{"id":124954,"date":"2024-10-19T05:02:17","date_gmt":"2024-10-19T05:02:17","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/icc-uniformbuildingcode-vol2-1997\/"},"modified":"2024-10-24T23:13:23","modified_gmt":"2024-10-24T23:13:23","slug":"icc-uniformbuildingcode-vol2-1997","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/icc\/icc-uniformbuildingcode-vol2-1997\/","title":{"rendered":"ICC UniformBuildingCode Vol2 1997"},"content":{"rendered":"
No Description<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
1<\/td>\n | 1997 UNIFORM BUILDING CODE VOLUME 2 – STRUCTURAL ENGINEERING DESIGN PROVISIONS <\/td>\n<\/tr>\n | ||||||
3<\/td>\n | COPYRIGHT <\/td>\n<\/tr>\n | ||||||
4<\/td>\n | PREFACE <\/td>\n<\/tr>\n | ||||||
5<\/td>\n | CODES AND RELATED PUBLICATIONS CODES <\/td>\n<\/tr>\n | ||||||
6<\/td>\n | TECHNICAL REFERENCES AND EDUCATIONAL MATERIALS <\/td>\n<\/tr>\n | ||||||
7<\/td>\n | TABLE OF CONTENTS – VOLUME 1 <\/td>\n<\/tr>\n | ||||||
11<\/td>\n | TABLE OF CONTENTS TABLE OF CONTENTS – VOLUME 2 <\/td>\n<\/tr>\n | ||||||
15<\/td>\n | TABLE OF CONTENTS – VOLUME 3 <\/td>\n<\/tr>\n | ||||||
17<\/td>\n | EFFECTIVE USE OF THE UNIFORM BUILDING CODE <\/td>\n<\/tr>\n | ||||||
18<\/td>\n | CHAPTER 16 STRUCTURAL DESIGN REQUIREMENTS DIVISION I\u2022GENERAL DESIGN REQUIREMENTS SECTION 1601 \u2022 SCOPE SECTION 1602 \u2022 DEFINITIONS SECTION 1603 \u2022 NOTATIONS SECTION 1604 \u2022 STANDARDS SECTION 1605 \u2022 DESIGN <\/td>\n<\/tr>\n | ||||||
19<\/td>\n | SECTION 1606 \u2022 DEAD LOADS SECTION 1607 \u2022 LIVE LOADS <\/td>\n<\/tr>\n | ||||||
20<\/td>\n | SECTION 1608 \u2022 SNOW LOADS SECTION 1609 \u2022 WIND LOADS SECTION 1610 \u2022 EARTHQUAKE LOADS SECTION 1611 \u2022 OTHER MINIMUM LOADS <\/td>\n<\/tr>\n | ||||||
21<\/td>\n | SECTION 1612 \u2022 COMBINATIONS OF LOADS <\/td>\n<\/tr>\n | ||||||
22<\/td>\n | SECTION 1613 \u2022 DEFLECTION <\/td>\n<\/tr>\n | ||||||
23<\/td>\n | DIVISION II\u2022SNOW LOADS SECTION 1614 \u2022 SNOW LOADS <\/td>\n<\/tr>\n | ||||||
24<\/td>\n | DIVISION III\u2022WIND DESIGN SECTION 1615 \u2022 GENERAL SECTION 1616 \u2022 DEFINITIONS SECTION 1617 \u2022 SYMBOLS AND NOTATIONS SECTION 1618 \u2022 BASIC WIND SPEED SECTION 1619 \u2022 EXPOSURE SECTION 1620 \u2022 DESIGN WIND PRESSURES SECTION 1621 \u2022 PRIMARY FRAMES AND SYSTEMS <\/td>\n<\/tr>\n | ||||||
25<\/td>\n | SECTION 1622 \u2022 ELEMENTS AND COMPONENTS OFSTRUCTURES SECTION 1623 \u2022 OPEN-FRAME TOWERS SECTION 1624 \u2022 MISCELLANEOUS STRUCTURES SECTION 1625 \u2022 OCCUPANCY CATEGORIES <\/td>\n<\/tr>\n | ||||||
26<\/td>\n | DIVISION IV\u2022EARTHQUAKE DESIGN SECTION 1626 \u2022 GENERAL SECTION 1627 \u2022 DEFINITIONS <\/td>\n<\/tr>\n | ||||||
27<\/td>\n | SECTION 1628 \u2022 SYMBOLS AND NOTATIONS <\/td>\n<\/tr>\n | ||||||
28<\/td>\n | SECTION 1629 \u2022 CRITERIA SELECTION <\/td>\n<\/tr>\n | ||||||
30<\/td>\n | SECTION 1630 \u2022 MINIMUM DESIGN LATERAL FORCES AND RELATED EFFECTS <\/td>\n<\/tr>\n | ||||||
33<\/td>\n | SECTION 1631 \u2022 DYNAMIC ANALYSIS PROCEDURES <\/td>\n<\/tr>\n | ||||||
35<\/td>\n | SECTION 1632 \u2022 LATERAL FORCE ON ELEMENTS OF STRUCTURES, NONSTRUCTURAL COMPONENTS AND EQUIPMENT SUPPORTED BY STRUCTURES <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | SECTION 1633 \u2022 DETAILED SYSTEMS DESIGN REQUIREMENTS <\/td>\n<\/tr>\n | ||||||
38<\/td>\n | SECTION 1634 \u2022 NONBUILDING STRUCTURES <\/td>\n<\/tr>\n | ||||||
39<\/td>\n | SECTION 1635 \u2022 EARTHQUAKE-RECORDING INSTRUMENTATIONS <\/td>\n<\/tr>\n | ||||||
40<\/td>\n | DIVISION V\u2022SOIL PROFILE TYPES SECTION 1636 \u2022 SITE CATEGORIZATION PROCEDURE <\/td>\n<\/tr>\n | ||||||
42<\/td>\n | TABLE 16-A\u2022UNIFORM AND CONCENTRATED LOADS <\/td>\n<\/tr>\n | ||||||
43<\/td>\n | TABLE 16-B\u2022SPECIAL LOADS1 <\/td>\n<\/tr>\n | ||||||
44<\/td>\n | TABLE 16-C\u2022MINIMUM ROOF LIVE LOADS1 TABLE 16-D\u2022MAXIMUM ALLOWABLE DEFLECTION FOR STRUCTURAL MEMBERS1 TABLE 16-E\u2022VALUE OF \u2022K\u2022 <\/td>\n<\/tr>\n | ||||||
45<\/td>\n | TABLE 16-F\u2022WIND STAGNATION PRESSURE (qs) AT STANDARD HEIGHT OF 33 FEET (10 058 mm) TABLE 16-G\u2022COMBINED HEIGHT, EXPOSURE AND GUST FACTOR COEFFICIENT (Ce)1 <\/td>\n<\/tr>\n | ||||||
46<\/td>\n | TABLE 16-H\u2022PRESSURE COEFFICIENTS (Cq) <\/td>\n<\/tr>\n | ||||||
47<\/td>\n | TABLE 16-I\u2022SEISMIC ZONE FACTOR Z TABLE 16-J\u2022SOIL PROFILE TYPES TABLE 16-K\u2022OCCUPANCY CATEGORY <\/td>\n<\/tr>\n | ||||||
48<\/td>\n | TABLE 16-L\u2022VERTICAL STRUCTURAL IRREGULARITIES TABLE 16-M\u2022PLAN STRUCTURAL IRREGULARITIES <\/td>\n<\/tr>\n | ||||||
49<\/td>\n | TABLE 16-N\u2022STRUCTURAL SYSTEMS1 <\/td>\n<\/tr>\n | ||||||
50<\/td>\n | TABLE 16-O\u2022HORIZONTAL FORCE FACTORS, aP AND Rp <\/td>\n<\/tr>\n | ||||||
51<\/td>\n | FOOTNOTES TO TABLE 16-O\u2022(Continued) TABLE 16-P-R AND \u03a9o FACTORS FOR NONBUILDING STRUCTURES TABLE 16-Q\u2022SEISMIC COEFFICIENT Ca <\/td>\n<\/tr>\n | ||||||
52<\/td>\n | TABLE 16-R\u2022SEISMIC COEFFICIENT Cv TABLE 16-S\u2022NEAR-SOURCE FACTOR Na1 TABLE 16-T\u2022NEAR-SOURCE FACTOR Nv1 TABLE 16-U\u2022SEISMIC SOURCE TYPE1 <\/td>\n<\/tr>\n | ||||||
53<\/td>\n | FIGURE 16-1\u2022MINIMUM BASIC WIND SPEEDS IN MILES PER HOUR (\u00d7 1.61 for km\/h) <\/td>\n<\/tr>\n | ||||||
54<\/td>\n | FIGURE 16-2\u2022SEISMIC ZONE MAP OF THE UNITED STATES For areas outside of the United States, see Appendix Chapter 16. <\/td>\n<\/tr>\n | ||||||
55<\/td>\n | FIGURE 16-3\u2022DESIGN RESPONSE SPECTRA <\/td>\n<\/tr>\n | ||||||
56<\/td>\n | CHAPTER 17 STRUCTURAL TESTS AND INSPECTIONS SECTION 1701 \u2022 SPECIAL INSPECTIONS <\/td>\n<\/tr>\n | ||||||
57<\/td>\n | SECTION 1702 \u2022 STRUCTURAL OBSERVATION <\/td>\n<\/tr>\n | ||||||
58<\/td>\n | SECTION 1703 \u2022 NONDESTRUCTIVE TESTING SECTION 1704 \u2022 PREFABRICATED CONSTRUCTION <\/td>\n<\/tr>\n | ||||||
59<\/td>\n | CHAPTER 18 FOUNDATIONS AND RETAINING WALLS DIVISION I\u2022GENERAL SECTION 1801 \u2022 SCOPE SECTION 1802 \u2022 QUALITY AND DESIGN SECTION 1803 \u2022 SOIL CLASSIFICATION\u2022EXPANSIVE SOIL SECTION 1804 \u2022 FOUNDATION INVESTIGATION <\/td>\n<\/tr>\n | ||||||
60<\/td>\n | SECTION 1805 \u2022 ALLOWABLE FOUNDATION AND LATERAL PRESSURES SECTION 1806 \u2022 FOOTINGS <\/td>\n<\/tr>\n | ||||||
61<\/td>\n | SECTION 1807 \u2022 PILES \u2022 GENERAL REQUIREMENTS <\/td>\n<\/tr>\n | ||||||
62<\/td>\n | SECTION 1808 \u2022 SPECIFIC PILE REQUIREMENTS <\/td>\n<\/tr>\n | ||||||
64<\/td>\n | SECTION 1809 \u2022 FOUNDATION CONSTRUCTION\u2022SEISMIC ZONES 3 AND 4 <\/td>\n<\/tr>\n | ||||||
65<\/td>\n | TABLE 18-I-A\u2022ALLOWABLE FOUNDATION AND LATERAL PRESSURE TABLE 18-I-B\u2022CLASSIFICATION OF EXPANSIVE SOIL TABLE 18-I-C\u2022FOUNDATIONS FOR STUD BEARING WALLS\u2022MINIMUM REQUIREMENTS1,2,3 <\/td>\n<\/tr>\n | ||||||
66<\/td>\n | FIGURE 18-I-1\u2022SETBACK DIMENSIONS <\/td>\n<\/tr>\n | ||||||
67<\/td>\n | DIVISION II\u2022DESIGN STANDARD FOR TREATED WOOD FOUNDATION SYSTEM SECTION 1810 \u2022 SCOPE SECTION 1811 \u2022 MATERIALS SECTION 1812 \u2022 DRAINAGE AND MOISTURE CONTROL <\/td>\n<\/tr>\n | ||||||
68<\/td>\n | SECTION 1813 \u2022 DESIGN LOADS SECTION 1814 \u2022 STRUCTURAL DESIGN <\/td>\n<\/tr>\n | ||||||
70<\/td>\n | DIVISION III\u2022DESIGN STANDARD FOR DESIGN OF SLAB-ON-GROUND FOUNDATIONS TO RESIST THE EFFECTS OF EXPANSIVE SOILS AND COMPRESSIBLE SOILS SECTION 1815 \u2022 DESIGN OF SLAB-ON-GROUND FOUNDATIONS [BASED ON DESIGN OF SLAB-ON-GROUND FOUNDATIONS OF THE WIRERE INFORCEMENT INSTITUTE, INC. (AUGUST, 1981)] <\/td>\n<\/tr>\n | ||||||
71<\/td>\n | SECTION 1816 \u2022 DESIGN OF POSTTENSIONED SLABS ON GROUND (BASED ON DESIGNSPECIFICATION OF THE POSTTENSIONING INSTITUTE) <\/td>\n<\/tr>\n | ||||||
76<\/td>\n | SECTION 1817 \u2022 APPENDIX A (A PROCEDURE FOR ESTIMATION OF THE AMOUNT OF CLIMATE CONTROLLED DIFFERENTIAL MOVEMENT OF EXPANSIVE SOILS) SECTION 1818 \u2022 APPENDIX B (SIMPLIFIED PROCEDURES FOR DETERMINING CATION EXCHANGE CAPACITY AND CATION EXCHANGE ACTIVITY) <\/td>\n<\/tr>\n | ||||||
77<\/td>\n | SECTION 1819 \u2022 DESIGN OF POSTTENSIONEDSLABS ON COMPRESSIBLE SOILS (BASED ONDESIGN SPECIFICATIONS OF THE POSTTENSIONINGINSTITUTE) <\/td>\n<\/tr>\n | ||||||
79<\/td>\n | TABLE 18-III-A\u2022DIFFERENTIAL SWELL OCCURRING AT THE PERIMETER OF A SLAB FOR A CENTER LIFT SWELLING CONDITION IN PREDOMINANTLY KAOLINITE CLAY SOIL (30 PERCENT CLAY) TABLE 18-III-B\u2022DIFFERENTIAL SWELL OCCURRING AT THE PERIMETER OF A SLAB FORA CENTER LIFT SWELLING CONDITION IN PREDOMINANTLY KAOLINITE CLAY SOIL(40 PERCENT CLAY) <\/td>\n<\/tr>\n | ||||||
80<\/td>\n | TABLE 18-III-C\u2022DIFFERENTIAL SWELL OCCURRING AT THE PERIMETER OF A SLAB FORA CENTER LIFT SWELLING CONDITION IN PREDOMINANTLY KAOLINITE CLAY SOIL(50 PERCENT CLAY) TABLE 18-III-D\u2022DIFFERENTIAL SWELL OCCURRING AT THE PERIMETER OF A SLAB FORA CENTER LIFT SWELLING CONDITION IN PREDOMINANTLY KAOLINITE CLAY SOIL(60 PERCENT CLAY) <\/td>\n<\/tr>\n | ||||||
81<\/td>\n | TABLE 18-III-E\u2022DIFFERENTIAL SWELL OCCURRING AT THE PERIMETER OF A SLAB FORA CENTER LIFT SWELLING CONDITION IN PREDOMINANTLY KAOLINITE CLAY SOIL(70 PERCENT CLAY) TABLE 18-III-F\u2022DIFFERENTIAL SWELL OCCURRING AT THE PERIMETER OF A SLAB FORA CENTER LIFT SWELLING CONDITION IN PREDOMINANTLY ILLITE CLAY SOIL(30 PERCENT CLAY) <\/td>\n<\/tr>\n | ||||||
82<\/td>\n | TABLE 18-III-G\u2022DIFFERENTIAL SWELL OCCURRING AT THE PERIMETER OF A SLAB FORA CENTER LIFT SWELLING CONDITION IN PREDOMINANTLY ILLITE CLAY SOIL(40 PERCENT CLAY) TABLE 18-III-H\u2022DIFFERENTIAL SWELL OCCURRING AT THE PERIMETER OF A SLAB FORA CENTER LIFT SWELLING CONDITION IN PREDOMINANTLY ILLITE CLAY SOIL(50 PERCENT CLAY) <\/td>\n<\/tr>\n | ||||||
83<\/td>\n | TABLE 18-III-I\u2022DIFFERENTIAL SWELL OCCURRING AT THE PERIMETER OF A SLAB FORA CENTER LIFT SWELLING CONDITION IN PREDOMINANTLY ILLITE CLAY SOIL(60 PERCENT CLAY) TABLE 18-III-J\u2022DIFFERENTIAL SWELL OCCURRING AT THE PERIMETER OF A SLAB FORA CENTER LIFT SWELLING CONDITION IN PREDOMINANTLY ILLITE CLAY SOIL(70 PERCENT CLAY) <\/td>\n<\/tr>\n | ||||||
84<\/td>\n | TABLE 18-III-K\u2022DIFFERENTIAL SWELL OCCURRING AT THE PERIMETER OF A SLAB FORA CENTER LIFT SWELLING CONDITION IN PREDOMINANTLY MONTMORILLONITE CLAY SOIL(30 PERCENT CLAY) TABLE 18-III-L\u2022DIFFERENTIAL SWELL OCCURRING AT THE PERIMETER OF A SLAB FORA CENTER LIFT SWELLING CONDITION IN PREDOMINANTLY MONTMORILLONITE CLAY SOIL(40 PERCENT CLAY) <\/td>\n<\/tr>\n | ||||||
85<\/td>\n | TABLE 18-III-M\u2022DIFFERENTIAL SWELL OCCURRING AT THE PERIMETER OF A SLAB FORA CENTER LIFT SWELLING CONDITION IN PREDOMINANTLY MONTMORILLONITE CLAY SOIL(50 PERCENT CLAY) TABLE 18-III-N\u2022DIFFERENTIAL SWELL OCCURRING AT THE PERIMETER OF A SLAB FORA CENTER LIFT SWELLING CONDITION IN PREDOMINANTLY MONTMORILLONITE CLAY SOIL(60 PERCENT CLAY) <\/td>\n<\/tr>\n | ||||||
86<\/td>\n | TABLE 18-III-O\u2022DIFFERENTIAL SWELL OCCURRING AT THE PERIMETER OF A SLAB FORA CENTER LIFT SWELLING CONDITION IN PREDOMINANTLY MONTMORILLONITE CLAY SOIL(70 PERCENT CLAY) TABLE 18-III-P\u2022DIFFERENTIAL SWELL OCCURRING AT THE PERIMETER OF A SLAB FORAN EDGE LIFT SWELLING CONDITION IN PREDOMINANTLY KAOLINITE CLAY SOIL(30 PERCENT CLAY) <\/td>\n<\/tr>\n | ||||||
87<\/td>\n | TABLE 18-III-Q\u2022DIFFERENTIAL SWELL OCCURRING AT THE PERIMETER OF A SLAB FORAN EDGE LIFT SWELLING CONDITION IN PREDOMINANTLY KAOLINITE CLAY SOIL(40 PERCENT CLAY) TABLE 18-III-R\u2022DIFFERENTIAL SWELL OCCURRING AT THE PERIMETER OF A SLAB FORAN EDGE LIFT SWELLING CONDITION IN PREDOMINANTLY KAOLINITE CLAY SOIL(50 PERCENT CLAY) <\/td>\n<\/tr>\n | ||||||
88<\/td>\n | TABLE 18-III-S\u2022DIFFERENTIAL SWELL OCCURRING AT THE PERIMETER OF A SLAB FORAN EDGE LIFT SWELLING CONDITION IN PREDOMINANTLY KAOLINITE CLAY SOIL(60 PERCENT CLAY) TABLE 18-III-T\u2022DIFFERENTIAL SWELL OCCURRING AT THE PERIMETER OF A SLAB FORAN EDGE LIFT SWELLING CONDITION IN PREDOMINANTLY KAOLINITE CLAY SOIL(70 PERCENT CLAY) <\/td>\n<\/tr>\n | ||||||
89<\/td>\n | TABLE 18-III-U\u2022DIFFERENTIAL SWELL OCCURRING AT THE PERIMETER OF A SLAB FOR ANEDGE LIFT SWELLING CONDITION IN PREDOMINANTLY ILLITE CLAY SOIL(30 PERCENT CLAY) TABLE 18-III-V\u2022DIFFERENTIAL SWELL OCCURRING AT THE PERIMETER OF A SLAB FOR ANEDGE LIFT SWELLING CONDITION IN PREDOMINANTLY ILLITE CLAY SOIL(40 PERCENT CLAY) <\/td>\n<\/tr>\n | ||||||
90<\/td>\n | TABLE 18-III-W\u2022DIFFERENTIAL SWELL OCCURRING AT THE PERIMETER OF A SLAB FOR ANEDGE LIFT SWELLING CONDITION IN PREDOMINANTLY ILLITE CLAY SOIL(50 PERCENT CLAY) TABLE 18-III-X\u2022DIFFERENTIAL SWELL OCCURRING AT THE PERIMETER OF A SLAB FOR ANEDGE LIFT SWELLING CONDITION IN PREDOMINANTLY ILLITE CLAY SOIL(60 PERCENT CLAY) <\/td>\n<\/tr>\n | ||||||
91<\/td>\n | TABLE 18-III-Y\u2022DIFFERENTIAL SWELL OCCURRING AT THE PERIMETER OF A SLAB FOR ANEDGE LIFT SWELLING CONDITION IN PREDOMINANTLY ILLITE CLAY SOIL(70 PERCENT CLAY) TABLE 18-III-Z\u2022DIFFERENTIAL SWELL OCCURRING AT THE PERIMETER OF A SLAB FOR ANEDGE LIFT SWELLING CONDITION IN PREDOMINANTLY MONTMORILLONITE CLAY SOIL(30 PERCENT CLAY) <\/td>\n<\/tr>\n | ||||||
92<\/td>\n | TABLE 18-III-AA\u2022DIFFERENTIAL SWELL OCCURRING AT THE PERIMETER OF A SLAB FOR ANEDGE LIFT SWELLING CONDITION IN PREDOMINANTLY MONTMORILLONITE CLAY SOIL(40 PERCENT CLAY) TABLE 18-III-BB\u2022DIFFERENTIAL SWELL OCCURRING AT THE PERIMETER OF A SLAB FOR ANEDGE LIFT SWELLING CONDITION IN PREDOMINANTLY MONTMORILLONITE CLAY SOIL(50 PERCENT CLAY) <\/td>\n<\/tr>\n | ||||||
93<\/td>\n | TABLE 18-III-CC\u2022DIFFERENTIAL SWELL OCCURRING AT THE PERIMETER OF A SLAB FOR ANEDGE LIFT SWELLING CONDITION IN PREDOMINANTLY MONTMORILLONITE CLAY SOIL(60 PERCENT CLAY) TABLE 18-III-DD\u2022DIFFERENTIAL SWELL OCCURRING AT THE PERIMETER OF A SLAB FOR ANEDGE LIFT SWELLING CONDITION IN PREDOMINANTLY MONTMORILLONITE CLAY SOIL(70 PERCENT CLAY) <\/td>\n<\/tr>\n | ||||||
94<\/td>\n | TABLE 18-III-EE\u2022COMPARISON OF METHODS OF DETERMININGCATION EXCHANGE CAPACITY TABLE 18-III-FF\u2022COMPARISON OF CLAY MINERAL DETERMINATION METHODS TABLE 18-III-GG SAMPLE VALUES C\u0394 <\/td>\n<\/tr>\n | ||||||
95<\/td>\n | FIGURE 18-III-1\u2022(1-C) VERSUS Asfy <\/td>\n<\/tr>\n | ||||||
96<\/td>\n | FIGURE 18-III-2\u2022UNCONFINED COMPRESSIVE STRENGTH VERSUSOVERCONSOLIDATED CORRECTION COEFFICIENT FIGURE 18-III-3\u2022SLOPE OF NATURAL GROUND VERSUS SLOPE CORRECTION COEFFICIENT <\/td>\n<\/tr>\n | ||||||
97<\/td>\n | FIGURE 18-III-4\u2022CLIMATIC RATING (CW ) CHART <\/td>\n<\/tr>\n | ||||||
98<\/td>\n | FIGURE 18-III-5-L or L\u2032 VERSUS k <\/td>\n<\/tr>\n | ||||||
99<\/td>\n | FIGURE 18-III-6\u20221-C VERSUS CANTILEVER LENGTH (lc) <\/td>\n<\/tr>\n | ||||||
100<\/td>\n | FIGURE 18-III-7\u20221-C VERSUS MAXIMUM BEAM SPACING <\/td>\n<\/tr>\n | ||||||
101<\/td>\n | FIGURE 18-III-8\u2022PI VERSUS (1-C) <\/td>\n<\/tr>\n | ||||||
102<\/td>\n | FIGURE 18-III-9\u2022DETERMINING THE WEIGHTED PLASTICITY INDEX (PI) <\/td>\n<\/tr>\n | ||||||
103<\/td>\n | FIGURE 18-III-10\u2022SLAB SEGMENTS AND COMBINED <\/td>\n<\/tr>\n | ||||||
104<\/td>\n | FIGURE 18-III-11\u2022DESIGN RECTANGLES FOR SLABS OF IRREGULAR SHAPE <\/td>\n<\/tr>\n | ||||||
105<\/td>\n | FIGURE 18-III-12\u2022THORNTHWAITE MOISTURE INDEX DISTRIBUTION IN THE UNITED STATES <\/td>\n<\/tr>\n | ||||||
106<\/td>\n | FIGURE 18-III-13-1\u2022THORNTHWAITE MOISTURE INDEX DISTRIBUTION FOR TEXAS(20-YEAR AVERAGE, 1955-1974) <\/td>\n<\/tr>\n | ||||||
107<\/td>\n | FIGURE 18-III-13-2\u2022THORNTHWAITE MOISTURE INDEX DISTRIBUTION IN CALIFORNIA <\/td>\n<\/tr>\n | ||||||
108<\/td>\n | FIGURE 18-III-14\u2022APPROXIMATE RELATIONSHIP BETWEEN THORNTHWAITE INDEX AND MOISTURE VARIATION DISTANCE <\/td>\n<\/tr>\n | ||||||
109<\/td>\n | FIGURE 18-III-15\u2022CLAY TYPE CLASSIFICATION TO CATION EXCHANGEAND CLAY ACTIVITY RATIO AFTER PEARRING AND HOLT <\/td>\n<\/tr>\n | ||||||
110<\/td>\n | FIGURE 18-III-16\u2022VARIATION OF CONSTANT SOIL SUCTION WITH THORNTHWAITE INDEX <\/td>\n<\/tr>\n | ||||||
111<\/td>\n | FIGURE 18-III-17\u2022COMPARISON OF CLAY MINERAL DETERMINATION USINGATOMIC ABSORPTION AND CORRELATION EQUATIONS <\/td>\n<\/tr>\n | ||||||
112<\/td>\n | CHAPTER 19 CONCRETE DIVISION I \u2022 GENERAL SECTION 1900 \u2022 GENERAL <\/td>\n<\/tr>\n | ||||||
113<\/td>\n | DIVISION II SECTION 1901 \u2022 SCOPE SECTION 1902 \u2022 DEFINITIONS <\/td>\n<\/tr>\n | ||||||
114<\/td>\n | SECTION 1903 \u2022 SPECIFICATIONS FOR TESTS ANDMATERIALS <\/td>\n<\/tr>\n | ||||||
116<\/td>\n | SECTION 1904 \u2022 DURABILITY REQUIREMENTS <\/td>\n<\/tr>\n | ||||||
117<\/td>\n | SECTION 1905 \u2022 CONCRETE QUALITY, MIXING ANDPLACING <\/td>\n<\/tr>\n | ||||||
120<\/td>\n | SECTION 1906 \u2022 FORMWORK, EMBEDDED PIPESAND CONSTRUCTION JOINTS <\/td>\n<\/tr>\n | ||||||
121<\/td>\n | SECTION 1907 \u2022 DETAILS OF REINFORCEMENT <\/td>\n<\/tr>\n | ||||||
125<\/td>\n | SECTION 1908 \u2022 ANALYSIS AND DESIGN <\/td>\n<\/tr>\n | ||||||
127<\/td>\n | SECTION 1909 \u2022 STRENGTH AND SERVICEABILITYREQUIREMENTS <\/td>\n<\/tr>\n | ||||||
130<\/td>\n | SECTION 1910 \u2022 FLEXURE AND AXIAL LOADS <\/td>\n<\/tr>\n | ||||||
136<\/td>\n | SECTION 1911 \u2022 SHEAR AND TORSION <\/td>\n<\/tr>\n | ||||||
146<\/td>\n | SECTION 1912 \u2022 DEVELOPMENT AND SPLICES OFREINFORCEMENT <\/td>\n<\/tr>\n | ||||||
151<\/td>\n | SECTION 1913 \u2022 TWO-WAY SLAB SYSTEMS <\/td>\n<\/tr>\n | ||||||
156<\/td>\n | SECTION 1914 \u2022 WALLS <\/td>\n<\/tr>\n | ||||||
157<\/td>\n | SECTION 1915 \u2022 FOOTINGS <\/td>\n<\/tr>\n | ||||||
159<\/td>\n | SECTION 1916 \u2022 PRECAST CONCRETE <\/td>\n<\/tr>\n | ||||||
161<\/td>\n | SECTION 1917 \u2022 COMPOSITE CONCRETE FLEXURAL MEMBERS <\/td>\n<\/tr>\n | ||||||
162<\/td>\n | SECTION 1918 \u2022 PRESTRESSED CONCRETE <\/td>\n<\/tr>\n | ||||||
166<\/td>\n | SECTION 1919 \u2022 SHELLS AND FOLDED PLATES <\/td>\n<\/tr>\n | ||||||
168<\/td>\n | SECTION 1920 \u2022 STRENGTH EVALUATION OFEXISTING STRUCTURES <\/td>\n<\/tr>\n | ||||||
169<\/td>\n | SECTION 1921 \u2022 REINFORCED CONCRETE STRUCTURES RESISTING FORCES INDUCED BYEARTHQUAKE MOTIONS <\/td>\n<\/tr>\n | ||||||
180<\/td>\n | SECTION 1922 \u2022 STRUCTURAL PLAIN CONCRETE <\/td>\n<\/tr>\n | ||||||
183<\/td>\n | DIVISION III\u2022DESIGN STANDARD FOR ANCHORAGE TO CONCRETE SECTION 1923 \u2022 ANCHORAGE TO CONCRETE <\/td>\n<\/tr>\n | ||||||
185<\/td>\n | DIVISION IV\u2022DESIGN AND CONSTRUCTION STANDARD FOR SHOTCRETE SECTION 1924 \u2022 SHOTCRETE <\/td>\n<\/tr>\n | ||||||
186<\/td>\n | DIVISION V\u2022DESIGN STANDARD FOR REINFORCED GYPSUM CONCRETE SECTION 1925 \u2022 REINFORCED GYPSUM CONCRETE <\/td>\n<\/tr>\n | ||||||
187<\/td>\n | DIVISION VI\u2022ALTERNATE DESIGN METHOD SECTION 1926 \u2022 ALTERNATE DESIGN METHOD <\/td>\n<\/tr>\n | ||||||
191<\/td>\n | DIVISION VII\u2022UNIFIED DESIGN PROVISIONS SECTION 1927 \u2022 UNIFIED DESIGN PROVISIONS FORREINFORCED AND PRESTRESSED CONCRETEFLEXURAL AND COMPRESSION MEMBERS <\/td>\n<\/tr>\n | ||||||
193<\/td>\n | DIVISION VIII\u2022ALTERNATIVE LOAD-FACTOR COMBINATION AND STRENGTH REDUCTION FACTORS SECTION 1928 \u2022 ALTERNATIVE LOAD-FACTORCOMBINATION AND STRENGTH REDUCTIONFACTORS <\/td>\n<\/tr>\n | ||||||
194<\/td>\n | TABLE 19-A-1\u2022TOTAL AIR CONTENT FOR FROST-RESISTANT CONCRETE TABLE 19-A-2\u2022REQUIREMENTS FOR SPECIAL EXPOSURE CONDITIONS TABLE 19-A-3\u2022REQUIREMENTS FOR CONCRETE EXPOSED TO DEICING CHEMICALS TABLE 19-A-4\u2022REQUIREMENTS FOR CONCRETE EXPOSED TO SULFATE-CONTAINING SOLUTIONS <\/td>\n<\/tr>\n | ||||||
195<\/td>\n | TABLE 19-A-5\u2022MAXIMUM CHLORIDE ION CONTENT FOR CORROSION PROTECTION REINFORCEMENT TABLE 19-A-6\u2022MODIFICATION FACTOR FOR STANDARD DEVIATION WHEN LESS THAN 30 TESTS ARE AVAILABLE TABLE 19-A-7\u2022REQUIRED AVERAGE COMPRESSIVE STRENGTH WHEN DATAARE NOT AVAILABLE TO ESTABLISH A STANDARD DEVIATION TABLE 19-B\u2022MINIMUM DIAMETERS OF BEND TABLE 19-C-1\u2022MINIMUM THICKNESS OF NONPRESTRESSED BEAMSOR ONE-WAY SLABS UNLESS DEFLECTIONS ARE COMPUTED1 <\/td>\n<\/tr>\n | ||||||
196<\/td>\n | TABLE 19-C-2\u2022MAXIMUM PERMISSIBLE COMPUTED DEFLECTIONS TABLE 19-C-3\u2022MINIMUM THICKNESS OF SLABS WITHOUT INTERIOR BEAMS TABLE 19-D\u2022ALLOWABLE SERVICE LOAD ON EMBEDDED BOLTS (Pounds) (Newtons)1,2,3 <\/td>\n<\/tr>\n | ||||||
197<\/td>\n | TABLE 19-E\u2022MINIMUM COMPRESSIVE STRENGTH AND MODULUS OF ELASTICITYAND OF RIGIDITY OF REINFORCED GYPSUM CONCRETE TABLE 19-F\u2022ALLOWABLE UNIT WORKING STRESS REINFORCED GYPSUM CONCRETE TABLE 19-G\u2022SHEAR ON ANCHOR BOLTS AND DOWELS\u2022REINFORCED GYPSUM CONCRETE1 <\/td>\n<\/tr>\n | ||||||
198<\/td>\n | FIGURE 19-1\u2022MINIMUM EXTENSIONS FOR REINFORCEMENT IN SLABS WITHOUT BEAMS(See Section 1912.11.1 for reinforcement extension into supports.) <\/td>\n<\/tr>\n | ||||||
199<\/td>\n | CHAPTER 20 LIGHTWEIGHT METALS DIVISION I\u2022GENERAL SECTION 2001 \u2022 MATERIAL STANDARDS ANDSYMBOLS <\/td>\n<\/tr>\n | ||||||
200<\/td>\n | SECTION 2002 \u2022 ALLOWABLE STRESSES FORMEMBERS AND FASTENERS <\/td>\n<\/tr>\n | ||||||
201<\/td>\n | SECTION 2003 \u2022 DESIGN SECTION 2004 \u2022 FABRICATION AND ERECTION <\/td>\n<\/tr>\n | ||||||
202<\/td>\n | TABLE 20-I-A\u2022ALLOWABLE STRESSES FOR RIVETS TABLE 20-I-B\u2022ALLOWABLE SHEAR STRESSES IN FILLET WELDS (ksi)(Shear stress is considered equal to the load divided by the throat area.) <\/td>\n<\/tr>\n | ||||||
203<\/td>\n | TABLE 20-I-C\u2022GENERAL FORMULAS FOR DETERMINING ALLOWABLE STRESSES <\/td>\n<\/tr>\n | ||||||
204<\/td>\n | TABLE 20-I-C\u2022GENERAL FORMULAS FOR DETERMINING ALLOWABLE STRESSES\u2022(Continued) TABLE 20-I-D\u2022FACTORS OF SAFETY FOR USE WITH ALUMINUMALLOWABLE STRESS SPECIFICATIONS TABLE 20-I-E\u2022FORMULAS FOR BUCKLING CONSTANTSFor All Products Whose Temper Designation begins with -O, -H, -T1, -T2, -T3 or -T4 <\/td>\n<\/tr>\n | ||||||
205<\/td>\n | TABLE 20-I-F\u2022VALUES OF COEFFICIENTS kt and kc TABLE 20-I-G\u2022FORMULAS FOR BUCKLING CONSTANTSFor all products whose temper designation begins with -T5, -T6, -T7, -T8 or -T9 <\/td>\n<\/tr>\n | ||||||
206<\/td>\n | DIVISION II\u2022DESIGN STANDARD FOR ALUMINUM STRUCTURES SECTION 2005 \u2022 SCOPE SECTION 2006 \u2022 MATERIALS SECTION 2007 \u2022 DESIGN SECTION 2008 \u2022 ALLOWABLE STRESSES SECTION 2009 \u2022 SPECIAL DESIGN RULES <\/td>\n<\/tr>\n | ||||||
209<\/td>\n | SECTION 2010 \u2022 MECHANICAL CONNECTIONS <\/td>\n<\/tr>\n | ||||||
210<\/td>\n | SECTION 2011 \u2022 FABRICATION <\/td>\n<\/tr>\n | ||||||
211<\/td>\n | SECTION 2012 \u2022 WELDED CONSTRUCTION <\/td>\n<\/tr>\n | ||||||
212<\/td>\n | SECTION 2013 \u2022 TESTING <\/td>\n<\/tr>\n | ||||||
213<\/td>\n | TABLE 20-II-A\u2022MINIMUM MECHANICAL PROPERTIES FOR ALUMINUM ALLOYSValues Are Given in Units of ksi (1,000 lb\/in2) <\/td>\n<\/tr>\n | ||||||
214<\/td>\n | TABLE 20-II-A\u2022MINIMUM MECHANICAL PROPERTIES FOR ALUMINUM ALLOYS\u2022(Continued)Values Are Given in Units of ksi (1,000 lb\/in2) <\/td>\n<\/tr>\n | ||||||
215<\/td>\n | TABLE 20-II-B\u2022MINIMUM MECHANICAL PROPERTIES FOR WELDED ALUMINUM ALLOYS1(Gas Tungsten Arc or Gas Metal Arc Welding with No Postweld Heat Treatment) <\/td>\n<\/tr>\n | ||||||
216<\/td>\n | CHAPTER 21 MASONRY SECTION 2101 \u2022 GENERAL <\/td>\n<\/tr>\n | ||||||
218<\/td>\n | SECTION 2102 \u2022 MATERIAL STANDARDS <\/td>\n<\/tr>\n | ||||||
219<\/td>\n | SECTION 2103 \u2022 MORTAR AND GROUT <\/td>\n<\/tr>\n | ||||||
220<\/td>\n | SECTION 2104 \u2022 CONSTRUCTION <\/td>\n<\/tr>\n | ||||||
222<\/td>\n | SECTION 2105 \u2022 QUALITY ASSURANCE <\/td>\n<\/tr>\n | ||||||
223<\/td>\n | SECTION 2106 \u2022 GENERAL DESIGN REQUIREMENTS <\/td>\n<\/tr>\n | ||||||
227<\/td>\n | SECTION 2107 \u2022 WORKING STRESS DESIGN OFMASONRY <\/td>\n<\/tr>\n | ||||||
232<\/td>\n | SECTION 2108 \u2022 STRENGTH DESIGN OF MASONRY <\/td>\n<\/tr>\n | ||||||
238<\/td>\n | SECTION 2109 \u2022 EMPIRICAL DESIGN OF MASONRY <\/td>\n<\/tr>\n | ||||||
240<\/td>\n | SECTION 2110 \u2022 GLASS MASONRY <\/td>\n<\/tr>\n | ||||||
241<\/td>\n | SECTION 2111 \u2022 CHIMNEYS, FIREPLACES ANDBARBECUES <\/td>\n<\/tr>\n | ||||||
242<\/td>\n | TABLE 21-A\u2022MORTAR PROPORTIONS FOR UNIT MASONRY TABLE 21-B\u2022GROUT PROPORTIONS BY VOLUME1 TABLE 21-C\u2022GROUTING LIMITATIONS <\/td>\n<\/tr>\n | ||||||
243<\/td>\n | TABLE 21-D\u2022SPECIFIED COMPRESSIVE STRENGTH OF MASONRY, (psi) BASED ONSPECIFYING THE COMPRESSIVE STRENGTH OF MASONRY UNITS TABLE 21-E-1\u2022ALLOWABLE TENSION, Bt , FOR EMBEDDED ANCHORBOLTS FOR CLAY AND CONCRETE MASONRY, pounds1,2,3 <\/td>\n<\/tr>\n | ||||||
244<\/td>\n | TABLE 21-E-2\u2022ALLOWABLE TENSION, Bt , FOR EMBEDDED ANCHORBOLTS FOR CLAY AND CONCRETE MASONRY, pounds1,2 TABLE 21-F\u2022ALLOWABLE SHEAR, Bv, FOR EMBEDDED ANCHORBOLTS FOR CLAY AND CONCRETE MASONRY, pounds1,2 TABLE 21-G\u2022MINIMUM DIAMETERS OF BEND TABLE 21-H-1\u2022RADIUS OF GYRATION1 FOR CONCRETE MASONRY UNITS2 <\/td>\n<\/tr>\n | ||||||
245<\/td>\n | TABLE 21-H-2\u2022RADIUS OF GYRATION1 FOR CLAY MASONRY UNIT LENGTH, 16 INCHES2 TABLE 21-H-3\u2022RADIUS OF GYRATION1 FOR CLAY MASONRY UNIT LENGTH, 12 INCHES2 TABLE 21-I\u2022ALLOWABLE FLEXURAL TENSION (psi) <\/td>\n<\/tr>\n | ||||||
246<\/td>\n | TABLE 21-J\u2022MAXIMUM NOMINAL SHEAR STRENGTH VALUES1,2 TABLE 21-K\u2022NOMINAL SHEAR STRENGTH COEFFICIENT TABLE 21-L\u2022SHEAR WALL SPACING REQUIREMENTS FOR EMPIRICAL DESIGN OF MASONRY TABLE 21-M\u2022ALLOWABLE COMPRESSlVE STRESSES FOR EMPIRICAL DESIGN OF MASONRY <\/td>\n<\/tr>\n | ||||||
247<\/td>\n | TABLE 21-N\u2022ALLOWABLE SHEAR ON BOLTS FOR EMPIRICALLYDESIGNED MASONRY EXCEPT UNBURNED CLAY UNITS <\/td>\n<\/tr>\n | ||||||
248<\/td>\n | TABLE 21-O\u2022WALL LATERAL SUPPORT REQUIREMENTSFOR EMPIRICAL DESIGN OF MASONRY TABLE 21-P\u2022THlCKNESS OF FOUNDATION WALLS FOR EMPIRICAL DESIGN OF MASONRY TABLE 21-Q\u2022ALLOWABLE SHEAR ON BOLTS FOR MASONRY OF UNBURNED CLAY UNITS <\/td>\n<\/tr>\n | ||||||
249<\/td>\n | CHAPTER 22 STEEL DIVISION I\u2022GENERAL SECTION 2201 \u2022 SCOPE SECTION 2202 \u2022 STANDARDS OF QUALITY SECTION 2203 \u2022 MATERIAL IDENTIFICATION SECTION 2204 \u2022 DESIGN METHODS SECTION 2205 \u2022 DESIGN AND CONSTRUCTION PROVISIONS <\/td>\n<\/tr>\n | ||||||
251<\/td>\n | DIVISION II\u2022DESIGN STANDARD FOR LOAD AND RESISTANCE FACTORDESIGN SPECIFICATION FOR STRUCTURAL STEEL BUILDINGS SECTION 2206 \u2022 ADOPTION SECTION 2207 \u2022 AMENDMENTS <\/td>\n<\/tr>\n | ||||||
252<\/td>\n | DIVISION III\u2022DESIGN STANDARD FOR SPECIFICATION FOR STRUCTURAL STEEL BUILDINGSALLOWABLE STRESS DESIGN AND PLASTIC DESIGN SECTION 2208 \u2022 ADOPTION SECTION 2209 \u2022 AMENDMENTS <\/td>\n<\/tr>\n | ||||||
253<\/td>\n | DIVISION IV\u2022SEISMIC PROVISIONS FOR STRUCTURAL STEEL BUILDINGS SECTION 2210 \u2022 AMENDMENTS <\/td>\n<\/tr>\n | ||||||
255<\/td>\n | SECTION 2211 \u2022 ADOPTION <\/td>\n<\/tr>\n | ||||||
258<\/td>\n | TABLE 2-1 Seismic Hazard Exposure Groups <\/td>\n<\/tr>\n | ||||||
259<\/td>\n | TABLE 2-2 Seismic Performance Categories <\/td>\n<\/tr>\n | ||||||
261<\/td>\n | TABLE 8-1 Limiting Width Thickness Ratios \u03bbp forCompression Elements <\/td>\n<\/tr>\n | ||||||
267<\/td>\n | DIVISION V\u2022SEISMIC PROVISIONS FOR STRUCTURAL STEEL BUILDINGSFOR USE WITH ALLOWABLE STRESS DESIGN SECTION 2212 \u2022 GENERAL SECTION 2213 \u2022 SEISMIC PROVISIONS FORSTRUCTURAL STEEL BUILDINGS IN SEISMICZONES 3 AND 4 <\/td>\n<\/tr>\n | ||||||
273<\/td>\n | SECTION 2214 \u2022 SEISMIC PROVISIONS FOR STRUCTURAL STEEL BUILDINGS IN SEISMICZONES 1 AND 2 <\/td>\n<\/tr>\n | ||||||
276<\/td>\n | DIVISION VI\u2022LOAD AND RESISTANCE FACTORDESIGN SPECIFICATION FOR COLD-FORMED STEEL STRUCTURAL MEMBERS SECTION 2215 \u2022 ADOPTION SECTION 2216 \u2022 AMENDMENTS <\/td>\n<\/tr>\n | ||||||
277<\/td>\n | DIVISION VII\u2022SPECIFICATION FOR DESIGN OF COLD-FORMED STEEL STRUCTURAL MEMBERS SECTION 2217 \u2022 ADOPTION SECTION 2218 \u2022 AMENDMENTS <\/td>\n<\/tr>\n | ||||||
278<\/td>\n | DIVISION VIII\u2022LATERAL RESISTANCE FOR STEEL STUD WALL SYSTEMS SECTION 2219 \u2022 GENERAL SECTION 2220 \u2022 SPECIAL REQUIREMENTS INSEISMIC ZONES 3 AND 4 <\/td>\n<\/tr>\n | ||||||
279<\/td>\n | TABLE 22-VIII-A\u2022NOMINAL SHEAR VALUES FOR WIND FORCES IN POUNDS PER FOOTFOR SHEAR WALLS FRAMED WITH COLD-FORMED STEEL1,2 TABLE 22-VIII-B\u2022NOMINAL SHEAR VALUES FOR WIND FORCES IN POUNDS PER FOOT FOR SHEAR WALLS FRAMEDWITH COLD-FORMED STEEL STUDS AND FACED WITH GYPSUM WALLBOARD1,2 TABLE 22-VIII-C\u2022NOMINAL SHEAR VALUES FOR SEISMIC FORCES IN POUNDS PER FOOTFOR SHEAR WALLS FRAMED WITH COLD-FORMED STEEL STUDS1,2 <\/td>\n<\/tr>\n | ||||||
280<\/td>\n | DIVISION IX\u2022OPEN WEB STEEL JOISTS SECTION 2221 \u2022 ADOPTION <\/td>\n<\/tr>\n | ||||||
281<\/td>\n | DIVISION X\u2022DESIGN STANDARD FOR STEEL STORAGE RACKS SECTION 2222 \u2022 GENERAL PROVISIONS <\/td>\n<\/tr>\n | ||||||
282<\/td>\n | SECTION 2223 \u2022 DESIGN PROCEDURES ANDDIMENSIONAL LIMITATIONS SECTION 2224 \u2022 ALLOWABLE STRESSES ANDEFFECTIVE WIDTHS SECTION 2225 \u2022 PALLET AND STACKER-RACKBEAMS SECTION 2226 \u2022 FRAME DESIGN SECTION 2227 \u2022 CONNECTIONS AND BEARINGPLATES SECTION 2228 \u2022 LOADS <\/td>\n<\/tr>\n | ||||||
283<\/td>\n | SECTION 2229 \u2022 SPECIAL RACK DESIGN PROVISIONS <\/td>\n<\/tr>\n | ||||||
284<\/td>\n | DIVISION XI\u2022DESIGN STANDARD FOR STRUCTURAL APPLICATIONS OF STEEL CABLES FOR BUILDINGS SECTION 2230 \u2022 ADOPTION <\/td>\n<\/tr>\n | ||||||
285<\/td>\n | CHAPTER 23 WOOD DIVISION I\u2022GENERAL DESIGN REQUIREMENTS SECTION 2301 \u2022 GENERAL SECTION 2302 \u2022 DEFINITIONS <\/td>\n<\/tr>\n | ||||||
286<\/td>\n | SECTION 2303 \u2022 STANDARDS OF QUALITY SECTION 2304 \u2022 MINIMUM QUALITY <\/td>\n<\/tr>\n | ||||||
287<\/td>\n | SECTION 2305 \u2022 DESIGN AND CONSTRUCTION REQUIREMENTS <\/td>\n<\/tr>\n | ||||||
288<\/td>\n | DIVISION II\u2022GENERAL REQUIREMENTS SECTION 2306 \u2022 DECAY AND TERMITE PROTECTION <\/td>\n<\/tr>\n | ||||||
289<\/td>\n | SECTION 2307 \u2022 WOOD SUPPORTING MASONRYOR CONCRETE SECTION 2308 \u2022 WALL FRAMING SECTION 2309 \u2022 FLOOR FRAMING SECTION 2310 \u2022 EXTERIOR WALL COVERINGS <\/td>\n<\/tr>\n | ||||||
290<\/td>\n | SECTION 2311 \u2022 INTERIOR PANELING SECTION 2312 \u2022 SHEATHING SECTION 2313 \u2022 MECHANICALLY LAMINATEDFLOORS AND DECKS SECTION 2314 \u2022 POST-BEAM CONNECTIONS <\/td>\n<\/tr>\n | ||||||
291<\/td>\n | SECTION 2315 \u2022 WOOD SHEAR WALLS AND DIAPHRAGMS <\/td>\n<\/tr>\n | ||||||
293<\/td>\n | TABLE 23-II-A-1\u2022EXPOSED PLYWOOD PANEL SIDING TABLE 23-II-A-2\u2022ALLOWABLE SPANS FOR EXPOSED PARTICLEBOARD PANEL SIDING <\/td>\n<\/tr>\n | ||||||
294<\/td>\n | TABLE 23-II-B-1\u2022NAILING SCHEDULE <\/td>\n<\/tr>\n | ||||||
295<\/td>\n | TABLE 23-II-B-2\u2022WOOD STRUCTURAL PANEL ROOF SHEATHING NAILING SCHEDULE1 ROOF FASTENING ZONES <\/td>\n<\/tr>\n | ||||||
296<\/td>\n | TABLE 23-II-C\u2022HARDBOARD SIDING TABLE 23-II-D-1\u2022ALLOWABLE SPANS FOR LUMBER FLOOR AND ROOF SHEATHING1, 2 TABLE 23-II-D-2\u2022SHEATHING LUMBER SHALL MEET THE FOLLOWINGMINIMUM GRADE REQUIREMENTS: BOARD GRADE <\/td>\n<\/tr>\n | ||||||
297<\/td>\n | TABLE 23-II-E-1\u2022ALLOWABLE SPANS AND LOADS FOR WOOD STRUCTURAL PANEL SHEATHING AND SINGLE-FLOOR GRADESCONTINUOUS OVER TWO OR MORE SPANS WITH STRENGTH AXIS PERPENDICULAR TO SUPPORTS1,2 TABLE 23-II-E-2\u2022ALLOWABLE LOAD (PSF) FOR WOOD STRUCTURAL PANEL ROOF SHEATHING CONTINUOUSOVER TWO OR MORE SPANS AND STRENGTH AXIS PARALLEL TO SUPPORTS(Plywood structural panels are five-ply, five-layer unless otherwise noted.)1,2 <\/td>\n<\/tr>\n | ||||||
298<\/td>\n | TABLE 23-II-F-1\u2022ALLOWABLE SPAN FOR WOOD STRUCTURAL PANEL COMBINATION SUBFLOOR-UNDERLAYMENT(SINGLE FLOOR)1,2 Panels Continuous over Two or More Spans and Strength Axis Perpendicular to Supports TABLE 23-II-F-2\u2022ALLOWABLE SPANS FOR PARTICLEBOARD SUBFLOOR AND COMBINED SUBFLOOR-UNDERLAYMENT1,2 TABLE 23-II-G\u2022MAXIMUM DIAPHRAGM DIMENSION RATIOS <\/td>\n<\/tr>\n | ||||||
299<\/td>\n | TABLE 23-II-H\u2022ALLOWABLE SHEAR IN POUNDS PER FOOT FOR HORIZONTAL WOOD STRUCTURAL PANELDIAPHRAGMS WITH FRAMING OF DOUGLAS FIR-LARCH OR SOUTHERN PINE1 <\/td>\n<\/tr>\n | ||||||
300<\/td>\n | TABLE 23-II-I-1\u2022ALLOWABLE SHEAR FOR WIND OR SEISMIC FORCES IN POUNDS PER FOOT FOR WOOD STRUCTURAL PANELSHEAR WALLS WITH FRAMING OF DOUGLAS FIR-LARCH OR SOUTHERN PINE1,2,3 TABLE 23-II-I-2\u2022ALLOWABLE SHEAR IN POUNDS PER FOOT FOR PARTICLEBOARDSHEAR WALLS WITH FRAMING OF DOUGLAS FIR-LARCH OR SOUTHERN PINE1,2,3 <\/td>\n<\/tr>\n | ||||||
301<\/td>\n | TABLE 23-II-J\u2022ALLOWABLE SHEARS FOR WIND OR SEISMIC LOADING ONVERTICAL DIAPHRAGMS OF FIBERBOARD SHEATHING BOARD CONSTRUCTIONFOR TYPE V CONSTRUCTION ONLY1 TABLE 23-II-K\u2022WOOD SHINGLE AND SHAKE SIDE WALL EXPOSURES <\/td>\n<\/tr>\n | ||||||
302<\/td>\n | FIGURE 23-II-1\u2022GENERAL DEFINITION OF SHEAR WALL HEIGHT TO WIDTH RATIO <\/td>\n<\/tr>\n | ||||||
303<\/td>\n | DIVISION III\u2022DESIGN SPECIFICATIONS FOR ALLOWABLE STRESS DESIGN OF WOOD BUILDINGS SECTION 2316 \u2022 DESIGN SPECIFICATIONS TABLE 2.3.2\u2022LOAD DURATION FACTORS, CD <\/td>\n<\/tr>\n | ||||||
306<\/td>\n | SECTION 2317 \u2022 PLYWOOD STRUCTURAL PANELS SECTION 2318 \u2022 TIMBER CONNECTORS ANDFASTENERS SECTION 2319 \u2022 WOOD SHEAR WALLS AND DIAPHRAGMS <\/td>\n<\/tr>\n | ||||||
307<\/td>\n | TABLE 23-III-A\u2022ALLOWABLE UNIT STRESSES FOR CONSTRUCTION AND INDUSTRIAL SOFTWOOD PLYWOOD <\/td>\n<\/tr>\n | ||||||
308<\/td>\n | TABLE 23-III-B-1\u2022BOLT DESIGN VALUES (Z) FOR SINGLE SHEAR (Two Member) CONNECTIONS1,2,3 <\/td>\n<\/tr>\n | ||||||
309<\/td>\n | TABLE 23-III-C-1\u2022BOX NAIL DESIGN VALUES (Z) FOR SINGLE SHEAR (Two Member) CONNECTIONS1,2,3 <\/td>\n<\/tr>\n | ||||||
310<\/td>\n | TABLE 23-III-C-2\u2022COMMON WIRE NAIL DESIGN VALUES (Z) FOR SINGLE SHEAR (Two Member) CONNECTIONS1,2,3 TABLE 23-III-D\u2022NAIL AND SPIKE WITHDRAWAL DESIGN VALUES (W)1,2 <\/td>\n<\/tr>\n | ||||||
311<\/td>\n | DIVISION IV\u2022CONVENTIONAL LIGHT-FRAME CONSTRUCTION SECTION 2320 \u2022 CONVENTIONAL LIGHT-FRAME \nCONSTRUCTION DESIGN PROVISIONS <\/td>\n<\/tr>\n | ||||||
316<\/td>\n | TABLE 23-IV-A\u2022ALLOWABLE SPANS FOR 2-INCH (51 mm) TONGUE-AND-GROOVE DECKING TABLE 23-IV-B\u2022SIZE, HEIGHT AND SPACING OF WOOD STUDS <\/td>\n<\/tr>\n | ||||||
317<\/td>\n | TABLE 23-IV-C-1\u2022BRACED WALL PANELS1 TABLE 23-IV-C-2\u2022CRIPPLE WALL BRACING <\/td>\n<\/tr>\n | ||||||
318<\/td>\n | TABLE 23-IV-D-1\u2022WOOD STRUCTURAL PANEL WALL SHEATHING1 TABLE 23-IV-D-2\u2022ALLOWABLE SPANS FOR PARTICLEBOARD WALL SHEATHING1 <\/td>\n<\/tr>\n | ||||||
319<\/td>\n | TABLE 23-IV-J-1\u2022FLOOR JOISTS WITH L\/360 DEFLECTION LIMITS <\/td>\n<\/tr>\n | ||||||
320<\/td>\n | TABLE 23-IV-J-2\u2022FLOOR JOISTS WITH L\/360 DEFLECTION LIMITS <\/td>\n<\/tr>\n | ||||||
321<\/td>\n | TABLE 23-IV-J-3\u2022CEILING JOISTS WITH L\/240 DEFLECTION LIMITS <\/td>\n<\/tr>\n | ||||||
322<\/td>\n | TABLE 23-IV-J-4\u2022CEILING JOISTS WITH L\/240 DEFLECTION LIMITS <\/td>\n<\/tr>\n | ||||||
323<\/td>\n | TABLE 23-IV-R-1\u2022RAFTERS WITH L\/240 DEFLECTION LIMITATION <\/td>\n<\/tr>\n | ||||||
324<\/td>\n | TABLE 23-IV-R-2\u2022RAFTERS WITH L\/240 DEFLECTION LIMITATION <\/td>\n<\/tr>\n | ||||||
325<\/td>\n | TABLE 23-IV-R-3\u2022RAFTERS WITH L\/240 DEFLECTION LIMITATION <\/td>\n<\/tr>\n | ||||||
326<\/td>\n | TABLE 23-IV-R-4\u2022RAFTERS WITH L\/240 DEFLECTION LIMITATION <\/td>\n<\/tr>\n | ||||||
327<\/td>\n | TABLE 23-IV-R-5\u2022RAFTERS WITH L\/240 DEFLECTION LIMITATION <\/td>\n<\/tr>\n | ||||||
328<\/td>\n | TABLE 23-IV-R-6\u2022RAFTERS WITH L\/240 DEFLECTION LIMITATION <\/td>\n<\/tr>\n | ||||||
329<\/td>\n | TABLE 23-IV-R-7\u2022RAFTERS WITH L\/180 DEFLECTION LIMITATION <\/td>\n<\/tr>\n | ||||||
330<\/td>\n | TABLE 23-IV-R-8\u2022RAFTERS WITH L\/180 DEFLECTION LIMITATION <\/td>\n<\/tr>\n | ||||||
331<\/td>\n | TABLE 23-IV-R-9\u2022RAFTERS WITH L\/180 DEFLECTION LIMITATION <\/td>\n<\/tr>\n | ||||||
332<\/td>\n | TABLE 23-IV-R-10\u2022RAFTERS WITH L\/180 DEFLECTION LIMITATION <\/td>\n<\/tr>\n | ||||||
333<\/td>\n | TABLE 23-IV-R-11\u2022RAFTERS WITH L\/180 DEFLECTION LIMITATION <\/td>\n<\/tr>\n | ||||||
334<\/td>\n | TABLE 23-IV-R-12\u2022RAFTERS WITH L\/180 DEFLECTION LIMITATION <\/td>\n<\/tr>\n | ||||||
335<\/td>\n | TABLE 23-IV-V-1\u2022VALUES FOR JOISTS AND RAFTERS\u2022VISUALLY GRADED LUMBER <\/td>\n<\/tr>\n | ||||||
336<\/td>\n | TABLE 23-IV-V-1\u2022VALUES FOR JOISTS AND RAFTERS\u2022VISUALLY GRADED LUMBER\u2022(Continued) <\/td>\n<\/tr>\n | ||||||
337<\/td>\n | TABLE 23-IV-V-1\u2022VALUES FOR JOISTS AND RAFTERS\u2022VISUALLY GRADED LUMBER\u2022(Continued) <\/td>\n<\/tr>\n | ||||||
338<\/td>\n | TABLE 23-IV-V-1\u2022VALUES FOR JOISTS AND RAFTERS\u2022VISUALLY GRADED LUMBER\u2022(Continued) <\/td>\n<\/tr>\n | ||||||
339<\/td>\n | TABLE 23-IV-V-1\u2022VALUES FOR JOISTS AND RAFTERS\u2022VISUALLY GRADED LUMBER\u2022(Continued) <\/td>\n<\/tr>\n | ||||||
340<\/td>\n | TABLE 23-IV-V-1\u2022VALUES FOR JOISTS AND RAFTERS\u2022VISUALLY GRADED LUMBER\u2022(Continued) <\/td>\n<\/tr>\n | ||||||
341<\/td>\n | TABLE 23-IV-V-1\u2022VALUES FOR JOISTS AND RAFTERS\u2022VISUALLY GRADED LUMBER\u2022(Continued) <\/td>\n<\/tr>\n | ||||||
342<\/td>\n | TABLE 23-IV-V-1\u2022VALUES FOR JOISTS AND RAFTERS\u2022VISUALLY GRADED LUMBER\u2022(Continued) <\/td>\n<\/tr>\n | ||||||
343<\/td>\n | TABLE 23-IV-V-1\u2022VALUES FOR JOISTS AND RAFTERS\u2022VISUALLY GRADED LUMBER\u2022(Continued) <\/td>\n<\/tr>\n | ||||||
344<\/td>\n | TABLE 23-IV-V-1\u2022VALUES FOR JOISTS AND RAFTERS\u2022VISUALLY GRADED LUMBER\u2022(Continued) <\/td>\n<\/tr>\n | ||||||
345<\/td>\n | TABLE 23-IV-V-1\u2022VALUES FOR JOISTS AND RAFTERS\u2022VISUALLY GRADED LUMBER\u2022(Continued) <\/td>\n<\/tr>\n | ||||||
346<\/td>\n | TABLE 23-IV-V-1\u2022VALUES FOR JOISTS AND RAFTERS\u2022VISUALLY GRADED LUMBER\u2022(Continued) <\/td>\n<\/tr>\n | ||||||
347<\/td>\n | TABLE 23-IV-V-1\u2022VALUES FOR JOISTS AND RAFTERS\u2022VISUALLY GRADED LUMBER\u2022(Continued) <\/td>\n<\/tr>\n | ||||||
348<\/td>\n | TABLE 23-IV-V-1\u2022VALUES FOR JOISTS AND RAFTERS\u2022VISUALLY GRADED LUMBER\u2022(Continued) <\/td>\n<\/tr>\n | ||||||
349<\/td>\n | TABLE 23-IV-V-1\u2022VALUES FOR JOISTS AND RAFTERS\u2022VISUALLY GRADED LUMBER\u2022(Continued) <\/td>\n<\/tr>\n | ||||||
350<\/td>\n | TABLE 23-IV-V-2\u2022VALUES FOR JOISTS AND RAFTERS\u2022MECHANICALLY GRADED LUMBER <\/td>\n<\/tr>\n | ||||||
351<\/td>\n | DIVISION V\u2022DESIGN STANDARD FOR METAL PLATE CONNECTED WOOD TRUSS SECTION 2321 \u2022 METAL PLATE CONNECTED WOODTRUSS DESIGN <\/td>\n<\/tr>\n | ||||||
352<\/td>\n | DIVISION VI\u2022DESIGN STANDARD FOR STRUCTURAL GLUED BUILT-UP MEMBERS\u2022PLYWOOD COMPONENTS SECTION 2322 \u2022 PLYWOOD STRESSED SKINPANELS SECTION 2323 \u2022 PLYWOOD CURVED PANELS <\/td>\n<\/tr>\n | ||||||
354<\/td>\n | SECTION 2324 \u2022 PLYWOOD BEAMS <\/td>\n<\/tr>\n | ||||||
356<\/td>\n | SECTION 2325 \u2022 PLYWOOD SANDWICH PANELS <\/td>\n<\/tr>\n | ||||||
357<\/td>\n | SECTION 2326 \u2022 FABRICATION OF PLYWOOD COMPONENTS <\/td>\n<\/tr>\n | ||||||
361<\/td>\n | SECTION 2327 \u2022 ALL-PLYWOOD BEAMS <\/td>\n<\/tr>\n | ||||||
364<\/td>\n | TABLE 23-VI-A\u2022BASIC SPACING TABLE 23-VI-B\u2022LENGTH OF SPLICE PLATES TABLE 23-VI-C\u2022ALLOWABLE PLYWOOD TENSION STRESS FOR BUTT JOINT SPLICE1 TABLE 23-VI-D\u2022BRACING FOR DEEP NARROW BEAM <\/td>\n<\/tr>\n | ||||||
365<\/td>\n | TABLE 23-VI-E\u2022AREA REDUCTION FACTORS TABLE 23-VI-F\u2022WEB STIFFENER SPACING TABLE 23-VI-G\u2022DRY SHEAR STRENGTH STRESS REQUIREMENTS1 TABLE 23-VI-H\u2022DRY TENSION STRESS <\/td>\n<\/tr>\n | ||||||
366<\/td>\n | FIGURE 23-VI-1\u2022STAPLE SPACING FOR PLYWOOD WEBS, FLANGES, SPLICE PLATES AND STIFFENERS <\/td>\n<\/tr>\n | ||||||
367<\/td>\n | FIGURE 23-VI-1\u2022STAPLE SPACING FOR PLYWOOD WEBS, FLANGES, SPLICE PLATES AND STIFFENERS\u2022(Continued) <\/td>\n<\/tr>\n | ||||||
368<\/td>\n | FIGURE 23-VI-1\u2022STAPLE SPACING FOR PLYWOOD WEBS, FLANGES, SPLICE PLATES AND STIFFENERS\u2022(Continued) <\/td>\n<\/tr>\n | ||||||
369<\/td>\n | DIVISION VII\u2022DESIGN STANDARD FOR SPAN TABLES FOR JOISTS AND RAFTERS SECTION 2328 \u2022 SPAN TABLES FOR JOISTS ANDRAFTERS SECTION 2329 \u2022 DESIGN CRITERIA FOR JOISTSAND RAFTERS SECTION 2330 \u2022 LUMBER STRESSES SECTION 2331 \u2022 MOISTURE CONTENT SECTION 2332 \u2022 LUMBER SIZE SECTION 2333 \u2022 SPAN TABLES FOR JOISTS ANDRAFTERS <\/td>\n<\/tr>\n | ||||||
370<\/td>\n | TABLE 23-VII-J-1\u2022FLOOR JOISTS WITH L\/360 DEFLECTION LIMITS <\/td>\n<\/tr>\n | ||||||
371<\/td>\n | TABLE 23-VII-J-2\u2022FLOOR JOISTS WITH L\/360 DEFLECTION LIMITS <\/td>\n<\/tr>\n | ||||||
372<\/td>\n | TABLE 23-VII-J-3\u2022FLOOR JOISTS WITH L\/360 DEFLECTION LIMITS <\/td>\n<\/tr>\n | ||||||
373<\/td>\n | TABLE 23-VII-J-4\u2022FLOOR JOISTS WITH L\/360 DEFLECTION LIMITS <\/td>\n<\/tr>\n | ||||||
374<\/td>\n | TABLE 23-VII-R-1\u2022RAFTERS WITH L\/240 DEFLECTION LIMITS <\/td>\n<\/tr>\n | ||||||
375<\/td>\n | TABLE 23-VII-R-2\u2022RAFTERS WITH L\/240 DEFLECTION LIMITS <\/td>\n<\/tr>\n | ||||||
376<\/td>\n | TABLE 23-VII-R-3\u2022RAFTERS WITH L\/240 DEFLECTION LIMITS <\/td>\n<\/tr>\n | ||||||
377<\/td>\n | TABLE 23-VII-R-4\u2022RAFTERS WITH L\/240 DEFLECTION LIMITS <\/td>\n<\/tr>\n | ||||||
378<\/td>\n | TABLE 23-VII-R-5\u2022RAFTERS WITH L\/240 DEFLECTION LIMITS <\/td>\n<\/tr>\n | ||||||
379<\/td>\n | TABLE 23-VII-R-6\u2022RAFTERS WITH L\/240 DEFLECTION LIMITS <\/td>\n<\/tr>\n | ||||||
380<\/td>\n | TABLE 23-VII-R-7\u2022RAFTERS WITH L\/180 DEFLECTION LIMITS <\/td>\n<\/tr>\n | ||||||
381<\/td>\n | TABLE 23-VII-R-8\u2022RAFTERS WITH L\/180 DEFLECTION LIMITS <\/td>\n<\/tr>\n | ||||||
382<\/td>\n | TABLE 23-VII-R-9\u2022RAFTERS WITH L\/180 DEFLECTION LIMITS <\/td>\n<\/tr>\n | ||||||
383<\/td>\n | TABLE 23-VII-R-10\u2022RAFTERS WITH L\/180 DEFLECTION LIMITS <\/td>\n<\/tr>\n | ||||||
384<\/td>\n | TABLE 23-VII-R-11\u2022RAFTERS WITH L\/180 DEFLECTION LIMITS <\/td>\n<\/tr>\n | ||||||
385<\/td>\n | TABLE 23-VII-R-12\u2022RAFTERS WITH L\/180 DEFLECTION LIMITS <\/td>\n<\/tr>\n | ||||||
386<\/td>\n | DIVISION VIII\u2022DESIGN STANDARD FOR PLANK-AND-BEAM FRAMING SECTION 2334 \u2022 SCOPE SECTION 2335 \u2022 DEFINITION SECTION 2336 \u2022 DESIGN <\/td>\n<\/tr>\n | ||||||
387<\/td>\n | TABLE 23-VIII-A\u20222-INCH (51 mm) PLANK\u2022REQUIRED MINIMUM f AND E LIVE LOAD: 20, 30 AND 40 POUNDSPER SQUARE FOOT (0.96, 1.44 and 1.92 kN\/m2) WITHOUT PLASTERED CEILING BELOW <\/td>\n<\/tr>\n | ||||||
388<\/td>\n | TABLE 23-VIII-B\u2022ROOF BEAMS\u2022LIVE LOAD 20 POUNDS PER SQUARE FOOT (0.96 kN\/m2)\u2022DEFLECTION LIMITATION L\/240 (not for support of plaster) <\/td>\n<\/tr>\n | ||||||
389<\/td>\n | TABLE 23-VIII-C\u2022ROOF BEAMS\u2022LIVE LOAD 30 POUNDS PER SQUARE FOOT (1.44 kN\/m2)\u2022DEFLECTION LIMITATION L\/240 (not for support of plaster) <\/td>\n<\/tr>\n | ||||||
390<\/td>\n | TABLE 23-VIII-D\u2022ROOF AND FLOOR BEAMS\u2022LIVE LOAD 40 POUNDS PER SQUARE FOOT (1.92 kN\/m2)\u2022DEFLECTION LIMITATION L\/360 (not for support of plaster) <\/td>\n<\/tr>\n | ||||||
391<\/td>\n | EXCERPTS FROM CHAPTER 24 GLASS AND GLAZING SECTION 2409 \u2022 SLOPED GLAZING ANDSKYLIGHTS TABLE 24-A\u2022ADJUSTMENT FACTORS\u2022RELATIVE RESISTANCE TO WIND LOADS <\/td>\n<\/tr>\n | ||||||
392<\/td>\n | GRAPH 24-1\u2022MAXIMUM ALLOWABLE AREA OF GLASS1 <\/td>\n<\/tr>\n | ||||||
393<\/td>\n | EXCERPTS FROM CHAPTER 25 GYPSUM BOARD AND PLASTER SECTION 2513 \u2022 SHEAR-RESISTING CONSTRUCTION WITH WOOD FRAME <\/td>\n<\/tr>\n | ||||||
394<\/td>\n | TABLE 25-I\u2022ALLOWABLE SHEAR FOR WIND OR SEISMIC FORCES IN POUNDS PER FOOT FOR VERTICAL DIAPHRAGMS OFLATH AND PLASTER OR GYPSUM BOARD FRAME WALL ASSEMBLIES1 CHAPTERS 26-34 <\/td>\n<\/tr>\n | ||||||
395<\/td>\n | EXCERPTS FROM CHAPTER 35 UNIFORM BUILDING CODE STANDARDS SECTION 3501 \u2022 UBC STANDARDS SECTION 3502 \u2022 ADOPTED STANDARDS SECTION 3503 \u2022 STANDARD OF DUTY SECTION 3504 \u2022 RECOGNIZED STANDARDS <\/td>\n<\/tr>\n | ||||||
399<\/td>\n | APPENDIX CHAPTER 16 STRUCTURAL FORCES DIVISION I\u2022SNOW LOAD DESIGN SECTION 1637 \u2022 GENERAL SECTION 1638 \u2022 NOTATIONS SECTION 1639 \u2022 GROUND SNOW LOADS SECTION 1640 \u2022 ROOF SNOW LOADS <\/td>\n<\/tr>\n | ||||||
400<\/td>\n | SECTION 1641 \u2022 UNBALANCED SNOW LOADS,GABLE ROOFS SECTION 1642 \u2022 UNBALANCED SNOW LOAD FORCURVED ROOFS SECTION 1643 \u2022 SPECIAL EAVE REQUIREMENTS SECTION 1644 \u2022 DRIFT LOADS ON LOWER ROOFS,DECKS AND ROOF PROJECTIONS <\/td>\n<\/tr>\n | ||||||
401<\/td>\n | SECTION 1645 \u2022 RAIN ON SNOW SECTION 1646 \u2022 DEFLECTIONS SECTION 1647 \u2022 IMPACT LOADS SECTION 1648 \u2022 VERTICAL OBSTRUCTIONS TABLE A-16-A\u2022SNOW EXPOSURE COEFFICIENT (Ce)1,2 TABLE A-16-B\u2022VALUES FOR OCCUPANCY IMPORTANCE FACTOR I <\/td>\n<\/tr>\n | ||||||
402<\/td>\n | FIGURE A-16-1\u2022GROUND SNOW LOAD, Pg, FOR 50-YEAR MEANRECURRENCE INTERVAL FOR THE WESTERN UNITED STATES <\/td>\n<\/tr>\n | ||||||
403<\/td>\n | FIGURE A-16-2\u2022GROUND SNOW LOAD, Pg, FOR 50-YEAR MEANRECURRENCE INTERVAL FOR THE CENTRAL UNITED STATES <\/td>\n<\/tr>\n | ||||||
404<\/td>\n | FIGURE A-16-3\u2022GROUND SNOW LOAD, Pg, FOR 50-YEAR MEANRECURRENCE INTERVAL FOR THE EASTERN UNITED STATES <\/td>\n<\/tr>\n | ||||||
405<\/td>\n | FIGURE A-16-4\u2022DRIFTING SNOW ON LOW ROOFS AND DECKS FIGURE A-16-5\u2022DRIFTING SNOW ONTO ADJACENT LOW STRUCTURES FIGURE A-16-6\u2022ADDITIONAL SURCHARGE DUE TO SLIDING SNOW <\/td>\n<\/tr>\n | ||||||
406<\/td>\n | FIGURE A-16-7\u2022SNOW DRIFTING AT ROOF PROJECTIONS FIGURE A-16-8\u2022INTERSECTING SNOW DRIFTS <\/td>\n<\/tr>\n | ||||||
407<\/td>\n | FIGURE A-16-9\u2022DETERMINATION OF hd FIGURE A-16-10\u2022OVERHANG LOADS <\/td>\n<\/tr>\n | ||||||
408<\/td>\n | FIGURE A-16-11\u2022VALLEY COEFFICIENT, Cv <\/td>\n<\/tr>\n | ||||||
409<\/td>\n | FIGURE A-16-12\u2022VALLEY DESIGN COEFFICIENTS, Cv <\/td>\n<\/tr>\n | ||||||
410<\/td>\n | FIGURE A-16-13\u2022VALLEY DESIGN COEFFICIENTS, Cv <\/td>\n<\/tr>\n | ||||||
411<\/td>\n | FIGURE A-16-14\u2022ICE SPLITTER\u2022PLAN VIEW <\/td>\n<\/tr>\n | ||||||
412<\/td>\n | DIVISION II\u2022EARTHQUAKE RECORDING INSTRUMENTATION SECTION 1649 \u2022 GENERAL SECTION 1650 \u2022 LOCATION SECTION 1651 \u2022 MAINTENANCE SECTION 1652 \u2022 INSTRUMENTATION OF EXISTINGBUILDINGS <\/td>\n<\/tr>\n | ||||||
413<\/td>\n | DIVISION III\u2022SEISMIC ZONE TABULATION SECTION 1653 \u2022 FOR AREAS OUTSIDE THE UNITEDSTATES <\/td>\n<\/tr>\n | ||||||
417<\/td>\n | DIVISION IV\u2022EARTHQUAKE REGULATIONS FORSEISMIC-ISOLATED STRUCTURES SECTION 1654 \u2022 GENERAL SECTION 1655 \u2022 DEFINITIONS SECTION 1656 \u2022 SYMBOLS AND NOTATIONS <\/td>\n<\/tr>\n | ||||||
419<\/td>\n | SECTION 1657 \u2022 CRITERIA SELECTION SECTION 1658 \u2022 STATIC LATERAL RESPONSEPROCEDURE <\/td>\n<\/tr>\n | ||||||
421<\/td>\n | SECTION 1659 \u2022 DYNAMIC LATERAL-RESPONSEPROCEDURE <\/td>\n<\/tr>\n | ||||||
422<\/td>\n | SECTION 1660 \u2022 LATERAL LOAD ON ELEMENTSOF STRUCTURES AND NONSTRUCTURALCOMPONENTS SUPPORTED BY STRUCTURES <\/td>\n<\/tr>\n | ||||||
423<\/td>\n | SECTION 1661 \u2022 DETAILED SYSTEMS REQUIREMENTS <\/td>\n<\/tr>\n | ||||||
424<\/td>\n | SECTION 1662 \u2022 NONBUILDING STRUCTURES SECTION 1663 \u2022 FOUNDATIONS SECTION 1664 \u2022 DESIGN AND CONSTRUCTIONREVIEW SECTION 1665 \u2022 REQUIRED TESTS OF ISOLATIONSYSTEM <\/td>\n<\/tr>\n | ||||||
426<\/td>\n | TABLE A-16-C\u2022DAMPING COEFFICIENTS, BD AND BM TABLE A-16-D\u2022MAXIMUM CAPABLE EARTHQUAKE RESPONSE COEFFICIENT, MM TABLE A-16-E\u2022STRUCTURAL SYSTEMS ABOVE THE ISOLATION INTERFACE1 <\/td>\n<\/tr>\n | ||||||
427<\/td>\n | TABLE A-16-E\u2022STRUCTURAL SYSTEMS ABOVE THE ISOLATION INTERFACE1\u2022(Continued) TABLE A-16-F\u2022SEISMIC COEFFICIENT, CAM1 <\/td>\n<\/tr>\n | ||||||
428<\/td>\n | TABLE A-16-G\u2022SEISMIC COEFFICIENT, CVM1 <\/td>\n<\/tr>\n | ||||||
429<\/td>\n | APPENDIX CHAPTER 18 WATERPROOFlNG AND DAMPPROOFlNG FOUNDATIONS SECTION 1820 \u2022 SCOPE SECTION 1821 \u2022 GROUNDWATER TABLEINVESTIGATION SECTION 1822 \u2022 DAMPPROOFING REQUIRED SECTION 1823 \u2022 FLOOR DAMPPROOFING SECTION 1824 \u2022 WALL DAMPPROOFING SECTION 1825 \u2022 OTHER DAMPPROOFINGREQUIREMENTS SECTION 1826 \u2022 WATERPROOFING REQUIRED <\/td>\n<\/tr>\n | ||||||
430<\/td>\n | SECTION 1827 \u2022 FLOOR WATERPROOFING SECTION 1828 \u2022 WALL WATERPROOFING SECTION 1829 \u2022 OTHER DAMPPROOFING ANDWATERPROOFING REQUIREMENTS <\/td>\n<\/tr>\n | ||||||
431<\/td>\n | APPENDIX CHAPTER 19 PROTECTION OF RESIDENTIAL CONCRETEEXPOSED TO FREEZING AND THAWING SECTION 1928 \u2022 GENERAL TABLE A-19-A\u2022MINIMUM SPECIFIED COMPRESSIVE STRENGTH OF CONCRETE1 <\/td>\n<\/tr>\n | ||||||
432<\/td>\n | FIGURE A-19-1\u2022WEATHERING REGIONS FOR RESIDENTIAL CONCRETE <\/td>\n<\/tr>\n | ||||||
433<\/td>\n | APPENDIX CHAPTER 21 PRESCRIPTIVE MASONRY CONSTRUCTION IN HIGH-WIND AREAS SECTION 2112 \u2022 GENERAL <\/td>\n<\/tr>\n | ||||||
435<\/td>\n | TABLE A-21-A-1\u2022EXTERIOR FOUNDATION REQUIREMENTS FORMASONRY BUILDINGS WITH 6- AND 8-INCH-THICK WALLS <\/td>\n<\/tr>\n | ||||||
436<\/td>\n | TABLE A-21-A-2\u2022INTERIOR FOUNDATION REQUIREMENTS FORMASONRY BUILDINGS WITH 6- AND 8-INCH-THICK WALLS <\/td>\n<\/tr>\n | ||||||
437<\/td>\n | TABLE A-21-B\u2022VERTICAL REINFORCEMENT AND TOP RESTRAINT FOR VARIOUSHEIGHTS OF BASEMENT AND OTHER BELOW-GRADE WALLS <\/td>\n<\/tr>\n | ||||||
438<\/td>\n | TABLE A-21-C-1\u2022VERTICAL REINFORCING STEEL REQUIREMENTS FOR 6-INCH-THICK (153 mm)MASONRY WALLS1 IN AREAS WHERE BASIC WIND SPEEDS ARE 80 MILES PER HOUR (129 km\/h)OR GREATER2,3,4,5 <\/td>\n<\/tr>\n | ||||||
439<\/td>\n | TABLE A-21-C-2\u2022VERTICAL REINFORCING STEEL REQUIREMENTS FOR 8-INCH-THICK (203 mm)MASONRY WALLS1 IN AREAS WHERE BASIC WIND SPEEDS ARE 80 MILESPER HOUR (129 km\/h) OR GREATER2,3,4,5 <\/td>\n<\/tr>\n | ||||||
440<\/td>\n | TABLE A-21-C-3\u2022VERTICAL REINFORCING STEEL REQUIREMENTS FOR 8-INCH-THICK (203 mm)MASONRY WALLS1 IN AREAS WHERE BASIC WIND SPEEDS ARE 80 MILESPER HOUR (129 km\/h) OR GREATER2,3,4,5 <\/td>\n<\/tr>\n | ||||||
441<\/td>\n | TABLE A-21-C-4\u2022VERTICAL REINFORCING STEEL REQUIREMENTS FOR 8-INCH-THICK (203 mm)MASONRY WALLS1 IN AREAS WHERE BASIC WIND SPEEDS ARE 80 MILESPER HOUR (129 km\/h) OR GREATER2,3,4,5 <\/td>\n<\/tr>\n | ||||||
442<\/td>\n | TABLE A-21-C-5\u2022VERTICAL REINFORCING STEEL REQUIREMENTS FOR 8-INCH-THICK (203 mm)MASONRY WALLS1 IN AREAS WHERE BASIC WIND SPEEDS ARE 80 MILESPER HOUR (129 km\/h) OR GREATER2,3,4,5 <\/td>\n<\/tr>\n | ||||||
443<\/td>\n | TABLE A-21-D\u2022ANCHORAGE OF WOOD MEMBERS TO EXTERIOR WALLS FOR VERTICAL AND UPLIFT FORCES <\/td>\n<\/tr>\n | ||||||
444<\/td>\n | TABLE A-21-E\u2022LINTEL REINFORCEMENT OVER EXTERIOR OPENINGS1,2\u2022WOOD AND STEEL FRAMING3[Lintels larger than 12 feet 0 inch (3658 mm) shall be designed.]48-INCH (203 mm) MASONRY UNITS5 <\/td>\n<\/tr>\n | ||||||
445<\/td>\n | TABLE A-21-F\u2022MASONRY SHEAR WALL1,2,3 AND DIAPHRAGMREQUIREMENTS IN HIGH-WIND AREAS4 <\/td>\n<\/tr>\n | ||||||
446<\/td>\n | TABLE A-21-F\u2022MASONRY SHEAR WALL1,2,3 AND DIAPHRAGMREQUIREMENTS IN HIGH-WIND AREAS4\u2022(Part I Continued) <\/td>\n<\/tr>\n | ||||||
447<\/td>\n | TABLE A-21-F\u2022MASONRY SHEAR WALL1,2,3 AND DIAPHRAGMREQUIREMENTS IN HIGH-WIND AREAS4\u2022(Continued) <\/td>\n<\/tr>\n | ||||||
448<\/td>\n | TABLE A-21-F\u2022MASONRY SHEAR WALL1,2,3 AND DIAPHRAGMREQUIREMENTS IN HIGH-WIND AREAS4\u2022(Part II Continued) <\/td>\n<\/tr>\n | ||||||
449<\/td>\n | TABLE A-21-G\u2022MINIMUM WALL CONNECTION REQUIREMENTS IN HIGH-WIND AREASPrecast Hollow-core Plank Floors and Roofs TABLE A-21-H\u2022MINIMUM HOLD-DOWN REQUIREMENTS IN HIGH-WIND AREASSteel Floors and Roofs TABLE A-21-I\u2022DIAGONAL BRACING REQUIREMENTSFOR GABLE-END WALL1,2 ROOF PITCH 3:12 to 5:12 <\/td>\n<\/tr>\n | ||||||
450<\/td>\n | FIGURE A-21-1\u2022VARIOUS DETAILS OF FOOTINGS(See Tables A-21-A-1 and A-21-A-2 for widths.) <\/td>\n<\/tr>\n | ||||||
451<\/td>\n | FIGURE A-21-1\u2022VARIOUS DETAILS OF FOOTINGS\u2022(Continued)(See Tables A-21-A-1 and A-21-A-2 for widths.) <\/td>\n<\/tr>\n | ||||||
452<\/td>\n | FIGURE A-21-1\u2022VARIOUS DETAILS OF FOOTINGS\u2022(Continued)(See Tables A-21-A-1 and A-21-A-2 for widths.) <\/td>\n<\/tr>\n | ||||||
453<\/td>\n | FIGURE A-21-2\u2022MINIMUM MASONRY WALL REQUIREMENTS IN SEISMIC ZONE 2 <\/td>\n<\/tr>\n | ||||||
454<\/td>\n | FIGURE A-21-3\u2022BELOW-GRADE WALL AND DRAINAGE DETAILS <\/td>\n<\/tr>\n | ||||||
455<\/td>\n | FIGURE A-21-4\u2022HOLLOW-MASONRY UNIT FOUNDATION WALL\u2022WOOD FLOOR <\/td>\n<\/tr>\n | ||||||
456<\/td>\n | FIGURE A-21-5\u2022PLACEMENT OF REINFORCEMENT FIGURE A-21-6\u2022VARIOUS CONNECTIONS OF FLOORS TO BASEMENT WALLS <\/td>\n<\/tr>\n | ||||||
457<\/td>\n | FIGURE A-21-6\u2022VARIOUS CONNECTIONS OF FLOORS TO BASEMENT WALLS\u2022(Continued) <\/td>\n<\/tr>\n | ||||||
458<\/td>\n | FIGURE A-21-7\u2022VARIOUS DETAILS ASSOCIATEDWITH TABLE A-21-D (Uplift Resistance) <\/td>\n<\/tr>\n | ||||||
459<\/td>\n | FIGURE A-21-7\u2022VARIOUS DETAILS ASSOCIATEDWITH TABLE A-21-D (Uplift Resistance)\u2022(Continued) <\/td>\n<\/tr>\n | ||||||
460<\/td>\n | FIGURE A-21-7\u2022VARIOUS DETAILS ASSOCIATED WITH TABLE A-21-D (Uplift Resistance)\u2022(Continued) <\/td>\n<\/tr>\n | ||||||
461<\/td>\n | FIGURE A-21-7\u2022VARIOUS DETAILS ASSOCIATED WITH TABLE A-21-D (Uplift Resistance)\u2022(Continued) <\/td>\n<\/tr>\n | ||||||
462<\/td>\n | FIGURE A-21-7\u2022VARIOUS DETAILS ASSOCIATED WITH TABLE A-21-D (Uplift Resistance)\u2022(Continued) <\/td>\n<\/tr>\n | ||||||
463<\/td>\n | FIGURE A-21-8\u2022CONTINUOUS LOAD PATH <\/td>\n<\/tr>\n | ||||||
464<\/td>\n | FIGURE A-21-8\u2022CONTINUOUS LOAD PATH\u2022(Continued) <\/td>\n<\/tr>\n | ||||||
465<\/td>\n | FIGURE A-21-9\u2022SPACING AND LENGTHS OF SHEAR WALLS <\/td>\n<\/tr>\n | ||||||
466<\/td>\n | FIGURE A-21-10\u2022SPACING OF STEEL REINFORCING WIRE <\/td>\n<\/tr>\n | ||||||
467<\/td>\n | FIGURE A-21-11\u2022FLOOR-TO-WALL CONNECTION DETAILS <\/td>\n<\/tr>\n | ||||||
468<\/td>\n | FIGURE A-21-12\u2022ROOF-TO-WALL CONNECTION DETAILS <\/td>\n<\/tr>\n | ||||||
469<\/td>\n | FIGURE A-21-13\u2022VARIOUS TYPES OF WALL CONNECTIONS <\/td>\n<\/tr>\n | ||||||
470<\/td>\n | FIGURE A-21-13\u2022VARIOUS TYPES OF WALL CONNECTIONS\u2022(Continued) <\/td>\n<\/tr>\n | ||||||
471<\/td>\n | FIGURE A-21-14\u2022EXTERIOR WALL DETAILS <\/td>\n<\/tr>\n | ||||||
472<\/td>\n | FIGURE A-21-15\u2022INTERIOR WALL DETAILS FIGURE A-21-16\u2022FLOOR DETAILS <\/td>\n<\/tr>\n | ||||||
474<\/td>\n | FIGURE A-21-17\u2022DIAGONAL BRACING OF GABLE-END WALL1 <\/td>\n<\/tr>\n | ||||||
475<\/td>\n | FIGURE A-21-18\u2022ALTERNATE HORIZONTAL BRACING OF GABLE-END WALL <\/td>\n<\/tr>\n | ||||||
476<\/td>\n | APPENDIX CHAPTER 23 CONVENTIONAL LIGHT-FRAME CONSTRUCTION IN HIGH-WIND AREAS SECTION 2337 \u2022 GENERAL <\/td>\n<\/tr>\n | ||||||
478<\/td>\n | TABLE A-23-A\u2022WALL SHEATHING AT EXTERIOR WALLS ANDINTERIOR MAIN CROSS-STUD PARTITIONS1 TABLE A-23-B\u2022ROOF AND FLOOR ANCHORAGE AT EXTERIOR WALLS <\/td>\n<\/tr>\n | ||||||
479<\/td>\n | TABLE A-23-C\u2022RIDGE TIE-STRAP NAILING1 FIGURE A-23-1\u2022COMPLETE LOAD PATH DETAILS <\/td>\n<\/tr>\n | ||||||
480<\/td>\n | FIGURE A-23-1\u2022COMPLETE LOAD PATH DETAILS\u2022(Continued) <\/td>\n<\/tr>\n | ||||||
481<\/td>\n | UNIT CONVERSION TABLES <\/td>\n<\/tr>\n | ||||||
482<\/td>\n | CONVERSION FACTORS <\/td>\n<\/tr>\n | ||||||
483<\/td>\n | CONVERSION FACTORS\u2022(Continued) <\/td>\n<\/tr>\n | ||||||
484<\/td>\n | GAGE CONVERSION TABLE <\/td>\n<\/tr>\n | ||||||
485<\/td>\n | INDEX <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" Uniform Building Code – Volume 2<\/b><\/p>\n |