story RWFD Building with Steel Deck Diaphragm <\/td>\n<\/tr>\n | ||||||
609<\/td>\n | Example One-Story RWFD Building with Steel Deck Diaphragm <\/td>\n<\/tr>\n | ||||||
610<\/td>\n | Example One-Story RWFD Building with Steel Deck Diaphragm <\/td>\n<\/tr>\n | ||||||
611<\/td>\n | Example One-Story RWFD Building with Steel Deck Diaphragm <\/td>\n<\/tr>\n | ||||||
612<\/td>\n | Example One-Story RWFD Building with Steel Deck Diaphragm <\/td>\n<\/tr>\n | ||||||
613<\/td>\n | Example One-Story RWFD Building with Steel Deck Diaphragm <\/td>\n<\/tr>\n | ||||||
614<\/td>\n | Example One-Story RWFD Building with Steel Deck Diaphragm <\/td>\n<\/tr>\n | ||||||
615<\/td>\n | Traditional Design Method <\/td>\n<\/tr>\n | ||||||
616<\/td>\n | Traditional Design Method <\/td>\n<\/tr>\n | ||||||
617<\/td>\n | Traditional Design Method <\/td>\n<\/tr>\n | ||||||
618<\/td>\n | Traditional Design Method <\/td>\n<\/tr>\n | ||||||
619<\/td>\n | Traditional Design Method <\/td>\n<\/tr>\n | ||||||
620<\/td>\n | Traditional Design Method <\/td>\n<\/tr>\n | ||||||
621<\/td>\n | Traditional Design Method <\/td>\n<\/tr>\n | ||||||
622<\/td>\n | Example One-Story RWFD Building with Steel Deck Diaphragm <\/td>\n<\/tr>\n | ||||||
623<\/td>\n | Diaphragm Seismic Design Methods <\/td>\n<\/tr>\n | ||||||
624<\/td>\n | Alternative RWFD Design Method (Meeting Special Seismic Detailing Requirements, 12.10.4) <\/td>\n<\/tr>\n | ||||||
625<\/td>\n | Alternative RWFD Design Method (Meeting Special Seismic Detailing Requirements, 12.10.4) <\/td>\n<\/tr>\n | ||||||
626<\/td>\n | Alternative RWFD Design Method (Meeting Special Seismic Detailing Requirements, 12.10.4) <\/td>\n<\/tr>\n | ||||||
627<\/td>\n | Alternative RWFD Design Method (Meeting Special Seismic Detailing Requirements, 12.10.4) <\/td>\n<\/tr>\n | ||||||
628<\/td>\n | Alternative RWFD Design Method (Meeting Special Seismic Detailing Requirements, 12.10.4) <\/td>\n<\/tr>\n | ||||||
629<\/td>\n | Alternative RWFD Design Method (Meeting Special Seismic Detailing Requirements, 12.10.4) <\/td>\n<\/tr>\n | ||||||
630<\/td>\n | Alternative RWFD Design Method (Meeting Special Seismic Detailing Requirements AISI S400 Section F3.5.1) <\/td>\n<\/tr>\n | ||||||
631<\/td>\n | Alternative RWFD Design Method (Meeting Special Seismic Detailing Requirements AISI S400 Section F3.5.1) <\/td>\n<\/tr>\n | ||||||
632<\/td>\n | Alternative RWFD Design Method (Meeting Special Seismic Detailing Requirements AISI S400 Section F3.5.1) <\/td>\n<\/tr>\n | ||||||
633<\/td>\n | Alternative RWFD Design Method (Meeting Special Seismic Detailing Requirements, 12.10.4) <\/td>\n<\/tr>\n | ||||||
634<\/td>\n | Alternative RWFD Design Method (Meeting Special Seismic Detailing Requirements, 12.10.4) <\/td>\n<\/tr>\n | ||||||
635<\/td>\n | Alternative RWFD Design Method (Meeting Special Seismic Detailing Requirements, 12.10.4) <\/td>\n<\/tr>\n | ||||||
636<\/td>\n | Alternative RWFD Design Method (Meeting Special Seismic Detailing Requirements, 12.10.4) <\/td>\n<\/tr>\n | ||||||
637<\/td>\n | Alternative RWFD Design Method (Meeting Special Seismic Detailing Requirements, 12.10.4) <\/td>\n<\/tr>\n | ||||||
638<\/td>\n | Alternative RWFD Design Method (Meeting Special Seismic Detailing Requirements, 12.10.4) <\/td>\n<\/tr>\n | ||||||
639<\/td>\n | Alternative RWFD Design Method (Meeting Special Seismic Detailing Requirements, 12.10.4) <\/td>\n<\/tr>\n | ||||||
640<\/td>\n | Alternative RWFD Design Method (Meeting Special Seismic Detailing Requirements, 12.10.4) <\/td>\n<\/tr>\n | ||||||
641<\/td>\n | Alternative RWFD Design Method (Meeting Special Seismic Detailing Requirements, 12.10.4) <\/td>\n<\/tr>\n | ||||||
642<\/td>\n | Alternative RWFD Design Method (Meeting Special Seismic Detailing Requirements, 12.10.4) <\/td>\n<\/tr>\n | ||||||
643<\/td>\n | Example One-Story RWFD Building with Steel Deck Diaphragm Alternative RWFD Design Method (12.10.4) NOT Meeting AISI S400 Special Seismic Detailing Requirements <\/td>\n<\/tr>\n | ||||||
644<\/td>\n | Alternative RWFD Design Method (NOT Meeting Special Seismic Detailing Requirements, 12.10.4) <\/td>\n<\/tr>\n | ||||||
645<\/td>\n | Alternative RWFD Design Method (NOT Meeting Special Seismic Detailing Requirements, 12.10.4) <\/td>\n<\/tr>\n | ||||||
646<\/td>\n | Alternative RWFD Design Method (NOT Meeting Special Seismic Detailing Requirements, 12.10.4) <\/td>\n<\/tr>\n | ||||||
647<\/td>\n | Alternative RWFD Design Method (NOT Meeting Special Seismic Detailing Requirements, 12.10.4) <\/td>\n<\/tr>\n | ||||||
648<\/td>\n | Alternative RWFD Design Method (NOT Meeting Special Seismic Detailing Requirements, 12.10.4) <\/td>\n<\/tr>\n | ||||||
649<\/td>\n | Alternative RWFD Design Method (NOT Meeting Special Seismic Detailing Requirements, 12.10.4) <\/td>\n<\/tr>\n | ||||||
650<\/td>\n | Alternative RWFD Design Method (NOT Meeting Special Seismic Detailing Requirements, 12.10.4) <\/td>\n<\/tr>\n | ||||||
651<\/td>\n | Alternative RWFD Design Method (NOT Meeting Special Seismic Detailing Requirements, 12.10.4) <\/td>\n<\/tr>\n | ||||||
652<\/td>\n | Alternative RWFD Design Method (NOT Meeting Special Seismic Detailing Requirements, 12.10.4) <\/td>\n<\/tr>\n | ||||||
653<\/td>\n | Alternative RWFD Design Method (NOT Meeting Special Seismic Detailing Requirements, 12.10.4) <\/td>\n<\/tr>\n | ||||||
654<\/td>\n | Alternative RWFD Design Method (NOT Meeting Special Seismic Detailing Requirements, 12.10.4) <\/td>\n<\/tr>\n | ||||||
655<\/td>\n | Alternative RWFD Design Method (Meeting Special Seismic Detailing Requirements, 12.10.4) <\/td>\n<\/tr>\n | ||||||
656<\/td>\n | Alternative RWFD Design Method (NOT Meeting Special Seismic Detailing Requirements, 12.10.4) <\/td>\n<\/tr>\n | ||||||
657<\/td>\n | Alternative RWFD Design Method (NOT Meeting Special Seismic Detailing Requirements, 12.10.4) <\/td>\n<\/tr>\n | ||||||
658<\/td>\n | Alternative RWFD Design Method (NOT Meeting Special Seismic Detailing Requirements, 12.10.4) <\/td>\n<\/tr>\n | ||||||
659<\/td>\n | Example One-Story RWFD Building with Steel Deck Diaphragm <\/td>\n<\/tr>\n | ||||||
660<\/td>\n | Comparison of Design Me thods <\/td>\n<\/tr>\n | ||||||
661<\/td>\n | Comparison of Design Me thods <\/td>\n<\/tr>\n | ||||||
662<\/td>\n | Part 2 -Closing Comments <\/td>\n<\/tr>\n | ||||||
663<\/td>\n | Questions <\/td>\n<\/tr>\n | ||||||
664<\/td>\n | DISCLAIMER <\/td>\n<\/tr>\n | ||||||
665<\/td>\n | Chapter 8 Nonstructural Components: Fundamentals and Design Examples <\/td>\n<\/tr>\n | ||||||
666<\/td>\n | Learning Objectives <\/td>\n<\/tr>\n | ||||||
667<\/td>\n | Outline of Presentation <\/td>\n<\/tr>\n | ||||||
668<\/td>\n | Fundamentals <\/td>\n<\/tr>\n | ||||||
669<\/td>\n | Nonstructural Components <\/td>\n<\/tr>\n | ||||||
670<\/td>\n | Relative Costs <\/td>\n<\/tr>\n | ||||||
671<\/td>\n | Anticipated Behavior of Noncritical Nonstructural Components From ASCE\/SEI 7-22 Sections C13.1 and C13.1.3 <\/td>\n<\/tr>\n | ||||||
672<\/td>\n | ASCE\/SEI 7-22 Chapter 13: Seismic Design Requirements for Nonstructural Components <\/td>\n<\/tr>\n | ||||||
673<\/td>\n | Code Development Process for Recent Revisions to Nonstructural Provisions <\/td>\n<\/tr>\n | ||||||
674<\/td>\n | Key Terminology <\/td>\n<\/tr>\n | ||||||
675<\/td>\n | Parameters Influencing Nonstructural Response <\/td>\n<\/tr>\n | ||||||
676<\/td>\n | Seismic Force-Resisting System <\/td>\n<\/tr>\n | ||||||
677<\/td>\n | Building Modal Periods, Tn,bldg <\/td>\n<\/tr>\n | ||||||
678<\/td>\n | Component Period, Tcomp, and Building Period Resonance <\/td>\n<\/tr>\n | ||||||
679<\/td>\n | Sources of Component and\/or Anchorage Ductility <\/td>\n<\/tr>\n | ||||||
680<\/td>\n | Component\/Anchorage Ductility, \u03bccomp <\/td>\n<\/tr>\n | ||||||
681<\/td>\n | ATC-12O Proposed Seismic Design Force Equation <\/td>\n<\/tr>\n | ||||||
682<\/td>\n | Evolution of Seismic Design Force Equation <\/td>\n<\/tr>\n | ||||||
683<\/td>\n | PFA\/PGA (Hf) Amplification Factor <\/td>\n<\/tr>\n | ||||||
684<\/td>\n | Building Ductility, R\u03bc <\/td>\n<\/tr>\n | ||||||
685<\/td>\n | PCA\/PFA (CAR) <\/td>\n<\/tr>\n | ||||||
686<\/td>\n | Unlikely vs. Likely to be in Resonance <\/td>\n<\/tr>\n | ||||||
687<\/td>\n | Component Resonance Ductility Factor, CAR, and Component Strength, Rpo <\/td>\n<\/tr>\n | ||||||
688<\/td>\n | Alternative Procedure for Nonlinear Response History Analysis <\/td>\n<\/tr>\n | ||||||
689<\/td>\n | Equipment Support Structures and Platforms and Distribution System Supports <\/td>\n<\/tr>\n | ||||||
690<\/td>\n | Accommodation of Seismic Relative Displacements <\/td>\n<\/tr>\n | ||||||
691<\/td>\n | Development of Nonstructural Seismic Design Force Equations <\/td>\n<\/tr>\n | ||||||
692<\/td>\n | Proposed Equations in NIST GCR 18-917-43 <\/td>\n<\/tr>\n | ||||||
693<\/td>\n | Proposed Equations in NIST GCR 18-917-43 <\/td>\n<\/tr>\n | ||||||
694<\/td>\n | Revisions in the 2020 NEHRP Provisions <\/td>\n<\/tr>\n | ||||||
695<\/td>\n | Revisions in the 2020 NEHRP Provisions <\/td>\n<\/tr>\n | ||||||
696<\/td>\n | Revisions for ASCE\/SEI 7-22 <\/td>\n<\/tr>\n | ||||||
697<\/td>\n | Significant Changes from ASCE\/SEI 7-16 to ASCE\/SEI 7-22 <\/td>\n<\/tr>\n | ||||||
698<\/td>\n | Significant Changes from ASCE\/SEI 7-16 to ASCE\/SEI 7-22 (cont.) <\/td>\n<\/tr>\n | ||||||
699<\/td>\n | Minor Changes from ASCE\/SEI 7-16 to ASCE\/SEI 7-22 <\/td>\n<\/tr>\n | ||||||
700<\/td>\n | Unchanged in ASCE\/SEI 7-22 (same as ASCE\/SEI 7-16) <\/td>\n<\/tr>\n | ||||||
701<\/td>\n | Questions? <\/td>\n<\/tr>\n | ||||||
702<\/td>\n | Design Examples <\/td>\n<\/tr>\n | ||||||
703<\/td>\n | Design Examples for Architectural Components <\/td>\n<\/tr>\n | ||||||
704<\/td>\n | Architectural Concrete Wall Panel <\/td>\n<\/tr>\n | ||||||
705<\/td>\n | Architectural Concrete Wall Panel Description <\/td>\n<\/tr>\n | ||||||
706<\/td>\n | Architectural Concrete Wall Panel Description <\/td>\n<\/tr>\n | ||||||
707<\/td>\n | Providing Gravity Support and Accommodating Story Drift in Cladding <\/td>\n<\/tr>\n | ||||||
708<\/td>\n | Rocking Cladding Connection System <\/td>\n<\/tr>\n | ||||||
709<\/td>\n | Rocking Cladding Connection System <\/td>\n<\/tr>\n | ||||||
710<\/td>\n | Window Framing System Racking Mechanism <\/td>\n<\/tr>\n | ||||||
711<\/td>\n | ASCE\/SEI 7-22 Parameters and Coefficients <\/td>\n<\/tr>\n | ||||||
712<\/td>\n | ASCE\/SEI 7-22 Parameters and Coefficients <\/td>\n<\/tr>\n | ||||||
713<\/td>\n | ASCE\/SEI 7-22 Parameters and Coefficients <\/td>\n<\/tr>\n | ||||||
714<\/td>\n | ASCE\/SEI 7-22 Parameters and Coefficients <\/td>\n<\/tr>\n | ||||||
715<\/td>\n | Applicable Requirements <\/td>\n<\/tr>\n | ||||||
716<\/td>\n | Spandrel Panel Layout <\/td>\n<\/tr>\n | ||||||
717<\/td>\n | Prescribed Seismic Forces: Wall Element and Body of Wall Panel Connections <\/td>\n<\/tr>\n | ||||||
718<\/td>\n | Prescribed Seismic Forces: Wall Element and Body of Wall Panel Connections <\/td>\n<\/tr>\n | ||||||
719<\/td>\n | Proportioning and Design: Wall Element and Body of Wall Panel Connections <\/td>\n<\/tr>\n | ||||||
720<\/td>\n | Proportioning and Design: W all Element and Body of Wall Panel Connections <\/td>\n<\/tr>\n | ||||||
721<\/td>\n | Proportioning and Design: Wall Element and Body of Wall Panel Connections <\/td>\n<\/tr>\n | ||||||
722<\/td>\n | Prescribed Seismic Forces: Fasteners of the Connecting System <\/td>\n<\/tr>\n | ||||||
723<\/td>\n | Prescribed Seismic Forces: Fasteners of the Connecting System <\/td>\n<\/tr>\n | ||||||
724<\/td>\n | Proportioning and Design: Fasteners of the Connecting System <\/td>\n<\/tr>\n | ||||||
725<\/td>\n | Concrete Cover Layout and Seismic Forces <\/td>\n<\/tr>\n | ||||||
726<\/td>\n | Prescribed Seismic Displacements <\/td>\n<\/tr>\n | ||||||
727<\/td>\n | Prescribed Seismic Displacements: Accommodating Drift in Glazing <\/td>\n<\/tr>\n | ||||||
728<\/td>\n | Prescribed Seismic Displacements: Accommodating Drift in Glazing <\/td>\n<\/tr>\n | ||||||
729<\/td>\n | Prescribed Seismic Displacements: Accommodating Drift in Glazing <\/td>\n<\/tr>\n | ||||||
730<\/td>\n | Questions? <\/td>\n<\/tr>\n | ||||||
731<\/td>\n | Seismic Analysis of Egress Stairs <\/td>\n<\/tr>\n | ||||||
732<\/td>\n | Egress Stairs Description <\/td>\n<\/tr>\n | ||||||
733<\/td>\n | Egress Stairs Description <\/td>\n<\/tr>\n | ||||||
734<\/td>\n | ASCE\/SEI 7-22 Parameters and Coefficients <\/td>\n<\/tr>\n | ||||||
735<\/td>\n | ASCE\/SEI 7-22 Parameters and Coefficients <\/td>\n<\/tr>\n | ||||||
736<\/td>\n | ASCE\/SEI 7-22 Parameters and Coefficients <\/td>\n<\/tr>\n | ||||||
737<\/td>\n | ASCE\/SEI 7-22 Parameters and Coefficients <\/td>\n<\/tr>\n | ||||||
738<\/td>\n | Applicable Requirements <\/td>\n<\/tr>\n | ||||||
739<\/td>\n | Applicable Requirements (Continued) <\/td>\n<\/tr>\n | ||||||
740<\/td>\n | Prescribed Seismic Forces: Egress Stairways not Part of the Building Seismic Force-Resisting System <\/td>\n<\/tr>\n | ||||||
741<\/td>\n | Prescribed Seismic Forces: Egress Stairways not Part of the Building Seismic Force-Resisting System <\/td>\n<\/tr>\n | ||||||
742<\/td>\n | Prescribed Seismic Forces: Egress Stairways not Part of the Building Seismic Force-Resisting System <\/td>\n<\/tr>\n | ||||||
743<\/td>\n | Prescribed Seismic Forces: Egress Stairways not Part of the Building Seismic Force-Resisting System <\/td>\n<\/tr>\n | ||||||
744<\/td>\n | Increased Seismic Forces for Fasteners and Attachments <\/td>\n<\/tr>\n | ||||||
745<\/td>\n | Prescribed Seismic Forces: Egress Stairs and Ramp Fasteners and Attachments <\/td>\n<\/tr>\n | ||||||
746<\/td>\n | Prescribed Seismic Forces: Egress Stairs and Ramp Fasteners and Attachments <\/td>\n<\/tr>\n | ||||||
747<\/td>\n | Prescribed Seismic Displacements <\/td>\n<\/tr>\n | ||||||
748<\/td>\n | Stairway Design Load Combinations <\/td>\n<\/tr>\n | ||||||
749<\/td>\n | Questions? <\/td>\n<\/tr>\n | ||||||
750<\/td>\n | HVAC Fan Unit Support <\/td>\n<\/tr>\n | ||||||
751<\/td>\n | HVAC Fan Unit Support Description <\/td>\n<\/tr>\n | ||||||
752<\/td>\n | HVAC Fan Unit Support Description <\/td>\n<\/tr>\n | ||||||
753<\/td>\n | ASCE\/SEI 7-22 Parameters and Coefficients <\/td>\n<\/tr>\n | ||||||
754<\/td>\n | ASCE\/SEI 7-22 Parameters and Coefficients <\/td>\n<\/tr>\n | ||||||
755<\/td>\n | ASCE\/SEI 7-22 Parameters and Coefficients <\/td>\n<\/tr>\n | ||||||
756<\/td>\n | ASCE\/SEI 7-22 Parameters and Coefficients <\/td>\n<\/tr>\n | ||||||
757<\/td>\n | Applicable Requirements <\/td>\n<\/tr>\n | ||||||
758<\/td>\n | Applicable Requirements (Continued) <\/td>\n<\/tr>\n | ||||||
759<\/td>\n | Prescribed Seismic Forces: Case 1: Direct Attachment to Structure <\/td>\n<\/tr>\n | ||||||
760<\/td>\n | Prescribed Seismic Forces: Case 1: Direct Attachment to Structure <\/td>\n<\/tr>\n | ||||||
761<\/td>\n | Proportioning and Design:Case 1: Direct Attachment to Structure <\/td>\n<\/tr>\n | ||||||
762<\/td>\n | Proportioning and Design:Case 1: Direct Attachment to Structure <\/td>\n<\/tr>\n | ||||||
763<\/td>\n | Prescribed Seismic Forces: Case 2: Support on Vibration Isolation Springs <\/td>\n<\/tr>\n | ||||||
764<\/td>\n | Prescribed Seismic Forces: Case 2: Support on Vibration Isolation Springs <\/td>\n<\/tr>\n | ||||||
765<\/td>\n | Proportioning and Design:Case 2: Support on Vibration Isolation Springs <\/td>\n<\/tr>\n | ||||||
766<\/td>\n | Proportioning and Design:Case 2: Support on Vibration Isolation Springs <\/td>\n<\/tr>\n | ||||||
767<\/td>\n | Proportioning and Design:Case 2: Support on Vibration Isolation Springs <\/td>\n<\/tr>\n | ||||||
768<\/td>\n | Proportioning and Design:Case 2: Support on Vibration Isolation Springs <\/td>\n<\/tr>\n | ||||||
769<\/td>\n | Questions? <\/td>\n<\/tr>\n | ||||||
770<\/td>\n | Piping System Seismic Design <\/td>\n<\/tr>\n | ||||||
771<\/td>\n | Piping System Description <\/td>\n<\/tr>\n | ||||||
772<\/td>\n | Piping System Description <\/td>\n<\/tr>\n | ||||||
773<\/td>\n | Piping System Description <\/td>\n<\/tr>\n | ||||||
774<\/td>\n | Piping System Description: Bracing <\/td>\n<\/tr>\n | ||||||
775<\/td>\n | Piping System Description: System Configuration <\/td>\n<\/tr>\n | ||||||
776<\/td>\n | Piping System Description: System Configuration <\/td>\n<\/tr>\n | ||||||
777<\/td>\n | Piping System Description: System Configuration <\/td>\n<\/tr>\n | ||||||
778<\/td>\n | ASCE\/SEI 7-22 Parameters and Coefficients <\/td>\n<\/tr>\n | ||||||
779<\/td>\n | ASCE\/SEI 7-22 Parameters and Coefficients <\/td>\n<\/tr>\n | ||||||
780<\/td>\n | Piping and Braces Parameters <\/td>\n<\/tr>\n | ||||||
781<\/td>\n | ASCE\/SEI 7-22 Parameters and Coefficients <\/td>\n<\/tr>\n | ||||||
782<\/td>\n | Applicable Requirements <\/td>\n<\/tr>\n | ||||||
783<\/td>\n | Prescribed Seismic Forces: Piping System Design <\/td>\n<\/tr>\n | ||||||
784<\/td>\n | Proportioning and Design: Piping System Design <\/td>\n<\/tr>\n | ||||||
785<\/td>\n | Proportioning and Design: Piping System Design <\/td>\n<\/tr>\n | ||||||
786<\/td>\n | Proportioning and Design: Piping System Design <\/td>\n<\/tr>\n | ||||||
787<\/td>\n | Proportioning and Design: Piping System Design <\/td>\n<\/tr>\n | ||||||
788<\/td>\n | Proportioning and Design: Piping System Design <\/td>\n<\/tr>\n | ||||||
789<\/td>\n | Proportioning and Design: Piping System Design <\/td>\n<\/tr>\n | ||||||
790<\/td>\n | Prescribed Seismic Forces: Pipe Supports and Bracing <\/td>\n<\/tr>\n | ||||||
791<\/td>\n | Prescribed Seismic Forces: Pipe Supports and Bracing <\/td>\n<\/tr>\n | ||||||
792<\/td>\n | Proportioning and Design: Pipe Supports and Bracing <\/td>\n<\/tr>\n | ||||||
793<\/td>\n | Proportioning and Design: Pipe Supports and Bracing <\/td>\n<\/tr>\n | ||||||
794<\/td>\n | Proportioning and Design: Pipe Supports and Bracing <\/td>\n<\/tr>\n | ||||||
795<\/td>\n | Proportioning and Design: Pipe Supports and Bracing <\/td>\n<\/tr>\n | ||||||
796<\/td>\n | Prescribed Seismic Displacements <\/td>\n<\/tr>\n | ||||||
797<\/td>\n | Prescribed Seismic Displacements <\/td>\n<\/tr>\n | ||||||
798<\/td>\n | Prescribed Seismic Displacements <\/td>\n<\/tr>\n | ||||||
799<\/td>\n | Prescribed Seismic Displacements <\/td>\n<\/tr>\n | ||||||
800<\/td>\n | Questions? <\/td>\n<\/tr>\n | ||||||
801<\/td>\n | Elevated Vessel Seismic Design <\/td>\n<\/tr>\n | ||||||
802<\/td>\n | Elevated Vessel Description <\/td>\n<\/tr>\n | ||||||
803<\/td>\n | Elevated Vessel Description <\/td>\n<\/tr>\n | ||||||
805<\/td>\n | Elevated Vessel Description <\/td>\n<\/tr>\n | ||||||
806<\/td>\n | ASCE\/SEI 7-22 Parameters and Coefficients <\/td>\n<\/tr>\n | ||||||
807<\/td>\n | ASCE\/SEI 7-22 Parameters and Coefficients <\/td>\n<\/tr>\n | ||||||
808<\/td>\n | ASCE\/SEI 7-22 Parameters and Steel Material Properties <\/td>\n<\/tr>\n | ||||||
809<\/td>\n | ASCE\/SEI 7-22 Parameters and Coefficients <\/td>\n<\/tr>\n | ||||||
810<\/td>\n | Applicable Requirements <\/td>\n<\/tr>\n | ||||||
811<\/td>\n | Applicable Requirements (Continued) <\/td>\n<\/tr>\n | ||||||
812<\/td>\n | Prescribed Seismic Forces: Vessel Support and Attachments <\/td>\n<\/tr>\n | ||||||
813<\/td>\n | Prescribed Seismic Forces: Vessel Support and Attachments <\/td>\n<\/tr>\n | ||||||
814<\/td>\n | Proportioning and Design: Vessel Support and Attachments <\/td>\n<\/tr>\n | ||||||
815<\/td>\n | Proportioning and Design: Vessel Support and Attachments <\/td>\n<\/tr>\n | ||||||
816<\/td>\n | Proportioning and Design: Vessel Support and Attachments <\/td>\n<\/tr>\n | ||||||
817<\/td>\n | Proportioning and Design: Vessel Support and Attachments <\/td>\n<\/tr>\n | ||||||
818<\/td>\n | Proportioning and Design: Vessel Support and Attachments <\/td>\n<\/tr>\n | ||||||
819<\/td>\n | Proportioning and Design: Vessel Support and Attachments <\/td>\n<\/tr>\n | ||||||
820<\/td>\n | Proportioning and Design: Vessel Support and Attachments <\/td>\n<\/tr>\n | ||||||
821<\/td>\n | Proportioning and Design: Vessel Support and Attachments <\/td>\n<\/tr>\n | ||||||
822<\/td>\n | Proportioning and Design: Vessel Support and Attachments <\/td>\n<\/tr>\n | ||||||
823<\/td>\n | Proportioning and Design: Vessel Support and Attachments <\/td>\n<\/tr>\n | ||||||
824<\/td>\n | Proportioning and Design: Vessel Support and Attachments <\/td>\n<\/tr>\n | ||||||
825<\/td>\n | Proportioning and Design: Vessel Support and Attachments <\/td>\n<\/tr>\n | ||||||
826<\/td>\n | Proportioning and Design: Vessel Support and Attachments <\/td>\n<\/tr>\n | ||||||
827<\/td>\n | Prescribed Seismic Forces: Supporting Frame <\/td>\n<\/tr>\n | ||||||
828<\/td>\n | Prescribed Seismic Forces: Supporting Frame <\/td>\n<\/tr>\n | ||||||
829<\/td>\n | Proportioning and Design: Supporting Frame <\/td>\n<\/tr>\n | ||||||
830<\/td>\n | Proportioning and Design: Supporting Frame <\/td>\n<\/tr>\n | ||||||
831<\/td>\n | Proportioning and Design: Supporting Frame <\/td>\n<\/tr>\n | ||||||
832<\/td>\n | Proportioning and Design: Supporting Frame <\/td>\n<\/tr>\n | ||||||
833<\/td>\n | Proportioning and Design: Supporting Frame <\/td>\n<\/tr>\n | ||||||
834<\/td>\n | Proportioning and Design: Supporting Frame <\/td>\n<\/tr>\n | ||||||
835<\/td>\n | Questions? <\/td>\n<\/tr>\n | ||||||
836<\/td>\n | DISCLAIMER <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" FEMA P-2192-V2 2020 NEHRP Recommended Seismic Provisions: Design Examples, Training Materials, and Design Flow Charts – Volume II: Training Materials<\/b><\/p>\n |