{"id":410147,"date":"2024-10-20T05:39:01","date_gmt":"2024-10-20T05:39:01","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bsi-pd-iso-iec-ts-42132022\/"},"modified":"2024-10-26T10:23:18","modified_gmt":"2024-10-26T10:23:18","slug":"bsi-pd-iso-iec-ts-42132022","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bsi-pd-iso-iec-ts-42132022\/","title":{"rendered":"BSI PD ISO\/IEC\/TS 4213:2022"},"content":{"rendered":"
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
2<\/td>\n | National foreword <\/td>\n<\/tr>\n | ||||||
7<\/td>\n | Foreword <\/td>\n<\/tr>\n | ||||||
8<\/td>\n | Introduction <\/td>\n<\/tr>\n | ||||||
9<\/td>\n | 1 Scope 2 Normative references 3 Terms and definitions 3.1 Classification and related terms 3.2 Metrics and related terms <\/td>\n<\/tr>\n | ||||||
11<\/td>\n | 4 Abbreviated terms <\/td>\n<\/tr>\n | ||||||
12<\/td>\n | 5 General principles 5.1 Generalized process for machine learning classification performance assessment 5.2 Purpose of machine learning classification performance assessment <\/td>\n<\/tr>\n | ||||||
13<\/td>\n | 5.3 Control criteria in machine learning classification performance assessment 5.3.1 General 5.3.2 Data representativeness and bias 5.3.3 Preprocessing 5.3.4 Training data <\/td>\n<\/tr>\n | ||||||
14<\/td>\n | 5.3.5 Test and validation data 5.3.6 Cross-validation 5.3.7 Limiting information leakage 5.3.8 Limiting channel effects <\/td>\n<\/tr>\n | ||||||
15<\/td>\n | 5.3.9 Ground truth 5.3.10 Machine learning algorithms, hyperparameters and parameters <\/td>\n<\/tr>\n | ||||||
16<\/td>\n | 5.3.11 Evaluation environment 5.3.12 Acceleration 5.3.13 Appropriate baselines 5.3.14 Machine learning classification performance context 6 Statistical measures of performance 6.1 General <\/td>\n<\/tr>\n | ||||||
17<\/td>\n | 6.2 Base elements for metric computation 6.2.1 General 6.2.2 Confusion matrix 6.2.3 Accuracy 6.2.4 Precision, recall and specificity 6.2.5 F1 score <\/td>\n<\/tr>\n | ||||||
18<\/td>\n | 6.2.6 F\u03b2 6.2.7 Kullback-Leibler divergence 6.3 Binary classification 6.3.1 General <\/td>\n<\/tr>\n | ||||||
19<\/td>\n | 6.3.2 Confusion matrix for binary classification 6.3.3 Accuracy for binary classification 6.3.4 Precision, recall, specificity, F1 score and F\u03b2 for binary classification 6.3.5 Kullback-Leibler divergence for binary classification 6.3.6 Receiver operating characteristic curve and area under the receiver operating characteristic curve <\/td>\n<\/tr>\n | ||||||
20<\/td>\n | 6.3.7 Precision recall curve and area under the precision recall curve 6.3.8 Cumulative response curve 6.3.9 Lift curve 6.4 Multi-class classification 6.4.1 General 6.4.2 Accuracy for multi-class classification 6.4.3 Macro-average, weighted-average and micro-average <\/td>\n<\/tr>\n | ||||||
22<\/td>\n | 6.4.4 Distribution difference or distance metrics 6.5 Multi-label classification 6.5.1 General 6.5.2 Hamming loss <\/td>\n<\/tr>\n | ||||||
23<\/td>\n | 6.5.3 Exact match ratio 6.5.4 Jaccard index <\/td>\n<\/tr>\n | ||||||
24<\/td>\n | 6.5.5 Distribution difference or distance metrics 6.6 Computational complexity 6.6.1 General 6.6.2 Classification latency <\/td>\n<\/tr>\n | ||||||
25<\/td>\n | 6.6.3 Classification throughput 6.6.4 Classification efficiency 6.6.5 Energy consumption <\/td>\n<\/tr>\n | ||||||
26<\/td>\n | 7 Statistical tests of significance 7.1 General <\/td>\n<\/tr>\n | ||||||
27<\/td>\n | 7.2 Paired Student\u2019s t-test 7.3 Analysis of variance 7.4 Kruskal-Wallis test 7.5 Chi-squared test 7.6 Wilcoxon signed-ranks test <\/td>\n<\/tr>\n | ||||||
28<\/td>\n | 7.7 Fisher\u2019s exact test 7.8 Central limit theorem 7.9 McNemar test 7.10 Accommodating multiple comparisons 7.10.1 General <\/td>\n<\/tr>\n | ||||||
29<\/td>\n | 7.10.2 Bonferroni correction 7.10.3 False discovery rate 8 Reporting <\/td>\n<\/tr>\n | ||||||
30<\/td>\n | Annex A (informative) Multi-class classification performance illustration <\/td>\n<\/tr>\n | ||||||
32<\/td>\n | Annex B (informative) Illustration of ROC curve derived from classification results <\/td>\n<\/tr>\n | ||||||
37<\/td>\n | Annex C (informative) Summary information on machine learning classification benchmark tests <\/td>\n<\/tr>\n | ||||||
39<\/td>\n | Annex D (informative) Chance-corrected cause-specific mortality fraction <\/td>\n<\/tr>\n | ||||||
40<\/td>\n | Bibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" Information technology. Artificial Intelligence. Assessment of machine learning classification performance<\/b><\/p>\n |