{"id":244976,"date":"2024-10-19T16:06:22","date_gmt":"2024-10-19T16:06:22","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bsi-pd-iec-ts-63042-2012018\/"},"modified":"2024-10-25T11:05:58","modified_gmt":"2024-10-25T11:05:58","slug":"bsi-pd-iec-ts-63042-2012018","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bsi-pd-iec-ts-63042-2012018\/","title":{"rendered":"BSI PD IEC TS 63042-201:2018"},"content":{"rendered":"

This part of 63042, which is a Technical Specification, provides common rules for the design of substations with the highest voltages of AC transmission systems exceeding 800 kV, so as to provide safety and proper functioning for the intended use.<\/p>\n

PDF Catalog<\/h4>\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
PDF Pages<\/th>\nPDF Title<\/th>\n<\/tr>\n
2<\/td>\nundefined <\/td>\n<\/tr>\n
4<\/td>\nCONTENTS <\/td>\n<\/tr>\n
8<\/td>\nFOREWORD <\/td>\n<\/tr>\n
10<\/td>\n1 Scope
2 Normative references <\/td>\n<\/tr>\n
11<\/td>\n3 Terms and definitions <\/td>\n<\/tr>\n
12<\/td>\n4 UHV AC substation requirement
4.1 General requirement
4.2 System demands
Figures
Figure 1 \u2013 Bird’s-eye view of a typical UHV AC substation <\/td>\n<\/tr>\n
13<\/td>\n4.3 Operation and maintenance requirements
4.4 Construction requirements
4.5 Site condition <\/td>\n<\/tr>\n
14<\/td>\n4.6 Environmental impact
4.7 Economy
5 Bus scheme and feeder connection
5.1 General <\/td>\n<\/tr>\n
15<\/td>\n5.2 Scheme at high-voltage side of main transformer
Figure 2 \u2013 Double busbar (DB) with or without bus section connection <\/td>\n<\/tr>\n
16<\/td>\n5.3 Scheme at intermedium-voltage side of main transformer
5.4 Scheme at low-voltage side of main transformer
Figure 3 \u2013 One-and-a-half circuit breaker (OHCB)
Figure 4 \u2013 Two-circuit breaker (2CB) <\/td>\n<\/tr>\n
17<\/td>\n5.5 System neutral earthing mode of a UHV AC substation
Figure 5 \u2013 Example diagram of a bus scheme and feeder connection <\/td>\n<\/tr>\n
18<\/td>\n6 Selection of equipment and conductors
6.1 General
6.1.1 Voltage
6.1.2 Rated current
6.1.3 Rated frequency
6.2 Basic requirements
6.2.1 Electrical requirements <\/td>\n<\/tr>\n
19<\/td>\n6.2.2 Mechanical requirements
6.2.3 Environmental conditions <\/td>\n<\/tr>\n
20<\/td>\n6.3 Transformer <\/td>\n<\/tr>\n
21<\/td>\n6.4 UHV shunt reactor and neutral-earthing reactor
6.5 UHV switchgear <\/td>\n<\/tr>\n
22<\/td>\n6.6 UHV circuit breaker
6.7 UHV disconnector <\/td>\n<\/tr>\n
23<\/td>\n6.8 UHV earthing switch for maintenance <\/td>\n<\/tr>\n
24<\/td>\n6.9 High-speed earthing switch
6.10 UHV current transformer
6.11 UHV voltage transformer
Tables
Table 1 \u2013 Comparison of a four-legged reactor and HSES <\/td>\n<\/tr>\n
25<\/td>\n6.12 UHV surge arrester
6.13 Reactive power compensation device for low voltage side of UHV transformer
6.14 UHV bushing <\/td>\n<\/tr>\n
26<\/td>\n6.15 UHV insulator
6.16 UHV conductor
6.16.1 General
6.16.2 Conductor type <\/td>\n<\/tr>\n
27<\/td>\n6.16.3 Selection of current-carrying capacity (cross-section)
6.16.4 Corona and radio interference
Table 2 \u2013 Comparison of conductors <\/td>\n<\/tr>\n
28<\/td>\n6.16.5 Mechanical strength
7 Equipment layout
7.1 General requirement of equipment layout
7.1.1 General
7.1.2 Optimization of substation layout
7.1.3 Seismic performance
7.1.4 Construction, serviceability and reliability and failure response ability <\/td>\n<\/tr>\n
29<\/td>\n7.2 Minimum clearances
7.2.1 Normal environmental conditions
7.2.2 Minimum clearances in air-voltage range
7.3 Electromagnetic environment
7.3.1 Electrostatic induction mitigation design <\/td>\n<\/tr>\n
30<\/td>\n7.3.2 Magnetic induction mitigation design
7.3.3 Audible noise mitigation design <\/td>\n<\/tr>\n
31<\/td>\n7.4 Selection of switchgear equipment
7.5 Switchgear Installations layout
7.5.1 General
7.5.2 Location arrangement of switchgear <\/td>\n<\/tr>\n
32<\/td>\n7.5.3 Basic arrangement of surge arresters
7.5.4 Optimal gas-insulated busbar (GIB) layout and length
7.5.5 Utilization of working space for substations <\/td>\n<\/tr>\n
33<\/td>\n7.6 Protection against direct lightning strike
7.7 Earthing systems
7.7.1 General considerations
Figure 6 \u2013 Typical configuration of UHV gas-insulated switchgear and crane location <\/td>\n<\/tr>\n
34<\/td>\n7.7.2 Multiple point earthing method for GIS <\/td>\n<\/tr>\n
35<\/td>\n7.8 Seismic design
7.8.1 General
7.8.2 Basic seismic design
Figure 7 \u2013 Earthing methods <\/td>\n<\/tr>\n
36<\/td>\n7.8.3 Special seismic performance for UHV AC substation equipment
Figure 8 \u2013 Flow chart for seismic qualification <\/td>\n<\/tr>\n
37<\/td>\n8 Control, protection and communication
8.1 General
8.2 Control system <\/td>\n<\/tr>\n
38<\/td>\n8.3 Relay protection
8.3.1 General
8.3.2 Duplicated configuration of UHV AC equipment relay protection
8.3.3 UHV transformer protection <\/td>\n<\/tr>\n
39<\/td>\n8.4 Communication
8.5 Electromagnetic compatibility requirements for control and protection equipment <\/td>\n<\/tr>\n
40<\/td>\n9 DC and AC auxiliary power supply system
9.1 General
9.2 DC power supply system
9.3 AC auxiliary power supply system <\/td>\n<\/tr>\n
41<\/td>\n9.4 AC uninterruptible power supply (UPS) system
10 UHV gantry, support and foundation design
10.1 UHV gantry and support design
10.1.1 General
10.1.2 Load and combination of loads <\/td>\n<\/tr>\n
42<\/td>\n10.1.3 Detailing requirements <\/td>\n<\/tr>\n
43<\/td>\n10.2 GIS or MTS foundation design
Figure 9 \u2013 Example of continuous UHV gantry and independent gantry <\/td>\n<\/tr>\n
44<\/td>\nFigure 10 \u2013 GIS foundation forms <\/td>\n<\/tr>\n
45<\/td>\nAnnex A (informative)Load combination of UHV AC equipment
Table A.1 \u2013 Example of load combination for UHV AC equipment <\/td>\n<\/tr>\n
46<\/td>\nAnnex B (informative)Specification of UHV AC equipment and conductor
Table B.1 \u2013 UHV voltage specification
Table B.2 \u2013 Specification of UHV short-circuit current
Table B.3 \u2013 Noise specification <\/td>\n<\/tr>\n
47<\/td>\nTable B.4 \u2013 Surge arrester specification applied in different countries <\/td>\n<\/tr>\n
48<\/td>\nAnnex C (informative)1\u2009000 kV outdoor overhead flexible conductor for UHV AC substations in China
C.1 General
C.2 Environmental conditions
C.3 Current-carrying capacity and thermal stability check
C.3.1 Current-carrying capacity check <\/td>\n<\/tr>\n
49<\/td>\nC.3.2 Thermal stability check
Table C.1 \u2013 Current-carrying capacity of bundle conductor <\/td>\n<\/tr>\n
50<\/td>\nC.4 Determination of bundle spacing
C.4.1 General
C.4.2 Calculation of maximum electric field strength around conductor <\/td>\n<\/tr>\n
51<\/td>\nC.5 Corona inception voltage
Figure C.1 \u2013 Relationship between maximum electric field strength and bundle spacing <\/td>\n<\/tr>\n
52<\/td>\nC.6 Electric field strength on ground caused by electrostatic induction
Table C.2 \u2013 Corona inception voltage of conductor <\/td>\n<\/tr>\n
53<\/td>\nFigure C.2 \u2013 Layout plan of main transformer incoming lines <\/td>\n<\/tr>\n
54<\/td>\nAnnex D (informative)Corona noise reduction measures of a UHV AC substation conductor under the rainy condition in Japan
D.1 Basic concept of corona noise reduction
D.2 Structure design of UHV AC substation conductor <\/td>\n<\/tr>\n
55<\/td>\nFigure D.1 \u2013 Conductor design of UHV AC substation
Table D.1 \u2013 Estimated values of corona noise of UHV AC transmission line <\/td>\n<\/tr>\n
56<\/td>\nD.3 Design criteria of partial discharge on UHV AC substation conductor
D.4 Corona noise measurement of the entrance in UHV AC test station
Table D.2 \u2013 Design criteria of partial discharge on UHV AC substation conductors <\/td>\n<\/tr>\n
57<\/td>\nTable D.3 \u2013 Results of corona noise measurements and average value of corona noise <\/td>\n<\/tr>\n
58<\/td>\nAnnex E (informative)Typical examples of items to be considered to select switchgear type
Table E.1 \u2013 The principal technology designs for substations (CIGRE TB 570) <\/td>\n<\/tr>\n
59<\/td>\nTable E.2 \u2013 Typical examples of items to be considered to select switchgear type <\/td>\n<\/tr>\n
60<\/td>\nAnnex F (informative)Standards related to seismic design
F.1 Typical seismic guide and standards
F.2 Comparison of main items among the seismic standards
Table F.1 \u2013 Typical seismic guide and standards
Table F.2 \u2013 Comparison of main items among seismic standards <\/td>\n<\/tr>\n
61<\/td>\nBibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":"

UHV AC transmission systems – UHV AC substation design<\/b><\/p>\n\n\n\n\n
Published By<\/td>\nPublication Date<\/td>\nNumber of Pages<\/td>\n<\/tr>\n
BSI<\/b><\/a><\/td>\n2018<\/td>\n64<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n","protected":false},"featured_media":244980,"template":"","meta":{"rank_math_lock_modified_date":false,"ep_exclude_from_search":false},"product_cat":[544,2641],"product_tag":[],"class_list":{"0":"post-244976","1":"product","2":"type-product","3":"status-publish","4":"has-post-thumbnail","6":"product_cat-29-240-10","7":"product_cat-bsi","9":"first","10":"instock","11":"sold-individually","12":"shipping-taxable","13":"purchasable","14":"product-type-simple"},"_links":{"self":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product\/244976","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product"}],"about":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/types\/product"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media\/244980"}],"wp:attachment":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media?parent=244976"}],"wp:term":[{"taxonomy":"product_cat","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_cat?post=244976"},{"taxonomy":"product_tag","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_tag?post=244976"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}