{"id":355947,"date":"2024-10-20T01:10:14","date_gmt":"2024-10-20T01:10:14","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bs-en-61400-42013\/"},"modified":"2024-10-26T01:30:12","modified_gmt":"2024-10-26T01:30:12","slug":"bs-en-61400-42013","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bs-en-61400-42013\/","title":{"rendered":"BS EN 61400-4:2013"},"content":{"rendered":"
IEC 61400-4:2012(E) is applicable to enclosed speed increasing gearboxes for horizontal axis wind turbine drivetrains with a power rating in excess of 500 kW. This standard applies to wind turbines installed onshore or offshore. It provides guidance on the analysis of the wind turbine loads in relation to the design of the gear and gearbox elements. The gearing elements covered by this standard include such gears as spur, helical or double helical and their combinations in parallel and epicyclic arrangements in the main power path. The standard is based on gearbox designs using rolling element bearings. Also included is guidance on the engineering of shafts, shaft hub interfaces, bearings and the gear case structure in the development of a fully integrated design that meets the rigours of the operating conditions. Lubrication of the transmission is covered along with prototype and production testing. Finally, guidance is provided on the operation and maintenance of the gearbox.<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
8<\/td>\n | CONTENTS <\/td>\n<\/tr>\n | ||||||
13<\/td>\n | INTRODUCTION <\/td>\n<\/tr>\n | ||||||
14<\/td>\n | 1 Scope 2 Normative references <\/td>\n<\/tr>\n | ||||||
16<\/td>\n | 3 Terms, definitions and conventions 3.1 Terms and definitions <\/td>\n<\/tr>\n | ||||||
19<\/td>\n | 3.2 Conventions Figures Figure\u00a01 \u2013 Shaft designation in 3-stage parallel shaft gearboxes <\/td>\n<\/tr>\n | ||||||
20<\/td>\n | Figure\u00a02 \u2013 Shaft designation in 3-stage gearboxes with one planet stage <\/td>\n<\/tr>\n | ||||||
21<\/td>\n | 4 Symbols, abbreviations and units 4.1 Symbols and units Figure\u00a03 \u2013 Shaft designation in 3-stage gearboxes with two planet stages <\/td>\n<\/tr>\n | ||||||
22<\/td>\n | Tables Table 1 \u2013 Symbols used in the document <\/td>\n<\/tr>\n | ||||||
25<\/td>\n | 4.2 Abbreviations Table 2 \u2013 Abbreviations <\/td>\n<\/tr>\n | ||||||
27<\/td>\n | 5 Design for reliability 5.1 Design lifetime and reliability <\/td>\n<\/tr>\n | ||||||
28<\/td>\n | 5.2 Design process <\/td>\n<\/tr>\n | ||||||
29<\/td>\n | Figure 4 \u2013 Design process flow chart <\/td>\n<\/tr>\n | ||||||
30<\/td>\n | 5.3 Documentation 5.4 Quality plan <\/td>\n<\/tr>\n | ||||||
31<\/td>\n | 6 Drivetrain operating conditions and loads 6.1 Drivetrain description 6.1.1 General 6.1.2 Interface definition <\/td>\n<\/tr>\n | ||||||
32<\/td>\n | 6.1.3 Specified requirements across interfaces 6.2 Deriving drivetrain loads 6.2.1 Wind turbine load simulation model <\/td>\n<\/tr>\n | ||||||
33<\/td>\n | 6.2.2 Wind turbine load calculations 6.2.3 Reliability of load assumptions 6.3 Results from wind turbine load calculations 6.3.1 General <\/td>\n<\/tr>\n | ||||||
34<\/td>\n | 6.3.2 Time series 6.3.3 Fatigue load <\/td>\n<\/tr>\n | ||||||
35<\/td>\n | 6.3.4 Extreme loads 6.4 Operating conditions 6.4.1 General 6.4.2 Environmental conditions <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | 6.4.3 Operating strategies 6.5 Drivetrain analysis 7 Gearbox design, rating, and manufacturing requirements 7.1 Gearbox cooling <\/td>\n<\/tr>\n | ||||||
37<\/td>\n | 7.2 Gears 7.2.1 Gear reliability considerations 7.2.2 Gear rating <\/td>\n<\/tr>\n | ||||||
38<\/td>\n | 7.2.3 Load factors <\/td>\n<\/tr>\n | ||||||
39<\/td>\n | Table\u00a03 \u2013 Mesh load factor K( for planetary stages <\/td>\n<\/tr>\n | ||||||
40<\/td>\n | 7.2.4 Gear materials <\/td>\n<\/tr>\n | ||||||
41<\/td>\n | 7.2.5 Subsurface initiated fatigue 7.2.6 Gear accuracy 7.2.7 Gear manufacturing Table 4 \u2013 Required gear accuracy <\/td>\n<\/tr>\n | ||||||
42<\/td>\n | 7.3 Bearings 7.3.1 General 7.3.2 Bearing reliability considerations <\/td>\n<\/tr>\n | ||||||
43<\/td>\n | 7.3.3 Bearing steel quality requirements 7.3.4 General design considerations Figure 5 \u2013 Examples of bearing selection criteria <\/td>\n<\/tr>\n | ||||||
46<\/td>\n | 7.3.5 Bearing interface requirements <\/td>\n<\/tr>\n | ||||||
47<\/td>\n | 7.3.6 Bearing design issues <\/td>\n<\/tr>\n | ||||||
48<\/td>\n | Table 5 \u2013 Temperature gradientsfor calculation of operating clearance <\/td>\n<\/tr>\n | ||||||
49<\/td>\n | Figure 6 \u2013 Blind bearing assembly <\/td>\n<\/tr>\n | ||||||
50<\/td>\n | 7.3.7 Bearing lubrication Table 6 \u2013 Bearing lubricant temperaturefor calculation of viscosity ratio, ( <\/td>\n<\/tr>\n | ||||||
51<\/td>\n | 7.3.8 Rating calculations <\/td>\n<\/tr>\n | ||||||
53<\/td>\n | Table 7 \u2013 Guide values for maximum contact stress at Miner\u2019s sum dynamic equivalent bearing load <\/td>\n<\/tr>\n | ||||||
54<\/td>\n | 7.4 Shafts, keys, housing joints, splines and fasteners 7.4.1 Shafts 7.4.2 Shaft-hub connections Table 8 \u2013 Minimum safety factors for the different methods <\/td>\n<\/tr>\n | ||||||
55<\/td>\n | 7.4.3 Flexible splines 7.4.4 Shaft seals 7.4.5 Fasteners <\/td>\n<\/tr>\n | ||||||
56<\/td>\n | 7.4.6 Circlips (snap rings) 7.5 Structural elements 7.5.1 Introduction <\/td>\n<\/tr>\n | ||||||
57<\/td>\n | 7.5.2 Reliability considerations 7.5.3 Deflection analysis 7.5.4 Strength verification <\/td>\n<\/tr>\n | ||||||
58<\/td>\n | 7.5.5 Static strength assessment <\/td>\n<\/tr>\n | ||||||
59<\/td>\n | Table 9 \u2013 Partial safety factors for materials <\/td>\n<\/tr>\n | ||||||
60<\/td>\n | Figure 7 \u2013 Definition of section factor npl,( of a notched component <\/td>\n<\/tr>\n | ||||||
61<\/td>\n | Figure\u00a08 \u2013 Idealized elastic plastic stress-strain curve <\/td>\n<\/tr>\n | ||||||
62<\/td>\n | 7.5.6 Fatigue strength assessment <\/td>\n<\/tr>\n | ||||||
64<\/td>\n | Figure 9 \u2013 Synthetic S\/N curve (adapted from Haibach, 2006) <\/td>\n<\/tr>\n | ||||||
65<\/td>\n | Table 10 \u2013 Partial safety factors (m for synthetic S\/N-curves of cast iron materials <\/td>\n<\/tr>\n | ||||||
66<\/td>\n | 7.5.7 Material tests <\/td>\n<\/tr>\n | ||||||
67<\/td>\n | 7.5.8 Documentation 7.6 Lubrication 7.6.1 General considerations <\/td>\n<\/tr>\n | ||||||
68<\/td>\n | 7.6.2 Type of lubricant <\/td>\n<\/tr>\n | ||||||
69<\/td>\n | 7.6.3 Lubricant characteristics <\/td>\n<\/tr>\n | ||||||
70<\/td>\n | 7.6.4 Method of lubrication <\/td>\n<\/tr>\n | ||||||
71<\/td>\n | 7.6.5 Oil quantity <\/td>\n<\/tr>\n | ||||||
72<\/td>\n | 7.6.6 Operating temperatures 7.6.7 Temperature control <\/td>\n<\/tr>\n | ||||||
73<\/td>\n | 7.6.8 Lubricant condition monitoring 7.6.9 Lubricant cleanliness <\/td>\n<\/tr>\n | ||||||
74<\/td>\n | 7.6.10 Lubricant filter Table 11 \u2013 Recommended cleanliness levels <\/td>\n<\/tr>\n | ||||||
75<\/td>\n | 7.6.11 Ports 7.6.12 Oil level indicator 7.6.13 Magnetic plugs <\/td>\n<\/tr>\n | ||||||
76<\/td>\n | 7.6.14 Breather 7.6.15 Flow sensor 7.6.16 Serviceability 8 Design verification 8.1 General 8.2 Test planning 8.2.1 Identifying test criteria <\/td>\n<\/tr>\n | ||||||
77<\/td>\n | 8.2.2 New designs or substantive changes 8.2.3 Overall test plan 8.2.4 Specific test plans <\/td>\n<\/tr>\n | ||||||
78<\/td>\n | 8.3 Workshop prototype testing 8.3.1 General 8.3.2 Component testing 8.3.3 Workshop testing of a prototype gearbox <\/td>\n<\/tr>\n | ||||||
79<\/td>\n | 8.3.4 Lubrication system testing 8.4 Field test 8.4.1 General 8.4.2 Validation of loads <\/td>\n<\/tr>\n | ||||||
80<\/td>\n | 8.4.3 Type test of gearbox in wind turbine <\/td>\n<\/tr>\n | ||||||
81<\/td>\n | 8.5 Production testing 8.5.1 Acceptance testing 8.5.2 Sound emission testing 8.5.3 Vibration testing 8.5.4 Lubrication system considerations 8.5.5 System temperatures 8.6 Robustness test 8.7 Field lubricant temperature and cleanliness <\/td>\n<\/tr>\n | ||||||
82<\/td>\n | 8.8 Bearing specific validation 8.8.1 Design reviews 8.8.2 Prototype verification\/validation <\/td>\n<\/tr>\n | ||||||
83<\/td>\n | 8.9 Test documentation 9 Operation, service and maintenance requirements 9.1 Service and maintenance requirements 9.2 Inspection requirements 9.3 Commissioning and run-in <\/td>\n<\/tr>\n | ||||||
84<\/td>\n | 9.4 Transport, handling and storage 9.5 Repair 9.6 Installation and exchange 9.7 Condition monitoring 9.8 Lubrication 9.8.1 Oil type requirements 9.8.2 Lubrication system <\/td>\n<\/tr>\n | ||||||
85<\/td>\n | 9.8.3 Oil test and analysis 9.9 Operations and maintenance documentation <\/td>\n<\/tr>\n | ||||||
86<\/td>\n | Annex\u00a0A (informative)Examples of drivetrain interfaces and loads specifications Figure A.1 \u2013 Modular drivetrain <\/td>\n<\/tr>\n | ||||||
87<\/td>\n | Figure A.2 \u2013 Modular drivetrain with 3-point suspension Figure\u00a0A.3 \u2013 Integrated drivetrain <\/td>\n<\/tr>\n | ||||||
88<\/td>\n | Table A.1 \u2013 Drivetrain elements and local coordinate systems <\/td>\n<\/tr>\n | ||||||
89<\/td>\n | Figure A.4 \u2013 Reference system for modular drivetrain Table A.2 \u2013 Drivetrain element interface dimensions <\/td>\n<\/tr>\n | ||||||
90<\/td>\n | Figure A.5 \u2013 Rear view of drivetrain Table A.3 \u2013 Interface requirements for modular drivetrain <\/td>\n<\/tr>\n | ||||||
91<\/td>\n | Figure\u00a0A.6 \u2013 Reference system for modular drivetrain with 3-point suspension Table A.4 \u2013 Interface requirements for modular drivetrain with 3-point suspension <\/td>\n<\/tr>\n | ||||||
92<\/td>\n | Figure\u00a0A.7 \u2013 Reference system for integrated drivetrain Table A.5 \u2013 Interface requirements for integrated drivetrain <\/td>\n<\/tr>\n | ||||||
93<\/td>\n | Table A.6 \u2013 Engineering data and required design load descriptions Table A.7 \u2013 Rainflow matrix example <\/td>\n<\/tr>\n | ||||||
94<\/td>\n | Figure\u00a0A.8 \u2013 Example of rainflow counting per DLC <\/td>\n<\/tr>\n | ||||||
95<\/td>\n | Figure\u00a0A.9 \u2013 Example of load revolution distribution (LRD) Table A.8 \u2013 Example of load duration distribution (LDD) <\/td>\n<\/tr>\n | ||||||
96<\/td>\n | Table A.9 \u2013 Extreme load matrix example <\/td>\n<\/tr>\n | ||||||
97<\/td>\n | Annex\u00a0B (informative)Gearbox design and manufacturing considerations <\/td>\n<\/tr>\n | ||||||
98<\/td>\n | Table B.1 \u2013 Recommended gear tooth surface roughness <\/td>\n<\/tr>\n | ||||||
100<\/td>\n | Annex\u00a0C (informative)Bearing design considerations Table C.1 \u2013 Guide values for basic rating life Lh10 for preliminary bearing selection <\/td>\n<\/tr>\n | ||||||
101<\/td>\n | Figure C.1\u00a0\u2013 Load bin reduction by lumping neighbouring load bins <\/td>\n<\/tr>\n | ||||||
103<\/td>\n | Figure\u00a0C.2 \u2013 Consumed life index (CLI) Figure\u00a0C.3 \u2013 Time share distribution <\/td>\n<\/tr>\n | ||||||
105<\/td>\n | Table C.2 \u2013 Static load factors for radial bearings <\/td>\n<\/tr>\n | ||||||
106<\/td>\n | Figure\u00a0C.4 \u2013 Effects of clearance and preload on pressure distribution in radial roller bearings (from Brandlein et al, 1999) <\/td>\n<\/tr>\n | ||||||
107<\/td>\n | Figure\u00a0C.5 \u2013 Nomenclature for bearing curvature <\/td>\n<\/tr>\n | ||||||
109<\/td>\n | Figure\u00a0C.6 \u2013 Stress distribution over the elliptical contact area <\/td>\n<\/tr>\n | ||||||
114<\/td>\n | Table C.3 \u2013 Bearing types for combined loads with axial loads in double directions <\/td>\n<\/tr>\n | ||||||
115<\/td>\n | Table C.4 \u2013 Bearing types for combined loads with axial loads in single direction <\/td>\n<\/tr>\n | ||||||
116<\/td>\n | Table C.5 \u2013 Bearing types for pure radial load <\/td>\n<\/tr>\n | ||||||
117<\/td>\n | Table C.6 \u2013 Bearing types for axial load <\/td>\n<\/tr>\n | ||||||
118<\/td>\n | Figure\u00a0C.7 \u2013 Examples of locating and non-locating bearing arrangements Figure\u00a0C.8 \u2013 Examples of locating bearing arrangements Figure\u00a0C.9 \u2013 Examples of accommodation of axial displacements <\/td>\n<\/tr>\n | ||||||
119<\/td>\n | Figure\u00a0C.10 \u2013 Examples of cross-locating bearing arrangements Figure\u00a0C.11 \u2013 Examples of bearing arrangements with paired mounting <\/td>\n<\/tr>\n | ||||||
120<\/td>\n | Table C.7 \u2013 Bearing selection: Legend <\/td>\n<\/tr>\n | ||||||
121<\/td>\n | Table C.8 \u2013 Bearing selection: Low speed shaft (LSS) \/ planet carrier <\/td>\n<\/tr>\n | ||||||
122<\/td>\n | Table C.9 \u2013 Bearing selection: Low speed intermediate shaft (LSIS) <\/td>\n<\/tr>\n | ||||||
123<\/td>\n | Table C.10 \u2013 Bearing selection: High speed intermediate shaft (HSIS) <\/td>\n<\/tr>\n | ||||||
124<\/td>\n | Table C.11 \u2013 Bearing selection: High speed shaft (HSS) <\/td>\n<\/tr>\n | ||||||
125<\/td>\n | Table C.12 \u2013 Bearing selection: Planet bearing <\/td>\n<\/tr>\n | ||||||
126<\/td>\n | Annex\u00a0D (informative)Considerations for gearbox structural elements Table D.1 \u2013 Typical material properties <\/td>\n<\/tr>\n | ||||||
127<\/td>\n | Figure D.1 \u2013 Locations of failure for local (A) and global (B) failure Figure\u00a0D.2 \u2013 Local and global failure for two different notch radii <\/td>\n<\/tr>\n | ||||||
128<\/td>\n | Figure\u00a0D.3 \u2013 Haigh-diagram for evaluation of mean stress influence (Haibach, 2006) <\/td>\n<\/tr>\n | ||||||
129<\/td>\n | Annex\u00a0E (informative)Recommendations for lubricant performance in wind turbine gearboxes <\/td>\n<\/tr>\n | ||||||
130<\/td>\n | Figure\u00a0E.1 \u2013 Viscosity requirements versus pitch line velocity <\/td>\n<\/tr>\n | ||||||
131<\/td>\n | Table E.1 \u2013 Viscosity grade at operating temperature for oils with VI\u00a0=\u00a090 <\/td>\n<\/tr>\n | ||||||
132<\/td>\n | Table E.2 \u2013 Viscosity grade at operating temperature for oils with VI\u00a0=\u00a0120 <\/td>\n<\/tr>\n | ||||||
133<\/td>\n | Table E.3 \u2013 Viscosity grade at operating temperature for oils with VI\u00a0=\u00a0160 <\/td>\n<\/tr>\n | ||||||
134<\/td>\n | Table E.4 \u2013 Viscosity grade at operating temperature for oils with VI\u00a0=\u00a0240 <\/td>\n<\/tr>\n | ||||||
136<\/td>\n | Table E.5 \u2013 Standardized test methods for evaluating WT lubricants (fresh oil) <\/td>\n<\/tr>\n | ||||||
137<\/td>\n | Table E.6 \u2013 Non-standardized test methods for lubricant performance (fresh oil) <\/td>\n<\/tr>\n | ||||||
138<\/td>\n | Figure\u00a0E.2 \u2013 Test apparatus for filterability evaluation <\/td>\n<\/tr>\n | ||||||
140<\/td>\n | Table E.7\u2013 Guidelines for lubricant parameter limits <\/td>\n<\/tr>\n | ||||||
142<\/td>\n | Figure E.3 \u2013 Example for circuit design of combined filtration and cooling system <\/td>\n<\/tr>\n | ||||||
144<\/td>\n | Annex\u00a0F (informative)Design verification documentation Table F.1 \u2013 Design validation and verification documentation <\/td>\n<\/tr>\n | ||||||
147<\/td>\n | Annex\u00a0G (informative)Bearing calculation documentation <\/td>\n<\/tr>\n | ||||||
155<\/td>\n | Bibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" Wind turbines – Design requirements for wind turbine gea<\/b><\/p>\n |