{"id":394111,"date":"2024-10-20T04:12:29","date_gmt":"2024-10-20T04:12:29","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/fema-p-2192-volume2-2020\/"},"modified":"2024-10-26T07:51:42","modified_gmt":"2024-10-26T07:51:42","slug":"fema-p-2192-volume2-2020","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/fema\/fema-p-2192-volume2-2020\/","title":{"rendered":"FEMA P 2192 Volume2 2020"},"content":{"rendered":"

None<\/p>\n

PDF Catalog<\/h4>\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
PDF Pages<\/th>\nPDF Title<\/th>\n<\/tr>\n
1<\/td>\n2020 NEHRP Recommended Seismic Provisions: Design Examples, Training Materials, and Design Flow Charts <\/td>\n<\/tr>\n
5<\/td>\nTable of Contents <\/td>\n<\/tr>\n
6<\/td>\nChapter 1 Introduction to the 2020 NEHRP Provisions Design Examples <\/td>\n<\/tr>\n
7<\/td>\nLearning Objectives <\/td>\n<\/tr>\n
8<\/td>\nOutline of Presentation <\/td>\n<\/tr>\n
9<\/td>\nOverview of the 2020 NEHRP Provisions <\/td>\n<\/tr>\n
10<\/td>\nThe NEHRP Recommended Seismic Provisions <\/td>\n<\/tr>\n
11<\/td>\nIntent of the 2020 NEHRP Provisions <\/td>\n<\/tr>\n
12<\/td>\nFrom Research to Improved Standards and Seismic Design Practice <\/td>\n<\/tr>\n
13<\/td>\nHow US Seismic Codes are Developed <\/td>\n<\/tr>\n
14<\/td>\n2020 NEHRP Provisions \u2013 BSSC Provisions Update Committee <\/td>\n<\/tr>\n
15<\/td>\n2020 NEHRP Provisions Organization <\/td>\n<\/tr>\n
16<\/td>\nResources to Support the 2020 NEHRP Provisions and ASCE\/SEI 7-22 <\/td>\n<\/tr>\n
17<\/td>\nEvolution of Earthquake Engineering <\/td>\n<\/tr>\n
18<\/td>\nRecent North American Earthquakes and Subsequent Code Changes <\/td>\n<\/tr>\n
19<\/td>\nRecent North American Earthquakes and Subsequent Code Changes <\/td>\n<\/tr>\n
20<\/td>\nRecent North American Earthquakes and Subsequent Code Changes <\/td>\n<\/tr>\n
21<\/td>\nRecent North American Earthquakes and Subsequent Code Changes <\/td>\n<\/tr>\n
22<\/td>\nHistory and Role of the NEHRP Provisions <\/td>\n<\/tr>\n
23<\/td>\nU.S. Seismic Code Development and Role of the NEHRP Provisions <\/td>\n<\/tr>\n
24<\/td>\nU.S. Seismic Code Development and Role of the NEHRP Provisions <\/td>\n<\/tr>\n
25<\/td>\nEvolution of the NEHRP Provisions <\/td>\n<\/tr>\n
26<\/td>\nHighlights of Major Changes in the 2020 NEHRP Provisions and in ASCE\/SEI 7-22 <\/td>\n<\/tr>\n
27<\/td>\nHighlights of Major Changes to 2020 NEHRP Provisions and ASCE\/SEI 7-22 <\/td>\n<\/tr>\n
28<\/td>\nMove from Two-Point Spectra (2PRS) to Multi-Point Spectra (MPRS) <\/td>\n<\/tr>\n
29<\/td>\nThree New Shear Wall Seismic Force-Resisting Systems <\/td>\n<\/tr>\n
30<\/td>\nUpdates to Diaphragm Design Provisions <\/td>\n<\/tr>\n
31<\/td>\nRelaxation in Requirement for Response Spectrum Analysis <\/td>\n<\/tr>\n
32<\/td>\nRevisions in Displacement Requirements <\/td>\n<\/tr>\n
33<\/td>\nChanges in Nonbuilding Structures Requirements <\/td>\n<\/tr>\n
34<\/td>\nAddition of Quantitative R eliability Targets for Individual Members and Essential Facilities <\/td>\n<\/tr>\n
35<\/td>\nPart 3 Paper on a New Approach to Seismic Lateral Earth Pressures <\/td>\n<\/tr>\n
36<\/td>\nNew Seismic Design Force Equation <\/td>\n<\/tr>\n
37<\/td>\nBuilding Modal Periods, Tn,bldg <\/td>\n<\/tr>\n
38<\/td>\nPFA\/PGA (Hf) Amplification Factor <\/td>\n<\/tr>\n
39<\/td>\nSeismic Force-Resisting System <\/td>\n<\/tr>\n
40<\/td>\nBuilding Ductility, R\u03bc <\/td>\n<\/tr>\n
41<\/td>\nChapter 13: Other Significant Changes from ASCE\/SEI 7-16 to ASCE\/SEI 7-22 <\/td>\n<\/tr>\n
42<\/td>\nChapter 13: Other Significant Changes from ASCE\/SEI 7-16 to ASCE\/SEI 7-22 <\/td>\n<\/tr>\n
43<\/td>\nChapter 13: Other Significant Changes from ASCE\/SEI 7-16 to ASCE\/SEI 7-22 <\/td>\n<\/tr>\n
44<\/td>\nQuestions? <\/td>\n<\/tr>\n
45<\/td>\nOverview of Design Example Chapters <\/td>\n<\/tr>\n
46<\/td>\nChapter 2 (Section 2.1 to 2.6) -Fundamentals <\/td>\n<\/tr>\n
47<\/td>\nChapter 2 -Fundamentals (Harris): Topics <\/td>\n<\/tr>\n
48<\/td>\nChapter 2 \u2013 Fundamentals: Yield, Ductility, Overstrength <\/td>\n<\/tr>\n
49<\/td>\nSection 2.7 \u2013 Resilience-Based Design <\/td>\n<\/tr>\n
50<\/td>\nSection 2.7 -Resilience-Based Design (Bonowitz): Topics <\/td>\n<\/tr>\n
51<\/td>\nSection 2.7 -The \u201cResilience Field\u201d <\/td>\n<\/tr>\n
52<\/td>\nSection 2.7 -Functional Recovery vs. Community Resilience <\/td>\n<\/tr>\n
53<\/td>\nSection 2.7 -FEMA-NIST Definitions* for Functional Recovery <\/td>\n<\/tr>\n
54<\/td>\nSection 2.7 -Functional Recovery and Performance-Based Engineering <\/td>\n<\/tr>\n
55<\/td>\nSection 2.7 -Functional Recovery Objective: CLT Design Example <\/td>\n<\/tr>\n
56<\/td>\nChapter 3 \u2013 Earthquake Ground Motions <\/td>\n<\/tr>\n
58<\/td>\nSection 3.2: USGS NSHMs and BSSC PUC Requirements <\/td>\n<\/tr>\n
59<\/td>\nSection 3.2 -Updates to 2020 NEHRP Design Ground Motions in Conterminous US <\/td>\n<\/tr>\n
60<\/td>\nSection 3.2 -Hazard Changes (CEUS) <\/td>\n<\/tr>\n
61<\/td>\nSection 3.2 -Hazard Changes (WUS) <\/td>\n<\/tr>\n
62<\/td>\nSection 3.2 Part 2 \u2013 Dissection of Example Changes to the MCER Ground Motion Values (Luco): Topics <\/td>\n<\/tr>\n
63<\/td>\nSection 3.2 -Deterministic Caps <\/td>\n<\/tr>\n
64<\/td>\nSection 3.2 -Examples of Changes in MCER Values <\/td>\n<\/tr>\n
65<\/td>\nSection 3.2 -Examples of Changes in SDC <\/td>\n<\/tr>\n
66<\/td>\nSection 3.2 -BSSC Tool for Seismic Design Map Values https:\/\/doi.org\/10.5066\/F7NK3C76 <\/td>\n<\/tr>\n
67<\/td>\nSection 3.3 \u2013 Multi-Period Response Spectra (Kircher): Topics <\/td>\n<\/tr>\n
68<\/td>\nSection 3.3 -The \u201cProblem\u201d with ASCE 7-10 <\/td>\n<\/tr>\n
69<\/td>\nSection 3.3 -Comparison of ASCE\/SEI 7-16 Two-Period (ELF) Design Spectrum w\/o Spectrum Shape Adjustment with MPRS Design Spectrum <\/td>\n<\/tr>\n
70<\/td>\nSection 3.3 -Interim Solution of ASCE\/SEI 7-16 (2015 NEHRP Provisions) <\/td>\n<\/tr>\n
71<\/td>\nSection 3.3 -Long-Term Solution -MPRS in 2020 NEHRP Provisions and ASCE\/SEI 7-22 <\/td>\n<\/tr>\n
72<\/td>\nSection 3.3 -New Site Classes and Associated Values of Shear Wave Velocities (Table 2.2-1, FEMA P-2078, June 2020) <\/td>\n<\/tr>\n
73<\/td>\nSection 3.3 -MPRS Format <\/td>\n<\/tr>\n
74<\/td>\nMove from Two-Point Spectra (2PRS) to Multi-Point Spectra (MPRS) <\/td>\n<\/tr>\n
75<\/td>\nSection 3.3 -Design (As Usual) Using New MPRS <\/td>\n<\/tr>\n
76<\/td>\nSection 3.4 \u2013 Other Changes to Ground Motion Provisions in ASCE\/SEI 7-22 (Crouse): Topics <\/td>\n<\/tr>\n
77<\/td>\nChapter 4 \u2013 Ductile Reinforced Concrete Shear Walls <\/td>\n<\/tr>\n
78<\/td>\nChapter 4 \u2013 Ductile Coupled RC Shear Walls (Ghosh and Dasgupta): Topics <\/td>\n<\/tr>\n
79<\/td>\nChapter 2 \u2013 Ductile Coupled RC Shear Wall: Details <\/td>\n<\/tr>\n
80<\/td>\nChapter 5 \u2013 Coupled Composite Plate Shear Walls\/Concrete Filled (C-PSW\/CF) <\/td>\n<\/tr>\n
81<\/td>\nChapter 5 \u2013 Coupled Composite Plate Shear Walls \/ Concrete Filled (Shafaei and Varma): Topics <\/td>\n<\/tr>\n
82<\/td>\nChapter 5 \u2013 C-PSW\/CF: Seismic Design Philosophy <\/td>\n<\/tr>\n
83<\/td>\nChapter 5 \u2013 C-PSW\/CF: Coupling Beam-to-Wall Connection <\/td>\n<\/tr>\n
84<\/td>\nChapter 6 \u2013 Cross-Laminated Timber Shear Walls <\/td>\n<\/tr>\n
85<\/td>\nChapter 6 -Cross-Laminated Timber (CLT) Shear Wall (Line and Amini): Topics <\/td>\n<\/tr>\n
86<\/td>\nChapter 6 \u2013 CLT Shear Wall: Construction <\/td>\n<\/tr>\n
87<\/td>\nChapter 6 \u2013 CLT: Shear Wall Details <\/td>\n<\/tr>\n
88<\/td>\nChapter 7 \u2013 Horizontal Diaphragm Design <\/td>\n<\/tr>\n
89<\/td>\nChapter 7 \u2013 Horizontal Diaphragm Design (Cobeen): Topics <\/td>\n<\/tr>\n
90<\/td>\nChapter 7: Diaphragm Seismic Design Method Comparison <\/td>\n<\/tr>\n
91<\/td>\nChapter 7: Section 12.10.3 Alternative Design Provisions <\/td>\n<\/tr>\n
92<\/td>\nChapter 7: Section 12.10.4 Alternative RWFD Design Method <\/td>\n<\/tr>\n
93<\/td>\nChapter 7: Section 12.10.4 Alternative RWFD Design Method <\/td>\n<\/tr>\n
94<\/td>\nChapter 8 -Nonstructural Components <\/td>\n<\/tr>\n
95<\/td>\nChapter 8 -Design Examples for Nonstructural Components (Lizundia): Topics <\/td>\n<\/tr>\n
96<\/td>\nChapter 8 -Nonstructural Components Example: Architectural Precast Concrete <\/td>\n<\/tr>\n
97<\/td>\nChapter 8 -Nonstructural Components Example: Rocking Cladding Mechanism <\/td>\n<\/tr>\n
98<\/td>\nChapter 8 -Nonstructural Components Example: Piping System Seismic Design <\/td>\n<\/tr>\n
99<\/td>\nChapter 8 -Nonstructural Components Example: Egress Stairs <\/td>\n<\/tr>\n
100<\/td>\nChapter 8 -Nonstructural Components Example: Elevated Vessel <\/td>\n<\/tr>\n
101<\/td>\nChapter 8 -Nonstructural Components Example: Elevated Vessel <\/td>\n<\/tr>\n
102<\/td>\nChapter 8 -Prescribed Seismic Forces: Vessel Support and Attachments <\/td>\n<\/tr>\n
103<\/td>\nChapter 8 -Nonstructural Component Example: HVAC Fan Unit Support <\/td>\n<\/tr>\n
104<\/td>\nOrganization and Presentation of the Design Example Chapters <\/td>\n<\/tr>\n
105<\/td>\nOutline of the 2020 Design Examples Chapters <\/td>\n<\/tr>\n
106<\/td>\nHow to Use the 2015 and 2020 Design Examples Together <\/td>\n<\/tr>\n
107<\/td>\nHow to Use the 2015 and 2020 Design Examples Together <\/td>\n<\/tr>\n
108<\/td>\nHow to Use the 2015 and 2020 Design Examples Together <\/td>\n<\/tr>\n
109<\/td>\nHow to Use the 2015 and 2020 Design Examples Together <\/td>\n<\/tr>\n
110<\/td>\nPresentation Techniques in the 2020 Design Examples <\/td>\n<\/tr>\n
112<\/td>\nBSSC NEHRP Webinar Training: nibs.org\/events\/nehrp-webinar-series <\/td>\n<\/tr>\n
113<\/td>\nQuestions? <\/td>\n<\/tr>\n
114<\/td>\nDISCLAIMER <\/td>\n<\/tr>\n
115<\/td>\nChapter 2 (Sections 2.1 to 2.6) Fundamentals <\/td>\n<\/tr>\n
116<\/td>\nOverview <\/td>\n<\/tr>\n
117<\/td>\nFundamental Concepts (1) <\/td>\n<\/tr>\n
118<\/td>\nFundamental Concepts (2) <\/td>\n<\/tr>\n
119<\/td>\nOverview <\/td>\n<\/tr>\n
120<\/td>\nSeismic Activity on Earth <\/td>\n<\/tr>\n
121<\/td>\nTectonic Plates <\/td>\n<\/tr>\n
122<\/td>\nSection of Earth Crust at Ocean Rift Valley <\/td>\n<\/tr>\n
123<\/td>\nSection of Earth Crust at Plate Boundary (Subduction Zone) <\/td>\n<\/tr>\n
124<\/td>\nFault Features
Strike angle
Dip angle <\/td>\n<\/tr>\n
125<\/td>\nFaults and Fault Rupture <\/td>\n<\/tr>\n
126<\/td>\nTypes of Faults <\/td>\n<\/tr>\n
127<\/td>\nSeismic Wave Forms (Body Waves) <\/td>\n<\/tr>\n
128<\/td>\nSeismic Wave Forms (Surface Waves) <\/td>\n<\/tr>\n
129<\/td>\nArrival of Seismic Waves <\/td>\n<\/tr>\n
130<\/td>\nEffects of Earthquakes <\/td>\n<\/tr>\n
131<\/td>\nRecorded Ground Motions <\/td>\n<\/tr>\n
132<\/td>\nShaking at the Holiday Inn During the 1971 San Fernando Valley EQ <\/td>\n<\/tr>\n
133<\/td>\nOverview <\/td>\n<\/tr>\n
134<\/td>\nNEHRP (2009) Seismic Hazard Maps <\/td>\n<\/tr>\n
136<\/td>\nMass <\/td>\n<\/tr>\n
137<\/td>\nLinear Viscous Damping <\/td>\n<\/tr>\n
138<\/td>\nDamping and Energy Dissipation <\/td>\n<\/tr>\n
139<\/td>\nElastic Stiffness <\/td>\n<\/tr>\n
140<\/td>\nInelastic Behavior <\/td>\n<\/tr>\n
141<\/td>\nUndamped Free Vibration <\/td>\n<\/tr>\n
142<\/td>\nUndamped Free Vibration (2) <\/td>\n<\/tr>\n
143<\/td>\nPeriods of Vibration of Common Structures <\/td>\n<\/tr>\n
144<\/td>\nDamped Free Vibration <\/td>\n<\/tr>\n
145<\/td>\nDamped Free Vibration (2) <\/td>\n<\/tr>\n
146<\/td>\nDamped Free Vibration (3) <\/td>\n<\/tr>\n
147<\/td>\nDamping in Structures <\/td>\n<\/tr>\n
148<\/td>\nUndamped Harmonic Loading and Resonance <\/td>\n<\/tr>\n
149<\/td>\nDamped Harmonic Loading and Resonance <\/td>\n<\/tr>\n
150<\/td>\nResonant Response Curve <\/td>\n<\/tr>\n
151<\/td>\nGeneral Dynamic Loading <\/td>\n<\/tr>\n
152<\/td>\nEffective Earthquake Force <\/td>\n<\/tr>\n
153<\/td>\nSimplified SDOF Equation of Motion <\/td>\n<\/tr>\n
154<\/td>\nUse of Simplified Equation of Motion <\/td>\n<\/tr>\n
155<\/td>\nUse of Simplified Equation <\/td>\n<\/tr>\n
156<\/td>\nCreating an Elastic Response Spectrum <\/td>\n<\/tr>\n
157<\/td>\nPseudoacceleration Spectrum <\/td>\n<\/tr>\n
158<\/td>\nPseudoacceleration is Total Acceleration <\/td>\n<\/tr>\n
159<\/td>\nUsing Pseudoacceleration to Compute Seismic Force <\/td>\n<\/tr>\n
160<\/td>\nResponse Spectra for 1971 San Fernando Valley EQ (Holiday Inn) <\/td>\n<\/tr>\n
161<\/td>\nAveraged Spectrum and Code Spectrum <\/td>\n<\/tr>\n
162<\/td>\nNEHRP\/ASCE 7 Design Spectrum <\/td>\n<\/tr>\n
163<\/td>\nNEHRP 2020 Multi-Period Spectrum and \u201cTwo\u201d Period Spectrum <\/td>\n<\/tr>\n
164<\/td>\nOverview <\/td>\n<\/tr>\n
165<\/td>\nMDOF Systems <\/td>\n<\/tr>\n
166<\/td>\nAnalysis of Linear MDOF Systems <\/td>\n<\/tr>\n
167<\/td>\nAnalysis of Linear MDOF Systems <\/td>\n<\/tr>\n
168<\/td>\nOverview <\/td>\n<\/tr>\n
169<\/td>\nBasic Base Shear Equations in NEHRP and ASCE 7 <\/td>\n<\/tr>\n
170<\/td>\nBuilding Designed for Wind or Seismic Load <\/td>\n<\/tr>\n
171<\/td>\nComparison of EQ vs Wind <\/td>\n<\/tr>\n
172<\/td>\nHow to Deal with Huge EQ Force? <\/td>\n<\/tr>\n
173<\/td>\nNonlinear Static Pushover Analysis <\/td>\n<\/tr>\n
174<\/td>\nMathematical Model and Ground Motion <\/td>\n<\/tr>\n
175<\/td>\nResults of Nonlinear Analysis <\/td>\n<\/tr>\n
176<\/td>\nResponse Computed by Nonlin <\/td>\n<\/tr>\n
177<\/td>\nInterim Conclusion (the Good News) <\/td>\n<\/tr>\n
178<\/td>\nInterim Conclusion (The Bad News) <\/td>\n<\/tr>\n
179<\/td>\nDevelopment of the Equal Displacement Concept <\/td>\n<\/tr>\n
180<\/td>\nThe Equal Displacement Concept <\/td>\n<\/tr>\n
181<\/td>\nRepeated Analysis for Various Yield Strengths (and constant stiffness) <\/td>\n<\/tr>\n
182<\/td>\nConstant Displacement Idealization of Inelastic Response <\/td>\n<\/tr>\n
183<\/td>\nEqual Displacement Idealization of Inelastic Response <\/td>\n<\/tr>\n
184<\/td>\nEqual Displacement Concept of Inelastic Design <\/td>\n<\/tr>\n
185<\/td>\nKey Ingredient: Ductility <\/td>\n<\/tr>\n
186<\/td>\nApplication in Principle <\/td>\n<\/tr>\n
187<\/td>\nApplication in Practice (NEHRP and ASCE 7) <\/td>\n<\/tr>\n
188<\/td>\nDuctility\/Overstrength First Significant Yield <\/td>\n<\/tr>\n
189<\/td>\nFirst Significant Yield and Design Strength <\/td>\n<\/tr>\n
190<\/td>\nOverstrength <\/td>\n<\/tr>\n
191<\/td>\nSources of Overstrength <\/td>\n<\/tr>\n
192<\/td>\nDefinition of Overstrength Factor \uf057 <\/td>\n<\/tr>\n
193<\/td>\nDefinition of Ductility Reduction Factor Rd <\/td>\n<\/tr>\n
194<\/td>\nDefinition of Response Modification Coefficient R <\/td>\n<\/tr>\n
195<\/td>\nDefinition of Response Modification Coefficient R <\/td>\n<\/tr>\n
196<\/td>\nDefinition of Deflection Amplification Factor Cd <\/td>\n<\/tr>\n
197<\/td>\nExample of Design Factors for Reinforced Concrete Structures <\/td>\n<\/tr>\n
198<\/td>\nDesign Spectra as Adjusted for Inelastic Behavior <\/td>\n<\/tr>\n
199<\/td>\nUsing Inelastic Spectrum to Determine Inelastic Force Demand <\/td>\n<\/tr>\n
200<\/td>\nUsing the Inelastic Spectrum and Cd to Determine the Inelastic Displacement Demand <\/td>\n<\/tr>\n
201<\/td>\nOverview <\/td>\n<\/tr>\n
202<\/td>\nDesign and Detailing Requirements <\/td>\n<\/tr>\n
203<\/td>\nQuestions <\/td>\n<\/tr>\n
204<\/td>\nDISCLAIMER <\/td>\n<\/tr>\n
205<\/td>\nChapter 2 (Section 2.7) Resilience-Based Design <\/td>\n<\/tr>\n
206<\/td>\nContent <\/td>\n<\/tr>\n
207<\/td>\nConsensus <\/td>\n<\/tr>\n
208<\/td>\nConsensus understanding of resilience <\/td>\n<\/tr>\n
209<\/td>\nThe \u201cResilience Field\u201d <\/td>\n<\/tr>\n
210<\/td>\nThe \u201cResilience Field\u201d <\/td>\n<\/tr>\n
211<\/td>\nFR : Building : CR : Community
Facility <\/td>\n<\/tr>\n
212<\/td>\n\u201cResilience-Based Design and the NEHRP Provisions\u201d <\/td>\n<\/tr>\n
213<\/td>\nNew definitions: Functional Recovery <\/td>\n<\/tr>\n
214<\/td>\nFEMA-NIST definitions* <\/td>\n<\/tr>\n
215<\/td>\nFunctional recovery and performance-based engineering <\/td>\n<\/tr>\n
216<\/td>\nThe technical question <\/td>\n<\/tr>\n
217<\/td>\nFunctional recovery and the current building code <\/td>\n<\/tr>\n
218<\/td>\nCLT Shear Wall Design Example (Chapter 6) <\/td>\n<\/tr>\n
219<\/td>\nCLT Shear Wall Design Example (Chapter 6) <\/td>\n<\/tr>\n
220<\/td>\nFunctional recovery objective <\/td>\n<\/tr>\n
221<\/td>\nPolicy precedents for acceptable FR time? <\/td>\n<\/tr>\n
222<\/td>\nPolicy precedents for acceptable FR time? <\/td>\n<\/tr>\n
223<\/td>\nFunctional recovery objective <\/td>\n<\/tr>\n
224<\/td>\nExpected FR time: What does current research say? <\/td>\n<\/tr>\n
225<\/td>\nExpected FR time: What does current research say? <\/td>\n<\/tr>\n
226<\/td>\nExpected FR time: What does current research say? <\/td>\n<\/tr>\n
227<\/td>\nExpected FR time: What does current research say? <\/td>\n<\/tr>\n
228<\/td>\nFunctional recovery objective <\/td>\n<\/tr>\n
229<\/td>\nCLT Shear Wall structural design criteria <\/td>\n<\/tr>\n
230<\/td>\nCLT Shear Wall structural design criteria <\/td>\n<\/tr>\n
231<\/td>\nCLT Shear Wall structural design criteria <\/td>\n<\/tr>\n
232<\/td>\nCLT Shear Wall structural design criteria <\/td>\n<\/tr>\n
233<\/td>\nTownhouse nonstructural design criteria <\/td>\n<\/tr>\n
234<\/td>\nTownhouse nonstructural design criteria <\/td>\n<\/tr>\n
235<\/td>\nCharacteristics of RC IV functionality (NEHRP Provisions Section 1.1.5) <\/td>\n<\/tr>\n
236<\/td>\nCharacteristics of RC IV functionality (NEHRP Provisions Section 1.1.5) <\/td>\n<\/tr>\n
237<\/td>\nCharacteristics of RC IV functionality (NEHRP Provisions Section 1.1.5) <\/td>\n<\/tr>\n
238<\/td>\nVoluntary FR and emerging best practices <\/td>\n<\/tr>\n
239<\/td>\nVoluntary FR and emerging best practices <\/td>\n<\/tr>\n
240<\/td>\nVoluntary FR and emerging best practices <\/td>\n<\/tr>\n
241<\/td>\nQ&A <\/td>\n<\/tr>\n
242<\/td>\nReferences <\/td>\n<\/tr>\n
243<\/td>\nReferences <\/td>\n<\/tr>\n
244<\/td>\nDISCLAIMER <\/td>\n<\/tr>\n
245<\/td>\nChapter 3 (Section 3.2 -Part 1) The 2018 Update of the USGS National Seismic Hazard Model <\/td>\n<\/tr>\n
246<\/td>\nOutline <\/td>\n<\/tr>\n
247<\/td>\nUSGS NSHMs & BSSC PUC Requirements <\/td>\n<\/tr>\n
248<\/td>\nUpdates to 2020 NEHRP Design Ground Motions in Conterminous US <\/td>\n<\/tr>\n
249<\/td>\nUpdates to 2020 NEHRP Design Ground Motions in Conterminous US <\/td>\n<\/tr>\n
250<\/td>\nUpdates to 2020 NEHRP Design Ground Motions in Conterminous US <\/td>\n<\/tr>\n
251<\/td>\nOld CEUS Ground Motion Models <\/td>\n<\/tr>\n
252<\/td>\nNew CEUS Ground Motion Models <\/td>\n<\/tr>\n
253<\/td>\nNew CEUS Ground Motion Models <\/td>\n<\/tr>\n
254<\/td>\nNew CEUS Site-Effects Models <\/td>\n<\/tr>\n
255<\/td>\nHazard Changes (CEUS) <\/td>\n<\/tr>\n
256<\/td>\nDeep Basin Effects <\/td>\n<\/tr>\n
257<\/td>\nDeep Basin Effects <\/td>\n<\/tr>\n
258<\/td>\nHazard Changes (WUS) <\/td>\n<\/tr>\n
259<\/td>\nOutside of Conterminous US (OCONUS) <\/td>\n<\/tr>\n
260<\/td>\nOutside of Conterminous US (OCONUS) <\/td>\n<\/tr>\n
261<\/td>\nSummary <\/td>\n<\/tr>\n
262<\/td>\nQuestions <\/td>\n<\/tr>\n
263<\/td>\nDISCLAIMER <\/td>\n<\/tr>\n
264<\/td>\nChapter 3 (Section 3.2 -Part 2) Dissection of Example Changes to the MCER Ground Motion Values <\/td>\n<\/tr>\n
265<\/td>\nCommentary to Chapter 22 <\/td>\n<\/tr>\n
266<\/td>\nUSGS 2018 National Seismic Hazard Model (NSHM) Updates <\/td>\n<\/tr>\n
267<\/td>\nBSSC Project \u201817 Recommendations <\/td>\n<\/tr>\n
268<\/td>\nMaximum-Direction Scale Factors <\/td>\n<\/tr>\n
269<\/td>\nMaximum-Direction Scale Factors <\/td>\n<\/tr>\n
270<\/td>\nDeterministic Caps <\/td>\n<\/tr>\n
271<\/td>\nDeterministic Caps <\/td>\n<\/tr>\n
272<\/td>\nCommentary to Chapter 22 <\/td>\n<\/tr>\n
273<\/td>\nExamples of Changes in MCER Values <\/td>\n<\/tr>\n
274<\/td>\nExamples of Changes in MCER Values <\/td>\n<\/tr>\n
275<\/td>\nExamples of Changes in MCER Values <\/td>\n<\/tr>\n
276<\/td>\nExamples of Changes in MCER Values <\/td>\n<\/tr>\n
277<\/td>\nExamples of Changes in SDC <\/td>\n<\/tr>\n
278<\/td>\nExamples of Changes in SDC <\/td>\n<\/tr>\n
279<\/td>\nSummary of Changes in MCER Values <\/td>\n<\/tr>\n
280<\/td>\nCommentary to Chapter 22 <\/td>\n<\/tr>\n
281<\/td>\nUSGS Seismic Design Geodatabase <\/td>\n<\/tr>\n
282<\/td>\nUSGS Seismic Design Geodatabase <\/td>\n<\/tr>\n
283<\/td>\nUSGS Seismic Design Web Service <\/td>\n<\/tr>\n
284<\/td>\nUSGS Seismic Design Web Service <\/td>\n<\/tr>\n
285<\/td>\nBSSC Tool for Seismic Design Map Values <\/td>\n<\/tr>\n
286<\/td>\nBSSC Tool for Seismic Design Map Values <\/td>\n<\/tr>\n
287<\/td>\nhttps:\/\/doi.org\/10.5066\/F7NK3C76 <\/td>\n<\/tr>\n
288<\/td>\nQuestions <\/td>\n<\/tr>\n
289<\/td>\nDISCLAIMER <\/td>\n<\/tr>\n
290<\/td>\nChapter 3 (Section 3.3) New Multi-Period Response Spectra and Ground Motion Requirements <\/td>\n<\/tr>\n
291<\/td>\nDesign (As Usual) Using New MPRS <\/td>\n<\/tr>\n
292<\/td>\nNew Multi-Period Response Spectra (MPRS) <\/td>\n<\/tr>\n
293<\/td>\nSummary of MPRS and Related Changes (to ASCE\/SEI 7-16) <\/td>\n<\/tr>\n
294<\/td>\nSummary of MPRS and Related Changes (to ASCE\/SEI 7-16) <\/td>\n<\/tr>\n
295<\/td>\nTwo-Period Design Response Spectrum (Multi-Period Design Spectrum) (Figure 11.4-1, ASCE\/SEI 7-05, ASCE\/SEI 7-10 and ASCE\/SEI 7-16 with annotation) <\/td>\n<\/tr>\n
296<\/td>\nThe \u201cProblem\u201d with ASCE\/SEI 7-10 <\/td>\n<\/tr>\n
297<\/td>\nComparison of ASCE\/SEI 7-16 Two-Period (ELF) Design Spectrum w\/o Spectrum Shape Adjustment and Multi-Period Response Spectra based on M7.0 earthquake ground motions at RX= 6.8 km) \u2013Site Class C
Comparison of ASCE\/SEI 7-16 Two-Period (ELF) Design Spectrum w\/o Spectrum Shape Adjustment and Multi-Period Response Spectra based on M7.0 earthquake ground motions at RX= 6.8 km) \u2013Site Class C <\/td>\n<\/tr>\n
298<\/td>\nComparison of ASCE\/SEI 7-16 Two-Period (ELF) Design Spectrum w\/o Spectrum Shape Adjustment and Multi-Period Response Spectra based on M7.0 earthquake ground motions at RX = 6.8 km) \u2013 Site Class D <\/td>\n<\/tr>\n
299<\/td>\nComparison of ASCE\/SEI 7-16 Two-Period (ELF) Design Spectrum w\/o Spectrum Shape Adjustment and Multi-Period Response Spectra based on M7.0 earthquake ground motions at RX = 6.8 km) \u2013 Site Class E <\/td>\n<\/tr>\n
300<\/td>\nComparison of ASCE\/SEI 7-16 Two-Period (ELF) Design Spectrum w\/o Spectrum Shape Adjustment and Multi-Period Response Spectra based on M8.0 earthquake ground motions at RX = 9.9 km) \u2013 Site Class E <\/td>\n<\/tr>\n
301<\/td>\nInterim Solution of ASCE\/SEI 7-16 (2015 NEHRP Provisions) <\/td>\n<\/tr>\n
302<\/td>\nSite-Specific Requirements of Section 11.4.7 of ASCE\/SEI 7-16 (2015 NEHRP Provisions) <\/td>\n<\/tr>\n
303<\/td>\nSite-Specific Requirements of Section 11.4.7 of ASCE\/SEI 7-16 (2015 NEHRP Provisions) <\/td>\n<\/tr>\n
304<\/td>\nConterminous United States Regions with S1 \u2265 0.2g (ASCE\/SEI 7-16) <\/td>\n<\/tr>\n
305<\/td>\nLong-Term Solution -Multi-Period Response Spectra (MPRS) (2020 NEHRP Provisions and ASCE\/SEI 7-22) <\/td>\n<\/tr>\n
306<\/td>\nMCER Ground Motions (Section 21.2) (Site-specific requirements of the 2020 NEHRP Provisions and ASCE\/SEI 7-22) <\/td>\n<\/tr>\n
307<\/td>\nApproach for Developing Multi-Period Response Spectra for United States Regions of Interest (CONUS and OCONUS sites) <\/td>\n<\/tr>\n
308<\/td>\nMulti-Period Response Spectra Format (example matrix showing the combinations of twenty-two response periods, plus PGAG, and eight hypothetical site classes of the standard format of multi-period response spectra) <\/td>\n<\/tr>\n
309<\/td>\nMulti-Period Response Spectra Format (example matrix showing the combinations of twenty-two response periods, plus PGAG, and eight hypothetical site classes of the standard format of multi-period response spectra) <\/td>\n<\/tr>\n
310<\/td>\nExample Multi-Period Response Spectra (MPRS) (showing the new deterministic MCER Lower Limit, Table 21.2-1, 2020 NEHRP Provisions and ASCE\/SEI 7-22, which are anchored to SS = SSD = 1.5 g, S1 = S1D = 0.6 g) <\/td>\n<\/tr>\n
311<\/td>\nConterminous United States Regions Governed Solely by Probabilistic MCER Ground Motions for Default Site Conditions <\/td>\n<\/tr>\n
312<\/td>\nNew Site Classes and Associated Values of Shear Wave Velocities (Table 2.2-1, FEMA P-2078, June 2020) <\/td>\n<\/tr>\n
313<\/td>\nDistribution of 9,050 of Census Tracts of Densely Populated Areas of California, Oregon and Washington by Site Class (90% of Population) <\/td>\n<\/tr>\n
314<\/td>\nImproved Values of Seismic Design Parameters <\/td>\n<\/tr>\n
315<\/td>\nExample Derivation of SDS and SD1 from a Multi-Period Design Spectrum <\/td>\n<\/tr>\n
316<\/td>\nComparison of ASCE\/SEI 7-16 Two-Period (ELF) Design Spectrum w\/o Spectrum Shape Adjustment and Multi-Period Response Spectra based on M8.0 earthquake ground motions at RX = 9.9 km) \u2013 Site Class E <\/td>\n<\/tr>\n
317<\/td>\nMulti-Period Design Spectrum (Figure 11.4-1, 2020 NEHRP Provisions and ASCE\/SEI 7-22 with annotation) <\/td>\n<\/tr>\n
318<\/td>\nExample Comparisons of Design Spectra (default site conditions) <\/td>\n<\/tr>\n
319<\/td>\nComparison of Design Response Spectra \u2013 Irvine (assuming default site conditions, Figure 8.2-1, FEMA P-2078, June 2020) <\/td>\n<\/tr>\n
320<\/td>\nComparison of Design Response Spectra \u2013 San Mateo (assuming default site conditions, Figure 8.2-2, FEMA P-2078, June 2020) <\/td>\n<\/tr>\n
321<\/td>\nComparison of Design Response Spectra \u2013 Anchorage (assuming default site conditions, Figure 8.2-4, FEMA P-2078, June 2020) <\/td>\n<\/tr>\n
322<\/td>\nComparison of Design Response Spectra \u2013 Memphis (assuming default site conditions, Figure 8.2-4, FEMA P-2078, June 2020) <\/td>\n<\/tr>\n
323<\/td>\nDesign (As Usual) Using New MPRS <\/td>\n<\/tr>\n
324<\/td>\nQuestions <\/td>\n<\/tr>\n
325<\/td>\nDISCLAIMER <\/td>\n<\/tr>\n
326<\/td>\nChapter 3 (Section 3.4) Additional Revisions to Ground-Motion Provisions <\/td>\n<\/tr>\n
327<\/td>\nPresentation <\/td>\n<\/tr>\n
328<\/td>\nMCEGPeak Ground Acceleration (ASCE\/SEI 7-22, Section 21.5) <\/td>\n<\/tr>\n
329<\/td>\nMCEGPeak Ground Acceleration (ASCE\/SEI 7-22, Section 21.5) <\/td>\n<\/tr>\n
330<\/td>\nAdditional Revisions (ASCE\/SEI 7-22, Section 21.5) <\/td>\n<\/tr>\n
331<\/td>\nAdditional Revisions (ASCE\/SEI 7-22, Section 21.5) <\/td>\n<\/tr>\n
332<\/td>\nVertical Ground Motion (ASCE\/SEI 7-22, Section 11.9) <\/td>\n<\/tr>\n
333<\/td>\nVertical Ground Motion (ASCE\/SEI 7-22, Section 11.9) <\/td>\n<\/tr>\n
334<\/td>\nVertical Ground Motion (ASCE\/SEI 7-22, Section 11.9) <\/td>\n<\/tr>\n
335<\/td>\nSite Class when Shear Wave Velocity Data Unavailable (ASCE\/SEI 7-22, Section 20.3) <\/td>\n<\/tr>\n
336<\/td>\nSite Class when Shear Wave Velocity Data Unavailable (ASCE\/SEI 7-22, Section 20.3) <\/td>\n<\/tr>\n
337<\/td>\nSite Class when Shear Wave Velocity Data Unavailable <\/td>\n<\/tr>\n
338<\/td>\nSite Class when Shear Wave Velocity Data Unavailable <\/td>\n<\/tr>\n
339<\/td>\nQuestions <\/td>\n<\/tr>\n
340<\/td>\nDISCLAIMER <\/td>\n<\/tr>\n
341<\/td>\nChapter 4 Reinforced Concrete Ductile Coupled Shear Walls <\/td>\n<\/tr>\n
342<\/td>\nCoupled Walls <\/td>\n<\/tr>\n
343<\/td>\nCoupled Walls <\/td>\n<\/tr>\n
344<\/td>\nCoupled Walls <\/td>\n<\/tr>\n
345<\/td>\nCoupled Walls <\/td>\n<\/tr>\n
346<\/td>\nCoupled Walls <\/td>\n<\/tr>\n
347<\/td>\nDuctile Coupled Shear Walls <\/td>\n<\/tr>\n
348<\/td>\nEnergy Dissipation in Coupling Beams <\/td>\n<\/tr>\n
349<\/td>\nEnergy Dissipation in Coupling Beams <\/td>\n<\/tr>\n
350<\/td>\nACI 318-19 18.10.9 Ductile Coupled Walls <\/td>\n<\/tr>\n
351<\/td>\nSpecial Shear Walls <\/td>\n<\/tr>\n
352<\/td>\nDuctile Coupling Beams <\/td>\n<\/tr>\n
353<\/td>\nDuctile Coupling Beams <\/td>\n<\/tr>\n
354<\/td>\nDuctile Coupling Beams <\/td>\n<\/tr>\n
355<\/td>\n2020 NEHRP Provisions <\/td>\n<\/tr>\n
356<\/td>\n2020 NEHRP Provisions <\/td>\n<\/tr>\n
357<\/td>\nP695 Study <\/td>\n<\/tr>\n
358<\/td>\nAdditional ACI 318-19 Changes in Special Shear Wall Design <\/td>\n<\/tr>\n
359<\/td>\nAdditional ACI 318-19 Changes in Special Shear Wall Design <\/td>\n<\/tr>\n
360<\/td>\nShear Amplification: Concrete Shear Walls <\/td>\n<\/tr>\n
361<\/td>\nShear Amplification: Concrete Shear Walls <\/td>\n<\/tr>\n
362<\/td>\nShear Amplification: Concrete Shear Walls <\/td>\n<\/tr>\n
363<\/td>\nEarthquake Force-Resisting Structural Systems of Concrete \u2014 ASCE\/SEI 7-22 <\/td>\n<\/tr>\n
364<\/td>\nEarthquake Force-Resisting Structural Systems of Concrete \u2014 ASCE\/SEI 7-22 <\/td>\n<\/tr>\n
365<\/td>\nEarthquake Force-Resisting Structural Systems of Concrete \u2014 ASCE\/SEI 7-22 <\/td>\n<\/tr>\n
366<\/td>\nExample Problem <\/td>\n<\/tr>\n
367<\/td>\nIntroduction <\/td>\n<\/tr>\n
368<\/td>\nExample Building Configuration <\/td>\n<\/tr>\n
369<\/td>\nExample Building Configuration <\/td>\n<\/tr>\n
370<\/td>\nDesign Criteria <\/td>\n<\/tr>\n
371<\/td>\nDesign Criteria <\/td>\n<\/tr>\n
372<\/td>\nDesign Criteria <\/td>\n<\/tr>\n
373<\/td>\nDesign Criteria <\/td>\n<\/tr>\n
374<\/td>\nDesign Procedure <\/td>\n<\/tr>\n
375<\/td>\nAnalysis by Equivalent Lateral Force Procedure <\/td>\n<\/tr>\n
376<\/td>\nAnalysis by Equivalent Lateral Force Procedure <\/td>\n<\/tr>\n
377<\/td>\nModal Response Spectrum Analysis <\/td>\n<\/tr>\n
378<\/td>\nFloor Forces from MRSA <\/td>\n<\/tr>\n
379<\/td>\nStory Drifts from MRSA (X-Direction) <\/td>\n<\/tr>\n
380<\/td>\nStory Drifts from MRSA (Y-Direction) <\/td>\n<\/tr>\n
381<\/td>\nStory Drift Limitation <\/td>\n<\/tr>\n
382<\/td>\nDesign of Shear Wall <\/td>\n<\/tr>\n
383<\/td>\nDesign of Shear Wall \u2013 Design Loads <\/td>\n<\/tr>\n
384<\/td>\nDesign of Shear Wall \u2013 Design for Shear <\/td>\n<\/tr>\n
385<\/td>\nDesign of Shear Wall \u2013 Design for Shear <\/td>\n<\/tr>\n
386<\/td>\nDesign of Shear Wall \u2013 Design for Shear <\/td>\n<\/tr>\n
387<\/td>\nDesign of Shear Wall \u2013 Design for Shear <\/td>\n<\/tr>\n
388<\/td>\nDesign of Shear Wall \u2013 Design for Shear <\/td>\n<\/tr>\n
389<\/td>\nDesign of Shear Wall \u2013 Design for Shear <\/td>\n<\/tr>\n
390<\/td>\nDesign of Shear Wall \u2013 Design for Shear <\/td>\n<\/tr>\n
391<\/td>\nDesign of Shear Wall \u2013 Design for Shear <\/td>\n<\/tr>\n
392<\/td>\nBoundary Elements of Special RC Shear Walls <\/td>\n<\/tr>\n
393<\/td>\nBoundary Elements of Special RC Shear Walls <\/td>\n<\/tr>\n
394<\/td>\nBoundary Elements of Special RC Shear Walls <\/td>\n<\/tr>\n
395<\/td>\nBoundary Elements of Special RC Shear Walls <\/td>\n<\/tr>\n
396<\/td>\nBoundary Elements of Special RC Shear Walls <\/td>\n<\/tr>\n
397<\/td>\nBoundary Elements of Special RC Shear Walls <\/td>\n<\/tr>\n
398<\/td>\nBoundary Elements of Special RC Shear Walls <\/td>\n<\/tr>\n
399<\/td>\nBoundary Elements of Special RC Shear Walls <\/td>\n<\/tr>\n
400<\/td>\nBoundary Elements of Special RC Shear Walls <\/td>\n<\/tr>\n
401<\/td>\nBoundary Elements of Special RC Shear Walls <\/td>\n<\/tr>\n
402<\/td>\nBoundary Elements of Special RC Shear Walls <\/td>\n<\/tr>\n
403<\/td>\nBoundary Elements of Special RC Shear Walls <\/td>\n<\/tr>\n
404<\/td>\nDesign of Shear Wall (Grade 60 Reinforcement) <\/td>\n<\/tr>\n
405<\/td>\nCheck Strength Under Flexure and Axial Loads <\/td>\n<\/tr>\n
406<\/td>\nDesign of Shear Wall (Grade 80 Reinforcement) <\/td>\n<\/tr>\n
407<\/td>\nDesign of Shear Wall (Grade 80 Reinforcement) <\/td>\n<\/tr>\n
408<\/td>\nDesign of Coupling Beam <\/td>\n<\/tr>\n
409<\/td>\nDesign of Coupling Beam \u2013 Design Loads <\/td>\n<\/tr>\n
410<\/td>\nDesign of Coupling Beam \u2013 Design for Flexure <\/td>\n<\/tr>\n
411<\/td>\nDesign of Coupling Beam \u2013 Design for Flexure <\/td>\n<\/tr>\n
412<\/td>\nDesign of Coupling Beam \u2013 Design for Flexure <\/td>\n<\/tr>\n
413<\/td>\nDesign of Coupling Beam \u2013 Design for Flexure <\/td>\n<\/tr>\n
414<\/td>\nDesign of Coupling Beam \u2013 Design for Flexure <\/td>\n<\/tr>\n
415<\/td>\nDesign of Coupling Beam \u2013 Minimum Transverse Requirements <\/td>\n<\/tr>\n
416<\/td>\nDesign of Coupling Beam \u2013 Design for Shear <\/td>\n<\/tr>\n
417<\/td>\nDesign of Coupling Beam \u2013 Design for Shear <\/td>\n<\/tr>\n
418<\/td>\nDesign of Coupling Beam \u2013 Design for Shear <\/td>\n<\/tr>\n
419<\/td>\nQuestions <\/td>\n<\/tr>\n
420<\/td>\nDISCLAIMER <\/td>\n<\/tr>\n
421<\/td>\nChapter 5 Seismic Design of Coupled Composite Plate Shear Walls \/ Concrete Filled (C-PSW\/CF) <\/td>\n<\/tr>\n
422<\/td>\nTopics Covered <\/td>\n<\/tr>\n
423<\/td>\nIntroduction to Coupled C-PSW\/CFs (SpeedCore System) <\/td>\n<\/tr>\n
424<\/td>\nC-PSW\/CF (SpeedCore System) <\/td>\n<\/tr>\n
425<\/td>\nA New Chapter in Composite Construction <\/td>\n<\/tr>\n
427<\/td>\nA New Chapter in Composite Construction <\/td>\n<\/tr>\n
428<\/td>\nCoupled Composite Plate Shear Walls \u2013 Core Walls <\/td>\n<\/tr>\n
429<\/td>\nA New Chapter in Composite Construction <\/td>\n<\/tr>\n
430<\/td>\nSection Detailing, Limits, Requirements <\/td>\n<\/tr>\n
431<\/td>\nKey Components of C-PSW\/CF (SpeedCore System) <\/td>\n<\/tr>\n
432<\/td>\nSteel Plates <\/td>\n<\/tr>\n
433<\/td>\nLocal Buckling, Plate Slenderness, Axial Compression <\/td>\n<\/tr>\n
434<\/td>\nLocal Buckling, Plate Slenderness, Axial Compression <\/td>\n<\/tr>\n
435<\/td>\nLocal Buckling, Plate Slenderness, Axial Compression <\/td>\n<\/tr>\n
436<\/td>\nTie Bar Size, Spacing, and Stability of Empty Modules <\/td>\n<\/tr>\n
438<\/td>\nTie Bar Size, Spacing, and Stability of Empty Modules <\/td>\n<\/tr>\n
439<\/td>\nRecommendations for Stiffness <\/td>\n<\/tr>\n
440<\/td>\nRecommendations for Flexural Strength <\/td>\n<\/tr>\n
441<\/td>\nRecommendations for Shear Strength <\/td>\n<\/tr>\n
442<\/td>\nSeismic Design of Coupled Composite Plate Shear Walls \/ Concrete Filled (Capacity Design) <\/td>\n<\/tr>\n
443<\/td>\nSeismic Design of Coupled C-PSW\/CF <\/td>\n<\/tr>\n
444<\/td>\nSeismic Design of Coupled C-PSW\/CF <\/td>\n<\/tr>\n
445<\/td>\nSeismic Design Philosophy for Coupled C-PSW\/CF <\/td>\n<\/tr>\n
446<\/td>\nSeismic Design Philosophy <\/td>\n<\/tr>\n
447<\/td>\nDesign Example <\/td>\n<\/tr>\n
448<\/td>\nBuilding Description <\/td>\n<\/tr>\n
449<\/td>\nBuilding Description <\/td>\n<\/tr>\n
450<\/td>\nMaterial Properties <\/td>\n<\/tr>\n
451<\/td>\nLoads & Load Combinations <\/td>\n<\/tr>\n
452<\/td>\nBuilding Description <\/td>\n<\/tr>\n
453<\/td>\nSeismic Forces <\/td>\n<\/tr>\n
454<\/td>\nDesign Base Shear <\/td>\n<\/tr>\n
455<\/td>\nC-PSW\/CFs and Coupling Beam Dimensions <\/td>\n<\/tr>\n
456<\/td>\n2D Modeling of Coupled C-PSW\/CF <\/td>\n<\/tr>\n
457<\/td>\nInter-story Drift Limit <\/td>\n<\/tr>\n
458<\/td>\nLinear Elastic Analysis <\/td>\n<\/tr>\n
459<\/td>\nDesign Of Coupling Beams <\/td>\n<\/tr>\n
460<\/td>\nDesign Of Coupling Beams <\/td>\n<\/tr>\n
461<\/td>\nDesign Of Coupling Beams <\/td>\n<\/tr>\n
462<\/td>\nDesign Of C-PSW\/CFs <\/td>\n<\/tr>\n
463<\/td>\nDesign Of C-PSW\/CFs <\/td>\n<\/tr>\n
464<\/td>\nDesign Of C-PSW\/CFs <\/td>\n<\/tr>\n
465<\/td>\nDesign Of C-PSW\/CFs <\/td>\n<\/tr>\n
466<\/td>\nDesign Of C-PSW\/CFs <\/td>\n<\/tr>\n
467<\/td>\nDesign Of C-PSW\/CFs <\/td>\n<\/tr>\n
468<\/td>\nDesign Of C-PSW\/CFs <\/td>\n<\/tr>\n
469<\/td>\nDesign Of C-PSW\/CFs (Flexural Strengt <\/td>\n<\/tr>\n
470<\/td>\nDesign Of C-PSW\/CFs (Flexural Strength) <\/td>\n<\/tr>\n
471<\/td>\nP-M Interaction of C-PSW\/CFs <\/td>\n<\/tr>\n
472<\/td>\nDesign Of C-PSW\/CFs (Shear Strength) <\/td>\n<\/tr>\n
473<\/td>\nCoupling Beam-to-Wall Connection <\/td>\n<\/tr>\n
474<\/td>\nCoupling Beam-to-Wall Connection <\/td>\n<\/tr>\n
475<\/td>\nCoupling Beam-to-Wall Connection <\/td>\n<\/tr>\n
476<\/td>\nCoupling Beam-to-Wall Connection <\/td>\n<\/tr>\n
477<\/td>\nCheck Shear Strength of Coupling Beam Flange Plate <\/td>\n<\/tr>\n
478<\/td>\nCheck Shear Strength of Wall Web Plates <\/td>\n<\/tr>\n
479<\/td>\nCheck Ductile Behavior of Flange Plates <\/td>\n<\/tr>\n
480<\/td>\nCalculate Forces in Web Plates <\/td>\n<\/tr>\n
481<\/td>\nCalculate Force Demand on C-Shaped Weld <\/td>\n<\/tr>\n
482<\/td>\nCalculate Capacity of C-Shaped Weld <\/td>\n<\/tr>\n
483<\/td>\nCalculate Capacity of C-Shaped Weld <\/td>\n<\/tr>\n
484<\/td>\nQuestions <\/td>\n<\/tr>\n
485<\/td>\nDISCLAIMER <\/td>\n<\/tr>\n
486<\/td>\nChapter 6 Cross-Laminated Timber (CLT) Shear Walls <\/td>\n<\/tr>\n
487<\/td>\n6.1Overview -Cross-Laminated Timber (CLT) Shear Wall Example <\/td>\n<\/tr>\n
488<\/td>\n6.1Overview -Useful Design Aid Resources <\/td>\n<\/tr>\n
489<\/td>\n6.2Background <\/td>\n<\/tr>\n
490<\/td>\n6.2Background <\/td>\n<\/tr>\n
491<\/td>\n6.2Background <\/td>\n<\/tr>\n
492<\/td>\n6.2Background <\/td>\n<\/tr>\n
493<\/td>\n6.2Background <\/td>\n<\/tr>\n
494<\/td>\n6.2Background <\/td>\n<\/tr>\n
495<\/td>\n6.2Background <\/td>\n<\/tr>\n
496<\/td>\n6.2Background <\/td>\n<\/tr>\n
497<\/td>\n6.2Background <\/td>\n<\/tr>\n
498<\/td>\n6.2Background <\/td>\n<\/tr>\n
499<\/td>\n6.2Background <\/td>\n<\/tr>\n
500<\/td>\n6.3Cross-Laminated T imber Shear Wall Example Description <\/td>\n<\/tr>\n
501<\/td>\n6.3Cross-Laminated Timber Shear Wall Example Description <\/td>\n<\/tr>\n
502<\/td>\n6.3Cross-Laminated Timber Shear Wall Example Description <\/td>\n<\/tr>\n
503<\/td>\n6.4Seismic Forces <\/td>\n<\/tr>\n
504<\/td>\n6.4Seismic Forces <\/td>\n<\/tr>\n
505<\/td>\n6.5.1 Shear Capacity of Prescribed Connectors <\/td>\n<\/tr>\n
506<\/td>\n6.5.1 Shear Capacity of Prescribed Connectors <\/td>\n<\/tr>\n
507<\/td>\n6.5.1Shear Capacity of Prescribed Connectors <\/td>\n<\/tr>\n
508<\/td>\n6.5.2 Shear Capacity of CLT Panel <\/td>\n<\/tr>\n
509<\/td>\n6.6.1 CLT Shear Wall Hold-down Design <\/td>\n<\/tr>\n
510<\/td>\n6.6.1 CLT Shear Wall Hold-down Design <\/td>\n<\/tr>\n
511<\/td>\n6.6.1 CLT Shear Wall Hold-down Design <\/td>\n<\/tr>\n
512<\/td>\n6.6.1 CLT Shear Wall Hold-down Design <\/td>\n<\/tr>\n
513<\/td>\n6.6.2 CLT Shear Wall Compression Zone <\/td>\n<\/tr>\n
514<\/td>\n6.6.2 CLT Shear Wall Compression Zone <\/td>\n<\/tr>\n
515<\/td>\n6.7 CLT Shear Wall Deflection <\/td>\n<\/tr>\n
516<\/td>\n6.7 CLT Shear Wall Deflection <\/td>\n<\/tr>\n
517<\/td>\n6.8References <\/td>\n<\/tr>\n
518<\/td>\nQuestions <\/td>\n<\/tr>\n
519<\/td>\nDISCLAIMER <\/td>\n<\/tr>\n
520<\/td>\nChapter 7 Horizontal Diaphragm Design <\/td>\n<\/tr>\n
521<\/td>\nWhat\u2019s New in Diaphragm Design Provisions <\/td>\n<\/tr>\n
522<\/td>\nWhat\u2019s New in Diaphragm Design Provisions <\/td>\n<\/tr>\n
523<\/td>\nWhy Are Diaphragm Design Provisions Changing? <\/td>\n<\/tr>\n
524<\/td>\nDiaphragm Design Presentation Outline \u2013 Part 1 <\/td>\n<\/tr>\n
525<\/td>\nDiaphragm Design Presentation Outline \u2013 Part 2 <\/td>\n<\/tr>\n
526<\/td>\nOverview of Diaphragm Design <\/td>\n<\/tr>\n
527<\/td>\nOverview of Diaphragm Design <\/td>\n<\/tr>\n
528<\/td>\nOverview of Diaphragm Design <\/td>\n<\/tr>\n
529<\/td>\nOverview of Diaphragm Design <\/td>\n<\/tr>\n
530<\/td>\nOverview of Diaphragm Design <\/td>\n<\/tr>\n
531<\/td>\nOverview of Diaphragm Design \u2013 Transfer Forces <\/td>\n<\/tr>\n
532<\/td>\nOverview of Diaphragm Design -NEHRP Diaphragm Tech Bri efs <\/td>\n<\/tr>\n
533<\/td>\nOverview of Diaphragm Design -NEHRP Diaphragm Tech Briefs <\/td>\n<\/tr>\n
534<\/td>\nDiaphragm Seismic Design Methods <\/td>\n<\/tr>\n
535<\/td>\nDiaphragm Seismic Design Methods <\/td>\n<\/tr>\n
536<\/td>\nDiaphragm Seismic Design Methods <\/td>\n<\/tr>\n
537<\/td>\nDiaphragm Seismic Design Methods <\/td>\n<\/tr>\n
538<\/td>\nDiaphragm Seismic Design Methods <\/td>\n<\/tr>\n
539<\/td>\nDiaphragm Seismic Design Methods <\/td>\n<\/tr>\n
540<\/td>\nIntroduction t o Section 12.10.3 Alternative Design Provisions <\/td>\n<\/tr>\n
541<\/td>\nIntroduction t o Section 12.10.3 Alternative Design Provisions <\/td>\n<\/tr>\n
542<\/td>\nIntroduction to Section 12.10.3 Alternative Design Provisions <\/td>\n<\/tr>\n
543<\/td>\nIntroduction to Section 12.10.3 Alternative Design Provisions \u2013 Part 1 <\/td>\n<\/tr>\n
544<\/td>\nIntroduction to Section 12.10.3 Alternative Design Provisions \u2013 Part 2 <\/td>\n<\/tr>\n
545<\/td>\nIntroduction t o Section 12.10.4 Alternative RWFD Design Method <\/td>\n<\/tr>\n
546<\/td>\nIntroduction to Section 12.10.4 Alternative RWFD Design Method <\/td>\n<\/tr>\n
547<\/td>\nIntroduction to Section 12.10.4 Alternative RWFD Design Method <\/td>\n<\/tr>\n
548<\/td>\nIntroduction t o Section 12.10.4 Alternative RWFD Design Method <\/td>\n<\/tr>\n
549<\/td>\nExample Multi-Story Steel Building with Steel Deck Diaphragms <\/td>\n<\/tr>\n
550<\/td>\nExample Multi-Story Steel Building with Steel Deck Diaphragms <\/td>\n<\/tr>\n
551<\/td>\nExample Multi-Story Steel Building with Steel Deck Diaphragms <\/td>\n<\/tr>\n
552<\/td>\nExample Multi-Story Steel Building with Steel Deck Diaphragms <\/td>\n<\/tr>\n
553<\/td>\nExample Multi-Story Steel Building with Steel Deck Diaphragms <\/td>\n<\/tr>\n
554<\/td>\nExample Multi-Story Steel Building with Steel Deck Diaphragms <\/td>\n<\/tr>\n
555<\/td>\nExample Multi-Story Steel Building with Steel Deck Diaphragms <\/td>\n<\/tr>\n
556<\/td>\nExample Multi-Story Steel Building with Steel Deck Diaphragms <\/td>\n<\/tr>\n
557<\/td>\nExample Multi-Story Steel Building with Steel Deck Diaphragms <\/td>\n<\/tr>\n
558<\/td>\nExample Multi-Story Steel Building with Steel Deck Diaphragms <\/td>\n<\/tr>\n
559<\/td>\nExample Multi-Story Steel Building with Steel Deck Diaphragms <\/td>\n<\/tr>\n
560<\/td>\nExample Multi-Story Steel Building with Steel Deck Diaphragms <\/td>\n<\/tr>\n
561<\/td>\nExample Multi-Story Steel Building with Steel Deck Diaphragms
Traditional Design Method (12.10.1 & 12.10.2) <\/td>\n<\/tr>\n
562<\/td>\nTraditional Design Method <\/td>\n<\/tr>\n
563<\/td>\nTraditional Design Method <\/td>\n<\/tr>\n
564<\/td>\nTraditional Design Method <\/td>\n<\/tr>\n
565<\/td>\nTraditional Design Method <\/td>\n<\/tr>\n
566<\/td>\nTraditional Design Method <\/td>\n<\/tr>\n
567<\/td>\nTraditional Design Method <\/td>\n<\/tr>\n
568<\/td>\nTraditional Design Method <\/td>\n<\/tr>\n
569<\/td>\nTraditional Design Method <\/td>\n<\/tr>\n
570<\/td>\nTraditional Design Method <\/td>\n<\/tr>\n
571<\/td>\nTraditional Design Method <\/td>\n<\/tr>\n
572<\/td>\nTraditional Design Method <\/td>\n<\/tr>\n
573<\/td>\nTraditional Design Method <\/td>\n<\/tr>\n
574<\/td>\nTraditional Design Method <\/td>\n<\/tr>\n
575<\/td>\nExample Multi-Story Steel Building with Steel Deck Diaphragms <\/td>\n<\/tr>\n
576<\/td>\nAlternative Design Provisions (Section 12.10.3) -Introduction <\/td>\n<\/tr>\n
577<\/td>\nAlternative Design Method (Section 12.10.3) -Introduction <\/td>\n<\/tr>\n
578<\/td>\nExample Multi-Story Steel Building with Steel Deck Diaphragms <\/td>\n<\/tr>\n
579<\/td>\nAlternative Design Method (Section 12.10.3) <\/td>\n<\/tr>\n
580<\/td>\nAlternative Design Method (Section 12.10.3) <\/td>\n<\/tr>\n
581<\/td>\nAlternative Design Method (Section 12.10.3) <\/td>\n<\/tr>\n
582<\/td>\nAlternative Design Method (Section 12.10.3) <\/td>\n<\/tr>\n
583<\/td>\nAlternative Design Method (Section 12.10.3) <\/td>\n<\/tr>\n
584<\/td>\nAlternative Design Method (Section 12.10.3) <\/td>\n<\/tr>\n
585<\/td>\nAlternative Design Method (Section 12.10.3) <\/td>\n<\/tr>\n
586<\/td>\nAlternative Design Method (Section 12.10.3) <\/td>\n<\/tr>\n
587<\/td>\nAlternative Design Method (Section 12.10.3) <\/td>\n<\/tr>\n
588<\/td>\nAlternative Design Method (Section 12.10.3) <\/td>\n<\/tr>\n
589<\/td>\nAlternative Design Method (Section 12.10.3) <\/td>\n<\/tr>\n
590<\/td>\nAlternative Design Method (Section 12.10.3) <\/td>\n<\/tr>\n
591<\/td>\nAlternative Design Method (Section 12.10.3) <\/td>\n<\/tr>\n
592<\/td>\nAlternative Design Method (Section 12.10.3) <\/td>\n<\/tr>\n
593<\/td>\nAlternative Design Method (Section 12.10.3) <\/td>\n<\/tr>\n
594<\/td>\nAlternative Design Method (Section 12.10.3) <\/td>\n<\/tr>\n
595<\/td>\nAlternative Design Method (Section 12.10.3) <\/td>\n<\/tr>\n
596<\/td>\nAlternative Design Method (Section 12.10.3) <\/td>\n<\/tr>\n
597<\/td>\nAlternative Design Method (Section 12.10.3) <\/td>\n<\/tr>\n
598<\/td>\nExample Multi-Story Steel Building with Steel Deck Diaphragms <\/td>\n<\/tr>\n
599<\/td>\nComparison of Design Me thods <\/td>\n<\/tr>\n
600<\/td>\nComparison of Design Me thods <\/td>\n<\/tr>\n
601<\/td>\nComparison of Design Me thods <\/td>\n<\/tr>\n
602<\/td>\nPart 1 Closing Comments <\/td>\n<\/tr>\n
603<\/td>\nQuestions <\/td>\n<\/tr>\n
604<\/td>\nDISCLAIMER <\/td>\n<\/tr>\n
605<\/td>\nChapter 7 \u2013 Part 2 Horizontal Diaphragm Design <\/td>\n<\/tr>\n
606<\/td>\nExample One-Story RWFD Building with Bare Steel Deck Diaphragm <\/td>\n<\/tr>\n
607<\/td>\nDiaphragm Design Presentation Outline \u2013 Part 2 <\/td>\n<\/tr>\n
608<\/td>\nExample One-Story RWFD Building with Steel Deck Diaphragm <\/td>\n<\/tr>\n
609<\/td>\nExample One-Story RWFD Building with Steel Deck Diaphragm <\/td>\n<\/tr>\n
610<\/td>\nExample One-Story RWFD Building with Steel Deck Diaphragm <\/td>\n<\/tr>\n
611<\/td>\nExample One-Story RWFD Building with Steel Deck Diaphragm <\/td>\n<\/tr>\n
612<\/td>\nExample One-Story RWFD Building with Steel Deck Diaphragm <\/td>\n<\/tr>\n
613<\/td>\nExample One-Story RWFD Building with Steel Deck Diaphragm <\/td>\n<\/tr>\n
614<\/td>\nExample One-Story RWFD Building with Steel Deck Diaphragm <\/td>\n<\/tr>\n
615<\/td>\nTraditional Design Method <\/td>\n<\/tr>\n
616<\/td>\nTraditional Design Method <\/td>\n<\/tr>\n
617<\/td>\nTraditional Design Method <\/td>\n<\/tr>\n
618<\/td>\nTraditional Design Method <\/td>\n<\/tr>\n
619<\/td>\nTraditional Design Method <\/td>\n<\/tr>\n
620<\/td>\nTraditional Design Method <\/td>\n<\/tr>\n
621<\/td>\nTraditional Design Method <\/td>\n<\/tr>\n
622<\/td>\nExample One-Story RWFD Building with Steel Deck Diaphragm <\/td>\n<\/tr>\n
623<\/td>\nDiaphragm Seismic Design Methods <\/td>\n<\/tr>\n
624<\/td>\nAlternative RWFD Design Method (Meeting Special Seismic Detailing Requirements, 12.10.4) <\/td>\n<\/tr>\n
625<\/td>\nAlternative RWFD Design Method (Meeting Special Seismic Detailing Requirements, 12.10.4) <\/td>\n<\/tr>\n
626<\/td>\nAlternative RWFD Design Method (Meeting Special Seismic Detailing Requirements, 12.10.4) <\/td>\n<\/tr>\n
627<\/td>\nAlternative RWFD Design Method (Meeting Special Seismic Detailing Requirements, 12.10.4) <\/td>\n<\/tr>\n
628<\/td>\nAlternative RWFD Design Method (Meeting Special Seismic Detailing Requirements, 12.10.4) <\/td>\n<\/tr>\n
629<\/td>\nAlternative RWFD Design Method (Meeting Special Seismic Detailing Requirements, 12.10.4) <\/td>\n<\/tr>\n
630<\/td>\nAlternative RWFD Design Method (Meeting Special Seismic Detailing Requirements AISI S400 Section F3.5.1) <\/td>\n<\/tr>\n
631<\/td>\nAlternative RWFD Design Method (Meeting Special Seismic Detailing Requirements AISI S400 Section F3.5.1) <\/td>\n<\/tr>\n
632<\/td>\nAlternative RWFD Design Method (Meeting Special Seismic Detailing Requirements AISI S400 Section F3.5.1) <\/td>\n<\/tr>\n
633<\/td>\nAlternative RWFD Design Method (Meeting Special Seismic Detailing Requirements, 12.10.4) <\/td>\n<\/tr>\n
634<\/td>\nAlternative RWFD Design Method (Meeting Special Seismic Detailing Requirements, 12.10.4) <\/td>\n<\/tr>\n
635<\/td>\nAlternative RWFD Design Method (Meeting Special Seismic Detailing Requirements, 12.10.4) <\/td>\n<\/tr>\n
636<\/td>\nAlternative RWFD Design Method (Meeting Special Seismic Detailing Requirements, 12.10.4) <\/td>\n<\/tr>\n
637<\/td>\nAlternative RWFD Design Method (Meeting Special Seismic Detailing Requirements, 12.10.4) <\/td>\n<\/tr>\n
638<\/td>\nAlternative RWFD Design Method (Meeting Special Seismic Detailing Requirements, 12.10.4) <\/td>\n<\/tr>\n
639<\/td>\nAlternative RWFD Design Method (Meeting Special Seismic Detailing Requirements, 12.10.4) <\/td>\n<\/tr>\n
640<\/td>\nAlternative RWFD Design Method (Meeting Special Seismic Detailing Requirements, 12.10.4) <\/td>\n<\/tr>\n
641<\/td>\nAlternative RWFD Design Method (Meeting Special Seismic Detailing Requirements, 12.10.4) <\/td>\n<\/tr>\n
642<\/td>\nAlternative RWFD Design Method (Meeting Special Seismic Detailing Requirements, 12.10.4) <\/td>\n<\/tr>\n
643<\/td>\nExample One-Story RWFD Building with Steel Deck Diaphragm
Alternative RWFD Design Method (12.10.4) NOT Meeting AISI S400 Special Seismic Detailing Requirements <\/td>\n<\/tr>\n
644<\/td>\nAlternative RWFD Design Method (NOT Meeting Special Seismic Detailing Requirements, 12.10.4) <\/td>\n<\/tr>\n
645<\/td>\nAlternative RWFD Design Method (NOT Meeting Special Seismic Detailing Requirements, 12.10.4) <\/td>\n<\/tr>\n
646<\/td>\nAlternative RWFD Design Method (NOT Meeting Special Seismic Detailing Requirements, 12.10.4) <\/td>\n<\/tr>\n
647<\/td>\nAlternative RWFD Design Method (NOT Meeting Special Seismic Detailing Requirements, 12.10.4) <\/td>\n<\/tr>\n
648<\/td>\nAlternative RWFD Design Method (NOT Meeting Special Seismic Detailing Requirements, 12.10.4) <\/td>\n<\/tr>\n
649<\/td>\nAlternative RWFD Design Method (NOT Meeting Special Seismic Detailing Requirements, 12.10.4) <\/td>\n<\/tr>\n
650<\/td>\nAlternative RWFD Design Method (NOT Meeting Special Seismic Detailing Requirements, 12.10.4) <\/td>\n<\/tr>\n
651<\/td>\nAlternative RWFD Design Method (NOT Meeting Special Seismic Detailing Requirements, 12.10.4) <\/td>\n<\/tr>\n
652<\/td>\nAlternative RWFD Design Method (NOT Meeting Special Seismic Detailing Requirements, 12.10.4) <\/td>\n<\/tr>\n
653<\/td>\nAlternative RWFD Design Method (NOT Meeting Special Seismic Detailing Requirements, 12.10.4) <\/td>\n<\/tr>\n
654<\/td>\nAlternative RWFD Design Method (NOT Meeting Special Seismic Detailing Requirements, 12.10.4) <\/td>\n<\/tr>\n
655<\/td>\nAlternative RWFD Design Method (Meeting Special Seismic Detailing Requirements, 12.10.4) <\/td>\n<\/tr>\n
656<\/td>\nAlternative RWFD Design Method (NOT Meeting Special Seismic Detailing Requirements, 12.10.4) <\/td>\n<\/tr>\n
657<\/td>\nAlternative RWFD Design Method (NOT Meeting Special Seismic Detailing Requirements, 12.10.4) <\/td>\n<\/tr>\n
658<\/td>\nAlternative RWFD Design Method (NOT Meeting Special Seismic Detailing Requirements, 12.10.4) <\/td>\n<\/tr>\n
659<\/td>\nExample One-Story RWFD Building with Steel Deck Diaphragm <\/td>\n<\/tr>\n
660<\/td>\nComparison of Design Me thods <\/td>\n<\/tr>\n
661<\/td>\nComparison of Design Me thods <\/td>\n<\/tr>\n
662<\/td>\nPart 2 -Closing Comments <\/td>\n<\/tr>\n
663<\/td>\nQuestions <\/td>\n<\/tr>\n
664<\/td>\nDISCLAIMER <\/td>\n<\/tr>\n
665<\/td>\nChapter 8 Nonstructural Components: Fundamentals and Design Examples <\/td>\n<\/tr>\n
666<\/td>\nLearning Objectives <\/td>\n<\/tr>\n
667<\/td>\nOutline of Presentation <\/td>\n<\/tr>\n
668<\/td>\nFundamentals <\/td>\n<\/tr>\n
669<\/td>\nNonstructural Components <\/td>\n<\/tr>\n
670<\/td>\nRelative Costs <\/td>\n<\/tr>\n
671<\/td>\nAnticipated Behavior of Noncritical Nonstructural Components From ASCE\/SEI 7-22 Sections C13.1 and C13.1.3 <\/td>\n<\/tr>\n
672<\/td>\nASCE\/SEI 7-22 Chapter 13: Seismic Design Requirements for Nonstructural Components <\/td>\n<\/tr>\n
673<\/td>\nCode Development Process for Recent Revisions to Nonstructural Provisions <\/td>\n<\/tr>\n
674<\/td>\nKey Terminology <\/td>\n<\/tr>\n
675<\/td>\nParameters Influencing Nonstructural Response <\/td>\n<\/tr>\n
676<\/td>\nSeismic Force-Resisting System <\/td>\n<\/tr>\n
677<\/td>\nBuilding Modal Periods, Tn,bldg <\/td>\n<\/tr>\n
678<\/td>\nComponent Period, Tcomp, and Building Period Resonance <\/td>\n<\/tr>\n
679<\/td>\nSources of Component and\/or Anchorage Ductility <\/td>\n<\/tr>\n
680<\/td>\nComponent\/Anchorage Ductility, \u03bccomp <\/td>\n<\/tr>\n
681<\/td>\nATC-12O Proposed Seismic Design Force Equation <\/td>\n<\/tr>\n
682<\/td>\nEvolution of Seismic Design Force Equation <\/td>\n<\/tr>\n
683<\/td>\nPFA\/PGA (Hf) Amplification Factor <\/td>\n<\/tr>\n
684<\/td>\nBuilding Ductility, R\u03bc <\/td>\n<\/tr>\n
685<\/td>\nPCA\/PFA (CAR) <\/td>\n<\/tr>\n
686<\/td>\nUnlikely vs. Likely to be in Resonance <\/td>\n<\/tr>\n
687<\/td>\nComponent Resonance Ductility Factor, CAR, and Component Strength, Rpo <\/td>\n<\/tr>\n
688<\/td>\nAlternative Procedure for Nonlinear Response History Analysis <\/td>\n<\/tr>\n
689<\/td>\nEquipment Support Structures and Platforms and Distribution System Supports <\/td>\n<\/tr>\n
690<\/td>\nAccommodation of Seismic Relative Displacements <\/td>\n<\/tr>\n
691<\/td>\nDevelopment of Nonstructural Seismic Design Force Equations <\/td>\n<\/tr>\n
692<\/td>\nProposed Equations in NIST GCR 18-917-43 <\/td>\n<\/tr>\n
693<\/td>\nProposed Equations in NIST GCR 18-917-43 <\/td>\n<\/tr>\n
694<\/td>\nRevisions in the 2020 NEHRP Provisions <\/td>\n<\/tr>\n
695<\/td>\nRevisions in the 2020 NEHRP Provisions <\/td>\n<\/tr>\n
696<\/td>\nRevisions for ASCE\/SEI 7-22 <\/td>\n<\/tr>\n
697<\/td>\nSignificant Changes from ASCE\/SEI 7-16 to ASCE\/SEI 7-22 <\/td>\n<\/tr>\n
698<\/td>\nSignificant Changes from ASCE\/SEI 7-16 to ASCE\/SEI 7-22 (cont.) <\/td>\n<\/tr>\n
699<\/td>\nMinor Changes from ASCE\/SEI 7-16 to ASCE\/SEI 7-22 <\/td>\n<\/tr>\n
700<\/td>\nUnchanged in ASCE\/SEI 7-22 (same as ASCE\/SEI 7-16) <\/td>\n<\/tr>\n
701<\/td>\nQuestions? <\/td>\n<\/tr>\n
702<\/td>\nDesign Examples <\/td>\n<\/tr>\n
703<\/td>\nDesign Examples for Architectural Components <\/td>\n<\/tr>\n
704<\/td>\nArchitectural Concrete Wall Panel <\/td>\n<\/tr>\n
705<\/td>\nArchitectural Concrete Wall Panel Description <\/td>\n<\/tr>\n
706<\/td>\nArchitectural Concrete Wall Panel Description <\/td>\n<\/tr>\n
707<\/td>\nProviding Gravity Support and Accommodating Story Drift in Cladding <\/td>\n<\/tr>\n
708<\/td>\nRocking Cladding Connection System <\/td>\n<\/tr>\n
709<\/td>\nRocking Cladding Connection System <\/td>\n<\/tr>\n
710<\/td>\nWindow Framing System Racking Mechanism <\/td>\n<\/tr>\n
711<\/td>\nASCE\/SEI 7-22 Parameters and Coefficients <\/td>\n<\/tr>\n
712<\/td>\nASCE\/SEI 7-22 Parameters and Coefficients <\/td>\n<\/tr>\n
713<\/td>\nASCE\/SEI 7-22 Parameters and Coefficients <\/td>\n<\/tr>\n
714<\/td>\nASCE\/SEI 7-22 Parameters and Coefficients <\/td>\n<\/tr>\n
715<\/td>\nApplicable Requirements <\/td>\n<\/tr>\n
716<\/td>\nSpandrel Panel Layout <\/td>\n<\/tr>\n
717<\/td>\nPrescribed Seismic Forces: Wall Element and Body of Wall Panel Connections <\/td>\n<\/tr>\n
718<\/td>\nPrescribed Seismic Forces: Wall Element and Body of Wall Panel Connections <\/td>\n<\/tr>\n
719<\/td>\nProportioning and Design: Wall Element and Body of Wall Panel Connections <\/td>\n<\/tr>\n
720<\/td>\nProportioning and Design: W all Element and Body of Wall Panel Connections <\/td>\n<\/tr>\n
721<\/td>\nProportioning and Design: Wall Element and Body of Wall Panel Connections <\/td>\n<\/tr>\n
722<\/td>\nPrescribed Seismic Forces: Fasteners of the Connecting System <\/td>\n<\/tr>\n
723<\/td>\nPrescribed Seismic Forces: Fasteners of the Connecting System <\/td>\n<\/tr>\n
724<\/td>\nProportioning and Design: Fasteners of the Connecting System <\/td>\n<\/tr>\n
725<\/td>\nConcrete Cover Layout and Seismic Forces <\/td>\n<\/tr>\n
726<\/td>\nPrescribed Seismic Displacements <\/td>\n<\/tr>\n
727<\/td>\nPrescribed Seismic Displacements: Accommodating Drift in Glazing <\/td>\n<\/tr>\n
728<\/td>\nPrescribed Seismic Displacements: Accommodating Drift in Glazing <\/td>\n<\/tr>\n
729<\/td>\nPrescribed Seismic Displacements: Accommodating Drift in Glazing <\/td>\n<\/tr>\n
730<\/td>\nQuestions? <\/td>\n<\/tr>\n
731<\/td>\nSeismic Analysis of Egress Stairs <\/td>\n<\/tr>\n
732<\/td>\nEgress Stairs Description <\/td>\n<\/tr>\n
733<\/td>\nEgress Stairs Description <\/td>\n<\/tr>\n
734<\/td>\nASCE\/SEI 7-22 Parameters and Coefficients <\/td>\n<\/tr>\n
735<\/td>\nASCE\/SEI 7-22 Parameters and Coefficients <\/td>\n<\/tr>\n
736<\/td>\nASCE\/SEI 7-22 Parameters and Coefficients <\/td>\n<\/tr>\n
737<\/td>\nASCE\/SEI 7-22 Parameters and Coefficients <\/td>\n<\/tr>\n
738<\/td>\nApplicable Requirements <\/td>\n<\/tr>\n
739<\/td>\nApplicable Requirements (Continued) <\/td>\n<\/tr>\n
740<\/td>\nPrescribed Seismic Forces: Egress Stairways not Part of the Building Seismic Force-Resisting System <\/td>\n<\/tr>\n
741<\/td>\nPrescribed Seismic Forces: Egress Stairways not Part of the Building Seismic Force-Resisting System <\/td>\n<\/tr>\n
742<\/td>\nPrescribed Seismic Forces: Egress Stairways not Part of the Building Seismic Force-Resisting System <\/td>\n<\/tr>\n
743<\/td>\nPrescribed Seismic Forces: Egress Stairways not Part of the Building Seismic Force-Resisting System <\/td>\n<\/tr>\n
744<\/td>\nIncreased Seismic Forces for Fasteners and Attachments <\/td>\n<\/tr>\n
745<\/td>\nPrescribed Seismic Forces: Egress Stairs and Ramp Fasteners and Attachments <\/td>\n<\/tr>\n
746<\/td>\nPrescribed Seismic Forces: Egress Stairs and Ramp Fasteners and Attachments <\/td>\n<\/tr>\n
747<\/td>\nPrescribed Seismic Displacements <\/td>\n<\/tr>\n
748<\/td>\nStairway Design Load Combinations <\/td>\n<\/tr>\n
749<\/td>\nQuestions? <\/td>\n<\/tr>\n
750<\/td>\nHVAC Fan Unit Support <\/td>\n<\/tr>\n
751<\/td>\nHVAC Fan Unit Support Description <\/td>\n<\/tr>\n
752<\/td>\nHVAC Fan Unit Support Description <\/td>\n<\/tr>\n
753<\/td>\nASCE\/SEI 7-22 Parameters and Coefficients <\/td>\n<\/tr>\n
754<\/td>\nASCE\/SEI 7-22 Parameters and Coefficients <\/td>\n<\/tr>\n
755<\/td>\nASCE\/SEI 7-22 Parameters and Coefficients <\/td>\n<\/tr>\n
756<\/td>\nASCE\/SEI 7-22 Parameters and Coefficients <\/td>\n<\/tr>\n
757<\/td>\nApplicable Requirements <\/td>\n<\/tr>\n
758<\/td>\nApplicable Requirements (Continued) <\/td>\n<\/tr>\n
759<\/td>\nPrescribed Seismic Forces: Case 1: Direct Attachment to Structure <\/td>\n<\/tr>\n
760<\/td>\nPrescribed Seismic Forces: Case 1: Direct Attachment to Structure <\/td>\n<\/tr>\n
761<\/td>\nProportioning and Design:Case 1: Direct Attachment to Structure <\/td>\n<\/tr>\n
762<\/td>\nProportioning and Design:Case 1: Direct Attachment to Structure <\/td>\n<\/tr>\n
763<\/td>\nPrescribed Seismic Forces: Case 2: Support on Vibration Isolation Springs <\/td>\n<\/tr>\n
764<\/td>\nPrescribed Seismic Forces: Case 2: Support on Vibration Isolation Springs <\/td>\n<\/tr>\n
765<\/td>\nProportioning and Design:Case 2: Support on Vibration Isolation Springs <\/td>\n<\/tr>\n
766<\/td>\nProportioning and Design:Case 2: Support on Vibration Isolation Springs <\/td>\n<\/tr>\n
767<\/td>\nProportioning and Design:Case 2: Support on Vibration Isolation Springs <\/td>\n<\/tr>\n
768<\/td>\nProportioning and Design:Case 2: Support on Vibration Isolation Springs <\/td>\n<\/tr>\n
769<\/td>\nQuestions? <\/td>\n<\/tr>\n
770<\/td>\nPiping System Seismic Design <\/td>\n<\/tr>\n
771<\/td>\nPiping System Description <\/td>\n<\/tr>\n
772<\/td>\nPiping System Description <\/td>\n<\/tr>\n
773<\/td>\nPiping System Description <\/td>\n<\/tr>\n
774<\/td>\nPiping System Description: Bracing <\/td>\n<\/tr>\n
775<\/td>\nPiping System Description: System Configuration <\/td>\n<\/tr>\n
776<\/td>\nPiping System Description: System Configuration <\/td>\n<\/tr>\n
777<\/td>\nPiping System Description: System Configuration <\/td>\n<\/tr>\n
778<\/td>\nASCE\/SEI 7-22 Parameters and Coefficients <\/td>\n<\/tr>\n
779<\/td>\nASCE\/SEI 7-22 Parameters and Coefficients <\/td>\n<\/tr>\n
780<\/td>\nPiping and Braces Parameters <\/td>\n<\/tr>\n
781<\/td>\nASCE\/SEI 7-22 Parameters and Coefficients <\/td>\n<\/tr>\n
782<\/td>\nApplicable Requirements <\/td>\n<\/tr>\n
783<\/td>\nPrescribed Seismic Forces: Piping System Design <\/td>\n<\/tr>\n
784<\/td>\nProportioning and Design: Piping System Design <\/td>\n<\/tr>\n
785<\/td>\nProportioning and Design: Piping System Design <\/td>\n<\/tr>\n
786<\/td>\nProportioning and Design: Piping System Design <\/td>\n<\/tr>\n
787<\/td>\nProportioning and Design: Piping System Design <\/td>\n<\/tr>\n
788<\/td>\nProportioning and Design: Piping System Design <\/td>\n<\/tr>\n
789<\/td>\nProportioning and Design: Piping System Design <\/td>\n<\/tr>\n
790<\/td>\nPrescribed Seismic Forces: Pipe Supports and Bracing <\/td>\n<\/tr>\n
791<\/td>\nPrescribed Seismic Forces: Pipe Supports and Bracing <\/td>\n<\/tr>\n
792<\/td>\nProportioning and Design: Pipe Supports and Bracing <\/td>\n<\/tr>\n
793<\/td>\nProportioning and Design: Pipe Supports and Bracing <\/td>\n<\/tr>\n
794<\/td>\nProportioning and Design: Pipe Supports and Bracing <\/td>\n<\/tr>\n
795<\/td>\nProportioning and Design: Pipe Supports and Bracing <\/td>\n<\/tr>\n
796<\/td>\nPrescribed Seismic Displacements <\/td>\n<\/tr>\n
797<\/td>\nPrescribed Seismic Displacements <\/td>\n<\/tr>\n
798<\/td>\nPrescribed Seismic Displacements <\/td>\n<\/tr>\n
799<\/td>\nPrescribed Seismic Displacements <\/td>\n<\/tr>\n
800<\/td>\nQuestions? <\/td>\n<\/tr>\n
801<\/td>\nElevated Vessel Seismic Design <\/td>\n<\/tr>\n
802<\/td>\nElevated Vessel Description <\/td>\n<\/tr>\n
803<\/td>\nElevated Vessel Description <\/td>\n<\/tr>\n
805<\/td>\nElevated Vessel Description <\/td>\n<\/tr>\n
806<\/td>\nASCE\/SEI 7-22 Parameters and Coefficients <\/td>\n<\/tr>\n
807<\/td>\nASCE\/SEI 7-22 Parameters and Coefficients <\/td>\n<\/tr>\n
808<\/td>\nASCE\/SEI 7-22 Parameters and Steel Material Properties <\/td>\n<\/tr>\n
809<\/td>\nASCE\/SEI 7-22 Parameters and Coefficients <\/td>\n<\/tr>\n
810<\/td>\nApplicable Requirements <\/td>\n<\/tr>\n
811<\/td>\nApplicable Requirements (Continued) <\/td>\n<\/tr>\n
812<\/td>\nPrescribed Seismic Forces: Vessel Support and Attachments <\/td>\n<\/tr>\n
813<\/td>\nPrescribed Seismic Forces: Vessel Support and Attachments <\/td>\n<\/tr>\n
814<\/td>\nProportioning and Design: Vessel Support and Attachments <\/td>\n<\/tr>\n
815<\/td>\nProportioning and Design: Vessel Support and Attachments <\/td>\n<\/tr>\n
816<\/td>\nProportioning and Design: Vessel Support and Attachments <\/td>\n<\/tr>\n
817<\/td>\nProportioning and Design: Vessel Support and Attachments <\/td>\n<\/tr>\n
818<\/td>\nProportioning and Design: Vessel Support and Attachments <\/td>\n<\/tr>\n
819<\/td>\nProportioning and Design: Vessel Support and Attachments <\/td>\n<\/tr>\n
820<\/td>\nProportioning and Design: Vessel Support and Attachments <\/td>\n<\/tr>\n
821<\/td>\nProportioning and Design: Vessel Support and Attachments <\/td>\n<\/tr>\n
822<\/td>\nProportioning and Design: Vessel Support and Attachments <\/td>\n<\/tr>\n
823<\/td>\nProportioning and Design: Vessel Support and Attachments <\/td>\n<\/tr>\n
824<\/td>\nProportioning and Design: Vessel Support and Attachments <\/td>\n<\/tr>\n
825<\/td>\nProportioning and Design: Vessel Support and Attachments <\/td>\n<\/tr>\n
826<\/td>\nProportioning and Design: Vessel Support and Attachments <\/td>\n<\/tr>\n
827<\/td>\nPrescribed Seismic Forces: Supporting Frame <\/td>\n<\/tr>\n
828<\/td>\nPrescribed Seismic Forces: Supporting Frame <\/td>\n<\/tr>\n
829<\/td>\nProportioning and Design: Supporting Frame <\/td>\n<\/tr>\n
830<\/td>\nProportioning and Design: Supporting Frame <\/td>\n<\/tr>\n
831<\/td>\nProportioning and Design: Supporting Frame <\/td>\n<\/tr>\n
832<\/td>\nProportioning and Design: Supporting Frame <\/td>\n<\/tr>\n
833<\/td>\nProportioning and Design: Supporting Frame <\/td>\n<\/tr>\n
834<\/td>\nProportioning and Design: Supporting Frame <\/td>\n<\/tr>\n
835<\/td>\nQuestions? <\/td>\n<\/tr>\n
836<\/td>\nDISCLAIMER <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":"

FEMA P-2192-V2 2020 NEHRP Recommended Seismic Provisions: Design Examples, Training Materials, and Design Flow Charts – Volume II: Training Materials<\/b><\/p>\n\n\n\n\n
Published By<\/td>\nPublication Date<\/td>\nNumber of Pages<\/td>\n<\/tr>\n
FEMA<\/b><\/a><\/td>\n2020<\/td>\n<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n","protected":false},"featured_media":394119,"template":"","meta":{"rank_math_lock_modified_date":false,"ep_exclude_from_search":false},"product_cat":[2743],"product_tag":[],"class_list":{"0":"post-394111","1":"product","2":"type-product","3":"status-publish","4":"has-post-thumbnail","6":"product_cat-fema","8":"first","9":"instock","10":"sold-individually","11":"shipping-taxable","12":"purchasable","13":"product-type-simple"},"_links":{"self":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product\/394111","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product"}],"about":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/types\/product"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media\/394119"}],"wp:attachment":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media?parent=394111"}],"wp:term":[{"taxonomy":"product_cat","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_cat?post=394111"},{"taxonomy":"product_tag","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_tag?post=394111"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}