{"id":137808,"date":"2024-10-19T07:58:00","date_gmt":"2024-10-19T07:58:00","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/fema-p-751-2012\/"},"modified":"2024-10-25T00:09:09","modified_gmt":"2024-10-25T00:09:09","slug":"fema-p-751-2012","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/fema\/fema-p-751-2012\/","title":{"rendered":"FEMA P 751 2012"},"content":{"rendered":"

None<\/p>\n

PDF Catalog<\/h4>\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
PDF Pages<\/th>\nPDF Title<\/th>\n<\/tr>\n
1<\/td>\nFEMA P-751: 2009 NEHRP Recommended Seismic Provisions: Design Examples <\/td>\n<\/tr>\n
3<\/td>\nTITLE PAGE <\/td>\n<\/tr>\n
5<\/td>\nFOREWORD <\/td>\n<\/tr>\n
6<\/td>\nPREFACE <\/td>\n<\/tr>\n
9<\/td>\nTABLE OF CONTENTS <\/td>\n<\/tr>\n
19<\/td>\nCHAPTER 1: INTRODUCTION <\/td>\n<\/tr>\n
21<\/td>\n1.1 EVOLUTION OF EARTHQUAKE ENGINEERING <\/td>\n<\/tr>\n
24<\/td>\n1.2 HISTORY AND ROLE OF THE NEHRP PROVISIONS <\/td>\n<\/tr>\n
26<\/td>\n1.3 THE NEHRP DESIGN EXAMPLES <\/td>\n<\/tr>\n
29<\/td>\n1.4 GUIDE TO USE OF THE PROVISIONS <\/td>\n<\/tr>\n
56<\/td>\n1.5 REFERENCES <\/td>\n<\/tr>\n
57<\/td>\nCHAPTER 2: FUNDAMENTALS <\/td>\n<\/tr>\n
59<\/td>\n2.1 EARTHQUAKE PHENOMENA <\/td>\n<\/tr>\n
61<\/td>\n2.2 STRUCTURAL RESPONSE TO GROUND SHAKING
2.2.1 Response Spectra <\/td>\n<\/tr>\n
67<\/td>\n2.2.2 Inelastic Response <\/td>\n<\/tr>\n
70<\/td>\n2.2.3 Building Materials <\/td>\n<\/tr>\n
72<\/td>\n2.2.4 Building Systems <\/td>\n<\/tr>\n
73<\/td>\n2.2.5 Supplementary Elements Added to Improve Structural Performance <\/td>\n<\/tr>\n
74<\/td>\n2.3 ENGINEERING PHILOSOPHY <\/td>\n<\/tr>\n
76<\/td>\n2.4 STRUCTURAL ANALYSIS <\/td>\n<\/tr>\n
78<\/td>\n2.5 NONSTRUCTURAL ELEMENTS OF BUILDINGS <\/td>\n<\/tr>\n
79<\/td>\n2.6 QUALITY ASSURANCE <\/td>\n<\/tr>\n
81<\/td>\nCHAPTER 3: EARTHQUAKE GROUND MOTION <\/td>\n<\/tr>\n
82<\/td>\n3.1 BASIS OF EARTHQUAKE GROUND MOTION MAPS
3.1.1 ASCE7-\u00ad05 Seismic Maps <\/td>\n<\/tr>\n
83<\/td>\n3.1.2 MCER Ground Motions in the Provisions and in ASCE 7-\u00ad10 <\/td>\n<\/tr>\n
87<\/td>\n3.1.3 PGA Maps in the Provisions and in ASCE 7-\u00ad10
3.1.4 Basis of Vertical Ground Motions in the Provisions and in ASCE 7\u201010
3.1.5 Summary <\/td>\n<\/tr>\n
88<\/td>\n3.1.6 References <\/td>\n<\/tr>\n
89<\/td>\n3.2 DETERMINATION OF GROUND MOTION VALUES AND SPECTRA
3.2.1 ASCE 7-\u00ad05 Ground Motion Values <\/td>\n<\/tr>\n
90<\/td>\n3.2.2 2009 Provisions Ground Motion Values <\/td>\n<\/tr>\n
91<\/td>\n3.2.3 ASCE 7\u00ad\u201010 Ground Motion Values <\/td>\n<\/tr>\n
92<\/td>\n3.2.4 Horizontal Response Spectra <\/td>\n<\/tr>\n
93<\/td>\n3.2.5 Vertical Response Spectra <\/td>\n<\/tr>\n
94<\/td>\n3.2.6 Peak Ground Accelerations
3.3 SELECTION AND SCALING OF GROUND MOTION RECORDS <\/td>\n<\/tr>\n
95<\/td>\n3.3.1 Approach to GroundMotion Selection and Scaling <\/td>\n<\/tr>\n
104<\/td>\n3.3.2 Two\u2010Component Records for Three Dimensional Analysis <\/td>\n<\/tr>\n
107<\/td>\n3.3.3 One\u00ad\u2010Component Records for Two\u2010Dimensional Analysis <\/td>\n<\/tr>\n
108<\/td>\n3.3.4 References <\/td>\n<\/tr>\n
109<\/td>\nCHAPTER 4: STRUCTURAL ANALYSIS <\/td>\n<\/tr>\n
111<\/td>\n4.1 IRREGULAR 12-\u00adSTORY STEEL FRAME BUILDING, STOCKTON, CALIFORNIA
4.1.1 Introduction
4.1.2 Description of Building and Structure <\/td>\n<\/tr>\n
112<\/td>\n4.1.3 Seismic Ground Motion Parameters <\/td>\n<\/tr>\n
116<\/td>\n4.1.4 Dynamic Properties <\/td>\n<\/tr>\n
119<\/td>\n4.1.5 Equivalent Lateral Force Analysis <\/td>\n<\/tr>\n
137<\/td>\n4.1.6 Modal Response Spectrum Analysis <\/td>\n<\/tr>\n
147<\/td>\n4.1.7 Modal Response History Analysis <\/td>\n<\/tr>\n
158<\/td>\n4.1.8 Comparison of Results from Various Methods of Analysis <\/td>\n<\/tr>\n
161<\/td>\n4.1.9 Consideration of Higher Modes in Analysis <\/td>\n<\/tr>\n
164<\/td>\n4.1.10 Commentary on the ASCE 7 Requirements for Analysis <\/td>\n<\/tr>\n
165<\/td>\n4.2 SIX\u2010STORY STEEL FRAME BUILDING, SEATTLE, WASHINGTON
4.2.1 Description of Structure <\/td>\n<\/tr>\n
168<\/td>\n4.2.2 Loads <\/td>\n<\/tr>\n
172<\/td>\n4.2.3 Preliminaries to Main Structural Analysis <\/td>\n<\/tr>\n
181<\/td>\n4.2.4 Description of Model Used for Detailed Structural Analysis <\/td>\n<\/tr>\n
202<\/td>\n4.2.5 Nonlinear Static Analysis <\/td>\n<\/tr>\n
217<\/td>\n4.2.6 Response History Analysis <\/td>\n<\/tr>\n
242<\/td>\n4.2.7 Summary and Conclusions <\/td>\n<\/tr>\n
245<\/td>\nCHAPTER 5: FOUNDATION ANALYSIS AND DESIGN <\/td>\n<\/tr>\n
247<\/td>\n5.1 SHALLOW FOUNDATIONS FOR A SEVEN-\u00adSTORY OFFICE BUILDING, LOS ANGELES, CALIFORNIA
5.1.1 Basic Information <\/td>\n<\/tr>\n
252<\/td>\n5.1.2 Design for Gravity Loads <\/td>\n<\/tr>\n
255<\/td>\n5.1.3 Design for Moment-\u00adResisting Frame System <\/td>\n<\/tr>\n
260<\/td>\n5.1.4 Design for Concentrically Braced Frame System <\/td>\n<\/tr>\n
269<\/td>\n5.1.5 Cost Comparison
5.2 DEEP FOUNDATIONS FOR A 12-\u00adSTORY BUILDING, SEISMIC DESIGN CATEGORY D
5.2.1 Basic Information <\/td>\n<\/tr>\n
277<\/td>\n5.2.2 Pile Analysis, Design and Detailing <\/td>\n<\/tr>\n
291<\/td>\n5.2.3 Other Considerations <\/td>\n<\/tr>\n
297<\/td>\nCHAPTER 6: STRUCTURAL STEEL DESIGN <\/td>\n<\/tr>\n
299<\/td>\n6.1 INDUSTRIAL HIGH-\u00adCLEARANCE BUILDING, ASTORIA, OREGON
6.1.1 Building Description <\/td>\n<\/tr>\n
302<\/td>\n6.1.2 Design Parameters <\/td>\n<\/tr>\n
303<\/td>\n6.1.3 Structural Design Criteria <\/td>\n<\/tr>\n
306<\/td>\n6.1.4 Analysis <\/td>\n<\/tr>\n
312<\/td>\n6.1.5 Proportioning and Details <\/td>\n<\/tr>\n
336<\/td>\n6.2 SEVEN\u00ad\u2010STORY OFFICE BUILDING, LOS ANGELES, CALIFORNIA
6.2.1 Building Description <\/td>\n<\/tr>\n
338<\/td>\n6.2.2 Basic Requirements <\/td>\n<\/tr>\n
340<\/td>\n6.2.3 Structural Design Criteria <\/td>\n<\/tr>\n
342<\/td>\n6.2.4 Analysis and Design of Alternative A: SMF <\/td>\n<\/tr>\n
357<\/td>\n6.2.5 Analysis and Design of Alternative B: SCBF <\/td>\n<\/tr>\n
368<\/td>\n6.3 TEN-\u00adSTORY HOSPITAL, SEATTLE, WASHINGTON
6.3.1 Building Description <\/td>\n<\/tr>\n
372<\/td>\n6.3.2 Basic Requirements <\/td>\n<\/tr>\n
374<\/td>\n6.3.3 Structural Design Criteria <\/td>\n<\/tr>\n
376<\/td>\n6.3.4 Elastic Analysis <\/td>\n<\/tr>\n
383<\/td>\n6.3.5 Initial Proportioning and Details <\/td>\n<\/tr>\n
389<\/td>\n6.3.6 Nonlinear Response History Analysis <\/td>\n<\/tr>\n
401<\/td>\nCHAPTER 7: REINFORCED CONCRETE <\/td>\n<\/tr>\n
407<\/td>\n7.1 SEISMIC DESIGN REQUIREMENTS
7.1.1 Seismic Response Parameters <\/td>\n<\/tr>\n
408<\/td>\n7.1.2 Seismic Design Category
7.1.3 Structural Systems <\/td>\n<\/tr>\n
409<\/td>\n7.1.4 Structural Configuration
7.1.5 Load Combinations <\/td>\n<\/tr>\n
410<\/td>\n7.1.6 Material Properties <\/td>\n<\/tr>\n
411<\/td>\n7.2 DETERMINATION OF SEISMIC FORCES
7.2.1 Modeling Criteria <\/td>\n<\/tr>\n
412<\/td>\n7.2.2 Building Mass <\/td>\n<\/tr>\n
413<\/td>\n7.2.3 Analysis Procedures
7.2.4 Development of Equivalent Lateral Forces <\/td>\n<\/tr>\n
419<\/td>\n7.2.5 Direction of Loading
7.2.6 Modal Analysis Procedure <\/td>\n<\/tr>\n
421<\/td>\n7.3 DRIFT AND P\u2010DELTA EFFECTS
7.3.1 Torsion Irregularity Check for the Berkeley Building <\/td>\n<\/tr>\n
423<\/td>\n7.3.2 Drift Check for the Berkeley Building <\/td>\n<\/tr>\n
428<\/td>\n7.3.3 P-\u00addelta Check for the Berkeley Building <\/td>\n<\/tr>\n
429<\/td>\n7.3.4 Torsion Irregularity Check for the Honolulu Building
7.3.5 Drift Check for the Honolulu Building <\/td>\n<\/tr>\n
431<\/td>\n7.3.6 P-\u00adDelta Check for the Honolulu Building <\/td>\n<\/tr>\n
432<\/td>\n7.4 STRUCTURAL DESIGN OF THE BERKELEY BUILDING <\/td>\n<\/tr>\n
433<\/td>\n7.4.1 Analysis of Frame-\u00adOnly Structure for 25 Percent of Lateral Load <\/td>\n<\/tr>\n
437<\/td>\n7.4.2 Design o fMoment Frame Members for the Berkeley Building <\/td>\n<\/tr>\n
460<\/td>\n7.4.3 Design of Frame 3 Shear Wall <\/td>\n<\/tr>\n
466<\/td>\n7.5 STRUCTURAL DESIGN OF THE HONOLULU BUILDING
7.5.1 Compare Seismic Versus Wind Loading <\/td>\n<\/tr>\n
469<\/td>\n7.5.2 Design and Detailing of Members of Frame 1 <\/td>\n<\/tr>\n
481<\/td>\nCHAPTER 8: PRECAST CONCRETE DESIGN <\/td>\n<\/tr>\n
484<\/td>\n8.1 HORIZONTAL DIAPHRAGMS
8.1.1 Untopped Precast Concrete Units for Five-\u00adStory Masonry Buildings Located in Birmingham, Alabama and New York, New York <\/td>\n<\/tr>\n
498<\/td>\n8.1.2 Topped Precast Concrete Units for Five-\u00adStory Masonry Building Located in Los Angeles, California (see Sec.10.2) <\/td>\n<\/tr>\n
506<\/td>\n8.2 THREE-STORY OFFICE BUILDING WITH INTERMEDIATE PRECAST CONCRETESHEAR WALLS
8.2.1 Building Description <\/td>\n<\/tr>\n
508<\/td>\n8.2.2 Design Requirements <\/td>\n<\/tr>\n
509<\/td>\n8.2.3 Load Combinations <\/td>\n<\/tr>\n
510<\/td>\n8.2.4 Seismic Force Analysis <\/td>\n<\/tr>\n
513<\/td>\n8.2.5 Proportioning and Detailing <\/td>\n<\/tr>\n
525<\/td>\n8.3 ONE-STORY PRECAST SHEAR WALL BUILDING
8.3.1 Building Description <\/td>\n<\/tr>\n
528<\/td>\n8.3.2 Design Requirements <\/td>\n<\/tr>\n
529<\/td>\n8.3.3 Load Combinations <\/td>\n<\/tr>\n
530<\/td>\n8.3.4 Seismic Force Analysis <\/td>\n<\/tr>\n
532<\/td>\n8.3.5 Proportioning and Detailing <\/td>\n<\/tr>\n
545<\/td>\n8.4 SPECIAL MOMENT FRAMES CONSTRUCTED USING PRECAST CONCRETE
8.4.1 Ductile Connections <\/td>\n<\/tr>\n
547<\/td>\n8.4.2 Strong Connections <\/td>\n<\/tr>\n
551<\/td>\nCHAPTER 9: COMPOSITE STEEL AND CONCRETE <\/td>\n<\/tr>\n
553<\/td>\n9.1 BUILDING DESCRIPTION <\/td>\n<\/tr>\n
557<\/td>\n9.2 PARTIALLY RESTRAINED COMPOSITE CONNECTIONS
9.2.1 Connection Details <\/td>\n<\/tr>\n
560<\/td>\n9.2.2 Connection Moment\u2010Rotation Curves <\/td>\n<\/tr>\n
563<\/td>\n9.2.3 Connection Design <\/td>\n<\/tr>\n
567<\/td>\n9.3 LOADS AND LOAD COMBINATIONS
9.3.1 Gravity Loads and Seismic Weight <\/td>\n<\/tr>\n
568<\/td>\n9.3.2 Seismic Loads <\/td>\n<\/tr>\n
569<\/td>\n9.3.3 Wind Loads
9.3.4 Notional Loads <\/td>\n<\/tr>\n
570<\/td>\n9.3.5 Load Combinations <\/td>\n<\/tr>\n
571<\/td>\n9.4 DESIGN OF C-\u00adPRMF SYSTEM
9.4.1 Preliminary Design <\/td>\n<\/tr>\n
572<\/td>\n9.4.2 Application of Loading <\/td>\n<\/tr>\n
573<\/td>\n9.4.3 Beam and Column Moment of Inertia <\/td>\n<\/tr>\n
574<\/td>\n9.4.4 Connection Behavior Modeling
9.4.5 Building Drift and P-\u00addelta Checks <\/td>\n<\/tr>\n
576<\/td>\n9.4.6 Beam Design <\/td>\n<\/tr>\n
577<\/td>\n9.4.7 Column Design <\/td>\n<\/tr>\n
578<\/td>\n9.4.8 Connection Design <\/td>\n<\/tr>\n
579<\/td>\n9.4.9 Column Splices
9.4.10 Column Base Design <\/td>\n<\/tr>\n
581<\/td>\nCHAPTER 10: MASONRY <\/td>\n<\/tr>\n
583<\/td>\n10.1 WAREHOUSE WITH MASONRY WALLS AND WOOD ROOF, LOS ANGELES, CALIFORNIA
10.1.1 Building Description <\/td>\n<\/tr>\n
584<\/td>\n10.1.2 Design Requirements <\/td>\n<\/tr>\n
586<\/td>\n10.1.3 Load Combinations <\/td>\n<\/tr>\n
588<\/td>\n10.1.4 Seismic Forces <\/td>\n<\/tr>\n
589<\/td>\n10.1.5 Side Walls <\/td>\n<\/tr>\n
605<\/td>\n10.1.6 End Walls <\/td>\n<\/tr>\n
624<\/td>\n10.1.7 In-\u00adPlane Deflection\u2013 EndWalls <\/td>\n<\/tr>\n
625<\/td>\n10.1.8 Bond Beam\u2013 Side Walls (and End Walls)
10.2 FIVE-\u00ad\u2010STORY MASONRY RESIDENTIAL BUILDINGS IN BIRMINGHAM, ALABAMA; ALBUQUERQUE, NEW MEXICO; AND SAN RAFAEL, CALIFORNIA
10.2.1 Building Description <\/td>\n<\/tr>\n
628<\/td>\n10.2.2 Design Requirements <\/td>\n<\/tr>\n
630<\/td>\n10.2.3 Load Combinations <\/td>\n<\/tr>\n
631<\/td>\n10.2.4 Seismic Design for Birmingham 1 <\/td>\n<\/tr>\n
649<\/td>\n10.2.5 Seismic Design for Albuquerque <\/td>\n<\/tr>\n
661<\/td>\n10.2.6 Birmingham 2 Seismic Design <\/td>\n<\/tr>\n
669<\/td>\n10.2.7 Seismic Design for San Rafael <\/td>\n<\/tr>\n
681<\/td>\n10.2.8 Summary of Wall D Design for All Four Locations <\/td>\n<\/tr>\n
683<\/td>\nCHAPTER 11: WOOD DESIGN <\/td>\n<\/tr>\n
685<\/td>\n11.1 THREE-\u00ad\u2010STORY WOOD APARTMENT BUILDING, SEATTLE, WASHINGTON
11.1.1 Building Description <\/td>\n<\/tr>\n
688<\/td>\n11.1.2 Basic Requirements <\/td>\n<\/tr>\n
691<\/td>\n11.1.3 Seismic Force Analysis <\/td>\n<\/tr>\n
693<\/td>\n11.1.4 Basic Proportioning <\/td>\n<\/tr>\n
712<\/td>\n11.2 WAREHOUSE WITH MASONRY WALLS AND WOOD ROOF, LOS ANGELES, CALIFORNIA
11.2.1 Building Description <\/td>\n<\/tr>\n
713<\/td>\n11.2.2 Basic Requirements <\/td>\n<\/tr>\n
715<\/td>\n11.2.3 Seismic Force Analysis <\/td>\n<\/tr>\n
716<\/td>\n11.2.4 Basic Proportioning of Diaphragm Elements <\/td>\n<\/tr>\n
737<\/td>\nCHAPTER 12: SEISMICALLY ISOLATED STRUCTURES <\/td>\n<\/tr>\n
740<\/td>\n12.1 BACKGROUND AND BASIC CONCEPTS
12.1.1 Types of Isolation Systems <\/td>\n<\/tr>\n
741<\/td>\n12.1.2 Definition of Elements of an Isolated Structure <\/td>\n<\/tr>\n
742<\/td>\n12.1.3 Design Approach <\/td>\n<\/tr>\n
743<\/td>\n12.1.4 Effective Stiffness and Effective Damping
12.2 CRITERIA SELECTION <\/td>\n<\/tr>\n
745<\/td>\n12.3 EQUIVALENT LATERAL FORCE PROCEDURE
12.3.1 Isolation System Displacement <\/td>\n<\/tr>\n
747<\/td>\n12.3.2 Design Forces <\/td>\n<\/tr>\n
751<\/td>\n12.4 DYNAMIC LATERAL RESPONSE PROCEDURE
12.4.1 Minimum Design Criteria <\/td>\n<\/tr>\n
752<\/td>\n12.4.2 Modeling Requirements <\/td>\n<\/tr>\n
754<\/td>\n12.4.3 Response Spectrum Analysis
12.4.4 Response History Analysis <\/td>\n<\/tr>\n
757<\/td>\n12.5 EMERGENCY OPERATIONS CENTER USING DOUBLE-\u00ad\u2010CONCAVE FRICTION PENDULUM BEARINGS, OAKLAND, CALIFORNIA <\/td>\n<\/tr>\n
758<\/td>\n12.5.1 System Description <\/td>\n<\/tr>\n
761<\/td>\n12.5.2 Basic Requirements <\/td>\n<\/tr>\n
770<\/td>\n12.5.3 Seismic Force Analysis <\/td>\n<\/tr>\n
772<\/td>\n12.5.4 Preliminary Design Based on the ELF Procedure <\/td>\n<\/tr>\n
787<\/td>\n12.5.5 Design Verification Using Nonlinear Response History Analysis <\/td>\n<\/tr>\n
797<\/td>\n12.5.6 Design and Testing Criteria for Isolator Units <\/td>\n<\/tr>\n
801<\/td>\nCHAPTER 13: NONBUILDING STRUCTURE DESIGN <\/td>\n<\/tr>\n
804<\/td>\n13.1 NONBUILDING STRUCTURES VERSUS NONSTRUCTURAL COMPONENTS <\/td>\n<\/tr>\n
805<\/td>\n13.1.1 Nonbuilding Structure <\/td>\n<\/tr>\n
806<\/td>\n13.1.2 Nonstructural Component
13.2 PIPERACK, OXFORD, MISSISSIPPI <\/td>\n<\/tr>\n
807<\/td>\n13.2.1 Description
13.2.2 Provisions Parameters <\/td>\n<\/tr>\n
808<\/td>\n13.2.3 Design in theTransverse Direction <\/td>\n<\/tr>\n
811<\/td>\n13.2.4 Design in the Longitudinal Direction <\/td>\n<\/tr>\n
813<\/td>\n13.3 STEEL STORAGE RACK, OXFORD, MISSISSIPPI
13.3.1 Description <\/td>\n<\/tr>\n
814<\/td>\n13.3.2 Provisions Parameters <\/td>\n<\/tr>\n
815<\/td>\n13.3.3 Design of the System <\/td>\n<\/tr>\n
817<\/td>\n13.4 ELECTRIC GENERATING POWER PLANT, MERNA, WYOMING
13.4.1 Description <\/td>\n<\/tr>\n
819<\/td>\n13.4.2 Provisions Parameters <\/td>\n<\/tr>\n
820<\/td>\n13.4.3 Design in the North-\u00ad\u2010South Direction <\/td>\n<\/tr>\n
821<\/td>\n13.4.4 Design in the East-\u00ad\u2010West Direction
13.5 PIER\/WHARF DESIGN, LONG BEACH, CALIFORNIA
13.5.1 Description <\/td>\n<\/tr>\n
822<\/td>\n13.5.2 Provisions Parameters <\/td>\n<\/tr>\n
823<\/td>\n13.5.3 Design of the System <\/td>\n<\/tr>\n
824<\/td>\n13.6 TANKS AND VESSELS, EVERETT, WASHINGTON <\/td>\n<\/tr>\n
825<\/td>\n13.6.1 Flat-\u00ad\u2010Bottom Water Storage Tank <\/td>\n<\/tr>\n
828<\/td>\n13.6.2 Flat-\u00ad\u2010Bottom Gasoline Tank <\/td>\n<\/tr>\n
831<\/td>\n13.7 VERTICAL VESSEL, ASHPORT, TENNESSEE
13.7.1 Description <\/td>\n<\/tr>\n
832<\/td>\n13.7.2 Provisions Parameters <\/td>\n<\/tr>\n
833<\/td>\n13.7.3 Design of the System <\/td>\n<\/tr>\n
837<\/td>\nCHAPTER 14: DESIGN FOR NONSTRUCTURAL COMPONENTS <\/td>\n<\/tr>\n
839<\/td>\n14.1 DEVELOPMENT AND BACKGROUND OF THE REQUIREMENTS FOR NONSTRUCTURAL COMPONENTS
14.1.1 Approach to Nonstructural Components <\/td>\n<\/tr>\n
840<\/td>\n14.1.2 Force Equations <\/td>\n<\/tr>\n
841<\/td>\n14.1.3 Load Combinations and Acceptance Criteria <\/td>\n<\/tr>\n
842<\/td>\n14.1.4 Component Amplification Factor <\/td>\n<\/tr>\n
843<\/td>\n14.1.5 Seismic Coefficient at Grade
14.1.6 Relative Location Factor
14.1.7 Component Response Modification Factor
14.1.8 Component Importance Factor <\/td>\n<\/tr>\n
844<\/td>\n14.1.9 Accommodation of Seismic Relative Displacements <\/td>\n<\/tr>\n
845<\/td>\n14.1.10 Component Anchorage Factors and Acceptance Criteria
14.1.11 Construction Documents <\/td>\n<\/tr>\n
846<\/td>\n14.2 ARCHITECTURAL CONCRETE WALL PANEL
14.2.1 Example Description <\/td>\n<\/tr>\n
848<\/td>\n14.2.2 Design Requirements
14.2.3 Spandrel Panel <\/td>\n<\/tr>\n
855<\/td>\n14.2.4 Column Cover <\/td>\n<\/tr>\n
856<\/td>\n14.2.5 Additional Design Considerations <\/td>\n<\/tr>\n
857<\/td>\n14.3 HVAC FAN UNIT SUPPORT
14.3.1 Example Description <\/td>\n<\/tr>\n
858<\/td>\n14.3.2 Design Requirements <\/td>\n<\/tr>\n
859<\/td>\n14.3.3 Direct Attachment to Structure <\/td>\n<\/tr>\n
862<\/td>\n14.3.4 Support on Vibration Isolation Springs <\/td>\n<\/tr>\n
867<\/td>\n14.3.5 Additional Considerations for Supporton Vibration Isolators <\/td>\n<\/tr>\n
869<\/td>\n14.4 ANALYSIS OF PIPING SYSTEMS
14.4.1 ASME Code Allowable Stress Approach <\/td>\n<\/tr>\n
870<\/td>\n14.4.2 Allowable Stress Load Combinations <\/td>\n<\/tr>\n
872<\/td>\n14.4.3 Application of the Standard <\/td>\n<\/tr>\n
874<\/td>\n14.5 PIPING SYSTEM SEISMIC DESIGN
14.5.1 Example Description <\/td>\n<\/tr>\n
879<\/td>\n14.5.2 Design Requirements <\/td>\n<\/tr>\n
881<\/td>\n14.5.3 Piping System Design <\/td>\n<\/tr>\n
884<\/td>\n14.5.4 Pipe Supports and Bracing <\/td>\n<\/tr>\n
889<\/td>\n14.5.5 Design for Displacements <\/td>\n<\/tr>\n
891<\/td>\n14.6 ELEVATED VESSEL SEISMIC DESIGN
14.6.1 Example Description <\/td>\n<\/tr>\n
894<\/td>\n14.6.2 Design Requirements <\/td>\n<\/tr>\n
896<\/td>\n14.6.3 Load Combinations
14.6.4 Forces in Vessel Supports <\/td>\n<\/tr>\n
898<\/td>\n14.6.5 Vessel Support and Attachment <\/td>\n<\/tr>\n
901<\/td>\n14.6.6 Supporting Frame <\/td>\n<\/tr>\n
905<\/td>\n14.6.7 Design Considerations for the Vertical Load-\u00ad\u2010Carrying System <\/td>\n<\/tr>\n
909<\/td>\nA – THE BUILDING SEISMIC SAFETY COUNCIL <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":"

FEMA P-751 – 2009 NEHRP Recommended Seismic Provisions: Design Examples<\/b><\/p>\n\n\n\n\n
Published By<\/td>\nPublication Date<\/td>\nNumber of Pages<\/td>\n<\/tr>\n
FEMA<\/b><\/a><\/td>\n2012<\/td>\n916<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n","protected":false},"featured_media":137814,"template":"","meta":{"rank_math_lock_modified_date":false,"ep_exclude_from_search":false},"product_cat":[2743],"product_tag":[],"class_list":{"0":"post-137808","1":"product","2":"type-product","3":"status-publish","4":"has-post-thumbnail","6":"product_cat-fema","8":"first","9":"instock","10":"sold-individually","11":"shipping-taxable","12":"purchasable","13":"product-type-simple"},"_links":{"self":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product\/137808","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product"}],"about":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/types\/product"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media\/137814"}],"wp:attachment":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media?parent=137808"}],"wp:term":[{"taxonomy":"product_cat","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_cat?post=137808"},{"taxonomy":"product_tag","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_tag?post=137808"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}